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1 Concepts and Understanding (F2024.1)

Note that the answers given below are more detailed (for didactical purposes!) than what was
actually expected from the students during the examination.

a. The Metropolis Monte Carlo method is an iterative scheme to generate successive system
configurations rNk (where k = 0, 1, ...,K is the iteration counter) according to a canonical
distribution at a given reference temperature T . An initial configuration rN0 must be provided.
Then, at each iteration, the algorithm consists of two steps: (i) selection of a random trial
move; (ii) acceptance or rejection of this move (a rejected move leading to the repeat of the
current configuration in the ensemble). The only constraint on the selection of the trial move
is that the probabilities of proposing a move and that of proposing its reverse move must be
the same. One possible approach (there are many!) is to select an atom at random and move
it by a step of a fixed size ∆r in a random direction. The acceptance/rejection is determined
by the relative Boltzmann weights of the configurations before and after the trial move. If
the potential-energy change is ∆V and the corresponding Boltzmann ratio is p = e−β∆V

(where β−1 = kBT with kB the Boltzmann constant and T the temperature), the acceptance
probability is min{1, p}. In practice, if p ≥ 1 (“downhill” move with ∆V ≤ 0 ) the move is
automatically accepted. And if p < 1 (“uphill” move with ∆V > 0 ), one selects a random
number s between 0 and 1, and the move is only accepted if s < p. For efficiency, the choice of
a step size ∆r should compromise between two factors. If ∆r is too large, the moves frequently
place atoms too close from each other (large positive ∆V), which induces many rejections. If
∆r is too small, the acceptance probability is high but the rate at which the configurational
space is sampled is very low. In summary, both too large and too small ∆r lead to inefficient
sampling.

b. Covalent (bonded) terms are: bond stretching, bond-angle bending, dihedral torsion and
improper-dihedral distortion (out-of-plane bending). Their roles and typical functional forms
are shown in the figure below (which also includes the two non-bonded types, electrostatic and
van der Waals interactions).
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2 Fundamental Equations (F2024.2)

Note that the answers given below are more detailed (for didactical purposes!) than what was actu-
ally expected from the students during the examination. Watch out not to overlook the requirements
“explain the meaning of all the involved symbols” and “state the SI units of these quantities”.

a. The Lagrangian function L = L(q, q̇) is a function of the generalized-coordinate vector q and
of the generalized-velocity vector q̇. It has the units of an energy (SI unit: J). The units of the
different components qm of q can be diverse, and the corresponding components q̇m have the
same units divided by time. The connection between the Lagrangian function L, the kinetic
energy K, and the potential energy V is given by

L(q, q̇) = K(q, q̇)− V(q) ,

where it is assumed that V only depends on the generalized coordinates (as is the case for a
force field). The Lagrangian equations of motion read

d

dt

(
∂L
∂q̇m

)
=

∂L
∂qm

for m = 1, 2, ...,M ,

where t is time (SI unit: s).

In the special case of a Cartesian coordinate system (for a system of N particles), the La-
grangian becomes

L(r, ṙ) = K(ṙ)− V(r) ,

where it is noted that the kinetic energy

K(ṙ) =
1

2

N∑
n=1

mnṙ
2
n

now only depends on the Cartesian velocities. One can then write

d

dt

(
∂L
∂ṙn

)
=

d

dt

(
dK
dṙn

)
= mnr̈n for n = 1, 2, ..., N

and

∂L
∂rn

= − dV
drn

= Fn for n = 1, 2, ..., N ,

where F is the force vector. This shows that the Lagrangian equations of motion become
equivalent to the Newtonian ones in the special case of a Cartesian coordinate system.

The Hamiltonian function H = H(q,p) is a function of the generalized-coordinate vector q
and of the conjugate-momentum vector p. It has the units of an energy (SI unit: J). The
units of the conjugate momenta are related to those of the generalized coordinate they are
associated to, so that the product pmqm has unit of an action (SI units: J·s). The connection
between the Hamiltonian function H, the kinetic energy K, and the potential energy V is given
by

H(q,p) = K(q,p) + V(q) ,

where it is assumed that V only depends on the generalized coordinates (as is the case for a
force field). The Hamiltonian equations of motion read

q̇ =
∂H(q,p)

∂p
and ṗ = −∂H(q,p)

∂q
.
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In the special case of a Cartesian coordinate system (for a system of N particles), the Hamil-
tonian becomes

H(r,pr) = K(pr) + V(r) ,

where pr stands for the Cartesian momenta (mass times velocity), and it is noted that the
kinetic energy

K(pr) =
1

2

N∑
n=1

m−1
n p2

r

now only depends on the Cartesian momenta. The Hamiltonian equations become

ṙn =
∂H(r,pr)

∂pr,n
=

dK(pr)

dpr,n
= m−1

n pr,n

and

ṗr,n = −∂H(r,pr)

∂rn
= −dV(r)

drn
= Fn .

This shows that the Hamiltonian equations of motion become equivalent to the Newtonian
ones in the special case of a Cartesian coordinate system.

The value of the Hamiltonian represents the total (kinetic plus potential) energy of the sys-
tem. It is a conserved quantity when the system is isolated, i.e. when there is no potential
energy term in the Hamiltonian that couples the system to its surroundings (neither in a
time-independent nor in a time-dependent fashion).

b. The M states are distributed over the J energy levels in such a way that each level encompasses
gj degenerate states. Thus, one has

J−1∑
j=0

gj = M .

This quantity is unitless. Noting that E0 = 0 (so that the energies are already given relative
to the ground state), the canonical partition function is

Z =

M−1∑
m=0

e−βEm =

J−1∑
j=0

gje
−βEj ,

where β−1 = kBT with kB the Boltzmann constant and T the temperature. The partition
function is unitless. The free energy is related to the partition function as

F = −β−1 lnZ .

The free energy has the units of an energy (SI unit: J). Finally, the average energy is the
ensemble average of the energy

E =

M−1∑
m=0

Eme−βEm =

J−1∑
j=0

gjEje
−βEj

The energy has the units of an energy (SI unit: J).
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3 Derivations (F2024.3)

a. The Stirling approximation reads

lnN ! ≈ N lnN − N ,

valid in the limit of large N . A simple derivation is as follows.

lnN ! =

N∑
n=1

lnn ≈
∫ N

1

dn lnn = [n lnn − n]
N
1 = N lnN −N + 1 ≈ N lnN − N .

Considering a statistical-mechanical ensemble with K systems distributed over M states with
a population vector n = {nm | m = 0, 1, ...,M − 1} satisfying

∑M−1
m=0 nm = K and associated

with a statistical weight W (n), we can simplify the quantity K−1 lnW (n) in the limit of large
K using the Stirling approximation in the following way.

K−1 lnW (n) = K−1 ln
K!∏M−1

m=0 nm!
= lnK − 1−

M−1∑
m=0

[K−1nm lnnm −K−1nm]

= lnK −
M−1∑
m=0

pm lnnm = −
M−1∑
m=0

pm[lnnm − lnK] = −
M−1∑
m=0

pm ln pm .

This result is in essence the equivalence of the Boltzmann and Gibbs definitions of the canonical
entropy.

b. For any pure substance in any phase, one has cP > cV , because the difference cP −cV is always
positive. This follows from noticing that T , v, α2

P and κT are all positive quantities. Note
that the compressibility κT is always positive (when you increase the pressure at constant
temperature, the volume of a substance always decreases). However, the expansivity αP can
sometimes be negative (an example is water between 0 and 4oC at ambient pressure, which
slightly contracts upon increasing the temperature). But the expansivity enters the equation
as a square, which is always positive.

For an ideal gas, upon inserting PV = nRT , one gets

v =
RT

P
, κT = − 1

V
nRT

dP−1

dP
=

1

P
, and αP =

1

V

nR

P

dT

dT
=

1

T
.

This leads to

cP − cV =
T RT

P
1
T 2

1
P

= R .
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4 Explicit Calculations (F2024.4)

a. A sketch of the Lennard-Jones function is shown below. The zero-distance and zero-energy
points are indicated, as well as the locations where you can measure σ, rm, and ϵ.

For the following tasks, it is useful to calculate the corresponding Lennard-Jones force FLJ ,
i.e. the negative derivative of VLJ with respect to r

FLJ(r) = 4ϵ

[
12

(σ
r

)12

− 6
(σ
r

)6
]
1

r
.

The sign of FLJ matches the desired convention, namely it is negative if the force is attractive
and positive otherwise. This is easily checked by noting that FLJ is positive when r → 0 (the
r−12 term domimates) and negative when r → ∞ (the r−6 term domimates). To calculate rm,
we note that the force should be zero at this point. This leads to the condition

12

(
σ

rm

)12

− 6

(
σ

rm

)6

= 0 ,

which is satisfied when rm = 21/6σ. Using the approximation 21/n ≈ 1 + (1/n) ln 2 with
ln 2 ≈ 0.69, one has 21/6 ≈ 1.115, so that rm = 1.115 · 0.4 nm, that is 0.446 nm. Considering
the point r = σ, the Lennard-Jones potential energy is zero. The corresponding force is

FLJ(σ) = 4ϵ [12− 6]
1

σ
=

24ϵ

σ
.

This gives 24 · 2 kJ ·mol−1 · 1/0.4 nm−1, that is 120 kJ ·mol−1 · nm−1. As expected, the value
is positive, as we are in the repulsive range. Considering the point r = rm, the Lennard-Jones
force is zero, and the corresponding potential energy is −ϵ, that is −2 kJ ·mol−1.
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5 Algorithms and Implementation (F2024.5)

a. A possible code for the function Thermo is given below

void Thermo (int N, double m[], double kb, double dt,

double tau, double Tref, double v[]);

// First calculate the current kinetic energy

double K = 0.0;

for ( int n=0; n<N; n++ ) {
int n3 = 3*n;

K += m[n] * ( v[n3]*v[n3] + v[n3+1]*v[n3+1] + v[n3+2]*v[n3+2] );

}
K *= 0.5;

// Next calculate the current temperature (we have 3N dof)

double T = 2.0 * K / ( 3.0 * N * kb );

// Then calculate the velocity-scaling factor

double lam = sqrt( 1.0 - dt/tau * ( T - Tref ) / T );

// Finally, scale the velocities

for ( int n3=0; n3<3*N; n3++ ) {
v[n3] *= lam;

}
return;

}

Assuming an ideal gas (zero potential energy), the weak-coupling thermostat induces an ex-
ponential temperature relaxation. This corresponds to the equation

T (t) = Tref + (Tini − Tref) e
−t/τ .

This is of course numerically only the case in the limit of a small timestep (compared to
τ). This exponential relaxation with characteristic time τ is illustrated in the graph below
(assuming here Tini > Tref)

p

r

p p p

op
op op

r r r

iniT
T

t
refT

In the limiting case where τ is set equal to ∆t, the expression for the scaling factor becomes

λ =

(
1− T − Tref

T

)1/2

.

The kinetic energy is scaled by λ2 and so is the instantaneous temperature. The new temper-
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ature after a single scaling is thus

Tnew = T
(
1− T − Tref

T

)
= Tref .

Thus, after a single scaling, T becomes Tref . With this choice, the simulation will be performed
at constant instantaneous temperature. This corresponds to a so-called isokinetic situation
(Woodcock/Hoover-Evans thermostating).

Finally, if the units of mass and velocity are g·mol−1 and nm·ps−1, respectively, then the
calculated kinetic energy has units of g·mol−1·(nm·ps−1)2, which is a kJ·mol−1 (since a J is a
kg·m2·s−2). If the unit of temperature is K, kB should thus be provided in kJ·mol−1·K−1.
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