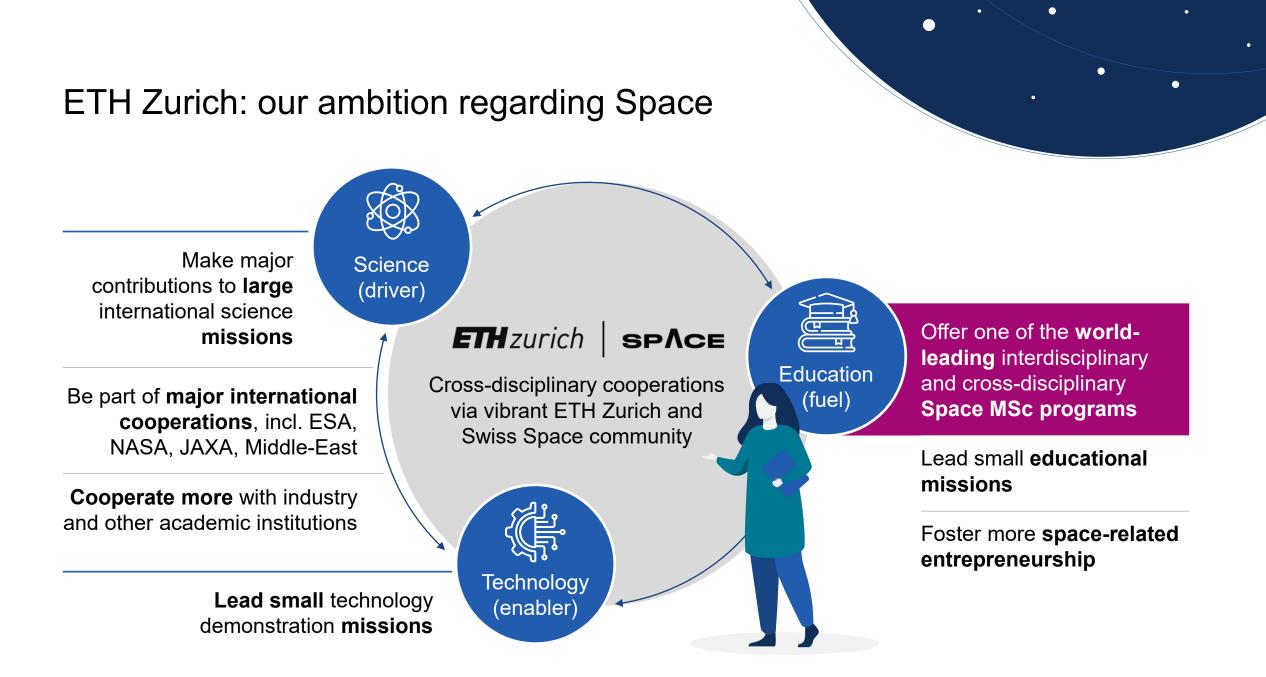
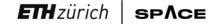
M.Sc. Space Systems


Simon C. Stähler, and the team

Department for Earth and Planetary Science <u>www.master-space.ethz.ch</u>

Why us?

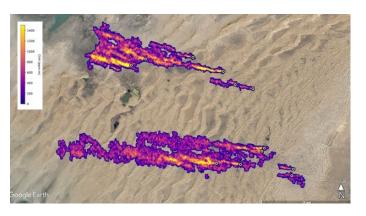


ETH zürich | SPACE

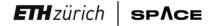
Space is more than human spaceflight!

Three pillars of New Space

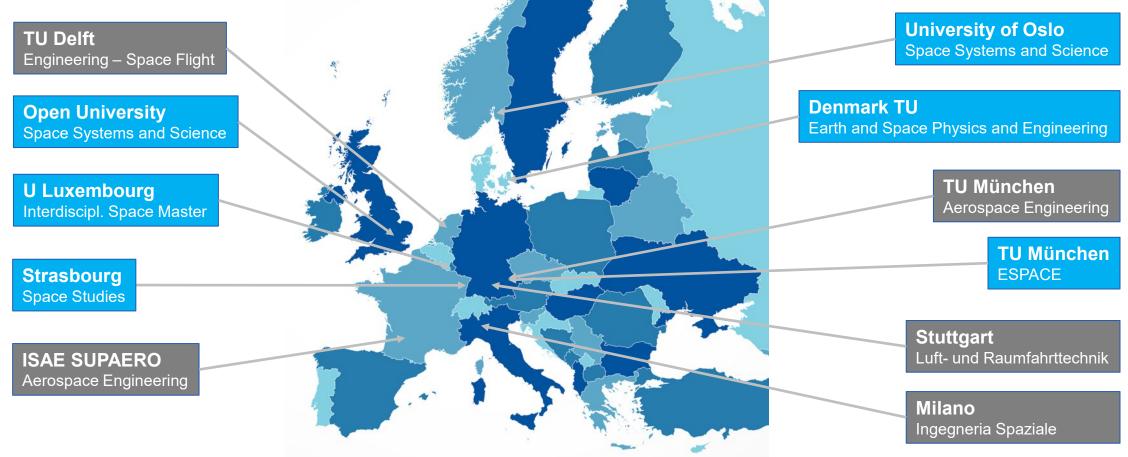
Systems

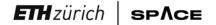

- Focus on system engineering
- Industry is desperately looking for system engineers on the European market
- Combined with deep knowledge in one specialization

Data



- Data makes the difference
 - In iterative design
 - In downstream science
- Teach data formats and analysis techniques
- Help from domain experts from ETH and industry


Sustainability

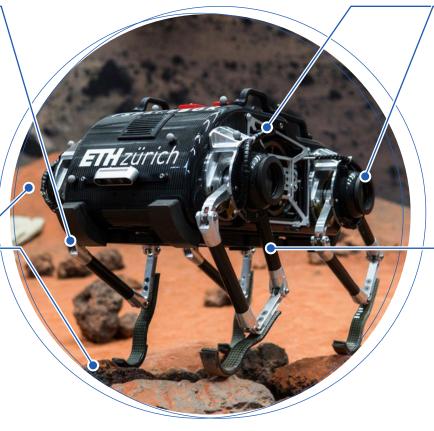

- The space revolution will affect Earth's and planets' ecosystems
- Space provides new ways to collect environmental data
- Orbital debris needs to be mitigated
- We want to help define sustainability metrics and policy solutions

Competitors in Europe (M.Sc. Courses)

ETH unique strengths: Growing startup economy; Outstanding robotics and engineering; Excellent teacher-student ratio; World leading research in Physics and Earth Sciences (1st in QS worldwide); 400 space-related researchers

Example space system – an interdisciplinary approach

• Astronomy and Astrophysics

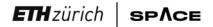

D-PHYS

D-EAPS

- Exoplanets
- Optical Sensors

- Planetary Geology
- Geophysics
- Cosmochemistry
- Planetary Physics

Contributions from researchers at multiple departments of ETHZ



- Communication
- Redundant design
- Embedded systems
- Sensors

- Robotics
- Aerospace Engineering
- System Engineering

Feedback from student survey

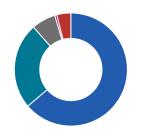
A big impact might be achieved, if students will create innovative solutions (...). Thus, **spacecraft & mission design, but also downstream applications (e.g., data, GPS, and other signal processing) for Earth applications** should be taught, so the students have the baseline to develop specific solutions. **Student D-MAVT - mechanical engineering**

An interdisciplinary approach to aerospace is valuable, **but it shouldn't remain superficial**. (...). It's essential to home in on a more specific

area of focus.

Student D-ITET – electrical engineering

Aerospace engineering is already a wellrepresented field of study across the globe. **ETH should strive to provide a unique and special Space MSc. program;** in other words, something you can only find at ETH. **Student D-MAVT**


Survey results among 174 students of D-EAPS*, D-ITET, D-MAVT, D-PHYS*

I would prefer this course over an aerospace M.Sc.

I plan to apply for the course if I am eligible

A M.Sc. in space systems would be important for ETH

 Strongly agree
 Agree
 Neutral

 Disagree
 Strongly disagree

*) D-EAPS: earth and planetary sciences; D-PHYS: physics.

M.Sc. Space Systems is on its way

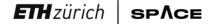
14.06.2023

First meeting of all stakeholders at ETH

12.12.2023: Final department to vote in favour

23.01.2024 Publication of study regulations in "Rechtssammlung ETH"

30.04.2024


> 80 student applications,
 35 selected for 1st cohort

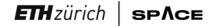
13.09.2024 Student welcome

> **Ongoing** Implementation of lectures, industry surveys

7 months!

-0-0-0-0-

Target audience: students


Graduates from diverse backgrounds

- Mechanical and electrical engineers
- Computer scientists
- Earth and environmental scientists
- Physicists
- Mathematicians
- Other sciences

Target entry-level jobs

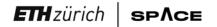
- Systems engineers in satellite or spacecraft design & development
- Space system architects
- Mission design engineers
- Production engineers
- Data analysts in industry and agencies
- Principal investigators in space missions or experiments (after PhD ;-))

How to get into the course?

Specialized Master

- No B.Sc. that guarantees entry
- All B.Sc. graduates (ETH, EPFL, universities, FHs) can apply

Formal requirements:


- 40 CP in mathematics (>18) / physics (>12)
- 40 CP in natural science or engineering courses

If you do not meet these requirements...

- Up to 30 CP of extra courses (Auflagen)
- 40-60 CP of extra courses for students from universities of applied science

Our requirement:

- Very good results
- Enthusiasm for space

What are good B.Sc. programs? (examples)

Earth and climate science (ETH):

- Motivation for space activities
- Mathematical and geophysical background

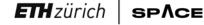
Physics (ETH, EPFL, universities)

- Strong mathematical and physical background
- Foundations of technology

- Mechanical Engineering (ETH, EPFL):
 - Background in mathematics and applied physics
 - Deep knowledge of processes and technical solutions

Electrical Engineering (ETH, EPFL):

- Strong mathematical and physical background
- Knowledge of communications and electronics



Computer/Data Science:

- Background in mathematics
- Deep knowledge of data handling and algorithms

Other

- If you want to combine field XYZ with space, go for it
- But: Bring a good grasp of maths and physics

Feedback from industry survey

Overall, high interest from industry in MSc Space Systems graduates, and interns

Space systems and data science are currently the main missing competencies

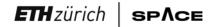
Most relevant deep tracks of the MSc curriculum for companies are:

- Aerospace engineering
- Space communication
- 3 Robotics
- 4
- Earth observation | Space physics & astronomy

Industry involvement

Partners in student projects

- 1st semester: *develop a mission*
- Development of mission concept based on scientific or business case
- 2nd semester: *analyse data from space*
- Understand under-investigated industrial datasets
- 3rd and 4th semester: *build a commercial space product*
 - Industry projects leading to M.Sc. thesis
 - Project pitches from industry partners welcome


Internships

Students of all M.Sc. Programs at ETH

Course development

- Analysis of employer requirements
- Support in teaching, e.g., via case studies

Course Layout

emester 1	Semester 2	Semester 3
CC1: Space Systems (14 CP) 2 full days a week block courses	CC2: Space Data (8 CP) 4 × 1 month-long data classes	CC3: Case Studies & Team Projects (8 CP) Incl. review process
 Scientific introductory courses (2 × 4 CP) Earth / Planets Earth observation Space environment & astrophysics 	 Deep Track (20 – 30 CP) (Aerospace) Engineering (D-MAVT) Space communications (D-ITET) Robotics (D-MAVT) Earth observation (U Zürich, D-BAUG/USYS) Planetary science (D-EAPS/PHYS, U Bern) 	

M.Sc. thesis

project, with industry, agency or ETH (30 CP)

Electives (>16 CP) Science in context (>2CP)

Science & Eng.

Science Engineering

ETH zürich | SPACE

Core Course 1: Class Overview: 2 full days a week

We	18.09.24	Space Environment	Simon Stähler (ETH)	
Мо	23.09.24			
We	25.09.24	System Engineering short course	Thomas Zurbuchen (ETH) Florian Kehl (ETH)	
Мо	30.09.24			
We	02.10.24	Spacecraft design overview	Thomas Zurbuchen (ETH)	
Мо	07.10.24	Orbital Dynamics	Anna Kubik (ETH)	
We	09.10.24	Orbitat Dynamics	Anna Kubik (ETH)	
Мо	14.10.24	Subsystem Comms & Power	Reto Muff (ETH)	
We	16.10.24	Spacecraft Communications	Reto Muff (ETH)	
Мо	21.10.24	Propulsion	Markus Jäger (Airbus)	
We	23.10.24	Subsystem Controls & Computing	Thomas Zurbuchen (ETH)	
Мо	28.10.24	Subsystem Structure & Thermal	Michael Gschweitl (ETH)	
We	30.10.24	Sustainability	Emmanuelle David (EPFL)	

Мо	04.11.24	Payload Design Overview	Florian Kehl, Simon Stähler (ETH)
We	06.11.24	Observational Payloads	Nick Thomas (U Bern)
Мо	11.11.24	Earth Observation Missions	Andrea Marconi (WSL)
We	13.11.24	Logistics, Integration, Testing	Thomas Zurbuchen (ETH)
Мо	18.11.24	Project presentations	
We	20.11.24	Human Spaceflight	Claude Nicollier (EPFL)
Мо	25.11.24		
We	27.11.24	Project Management	Stefan Kögl (Industry)
Мо	02.12.24		
We	04.12.24	Launch Vehicles	Simon Stähler (ETH)
Мо	09.12.24	Mission Operations	Thomas Zurbuchen (ETH)
We	11.12.24	Ground System Design	André Csillaghy (Industry)
Мо	16.12.24	Launch Operations	Deborah Müller (ETH)
We	18.12.24	End of Lecture	Simon and Florian

Let's collaborate for the next generation of space leaders!

Core Course 1

Lecture

- 1 Space environment
- 2 System engineering
- **3** System engineering II
- 4 Orbital dynamics
- 5 Spacecraft subsystems
- 6 Subsystems II
- 7 Payloads
- 8 Payloads II
- 9 Communications
- 10 Logistics
- 11 Project management
- 12 Launch vehicles
- **13** Operations
- 14 End of lecture

Build teams, define topic

Mission concept is reviewed

Teams have 8 weeks to finish project Ending detailed concept study

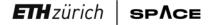
Design Review

Hands on project (4 weeks)

\bigcirc

2 full days per week

 \bullet


- 2 × 3 h lecture
- 2 × 4 h exercise
- Team project: mission design

Teachers from ETH

Industry experts

