ETH zürich

Licensing Opportunity

Smooth interface diaphragms for non-disruptive monitoring of blood flow

Integration concept of the pressure sensor in the inflow cannula of a blood pump. (left) concept design for integration into a the inflow cannula of an artificial heart pump, (right) illustration of the functional principle of the integration

Application

A suspended diaphragm serves as the interface between blood stream and blood pressure sensor. The diaphragm maintains the quality of pressure measurements of the sensor unit in linearity and long-term stability. A fabrication method for the seamless integration of the diaphragm and sensor into the inflow cannula of a commercial blood pump is presented.

Features & Benefits

- Excellent biocompatibility by seamless sensor integration
- Long-term stable measurement results, no sensor drift invitro observed
- Minimizing the intrusiveness of the sensor

Publications

- "Novel Sensor Integration Approach for Blood Pressure Sensing in Ventricular Assist Devices", Procedia Engineering 168 (2016) 71-75 https://doi.org/10.1016/j.proeng.2016.11.150
- Patent granted

ETH transfer transfer@sl.ethz.ch

www.transfer.ethz.ch +41 44 632 23 82

Reference 2016-011

Invented by: Bio Engineering Laboratory Silvan Staufert, Christofer Hierold, Christian Peters

Technology Readiness Level

Background

Current blood pumps lack implanted hemodynamic monitors, which could provide essential feedback for the adjustment of the pump speed. Monitoring devices must be highly reliable and robust. Also, a smooth sensing interface is required to eliminate the risk for increased thrombogenity and hemolysis.

Invention

A thin, suspended diaphragm provides a sensing interface for a pressure sensor that is integrated into the wall of an inflow cannula of a heart pump. The fabrication steps for the diaphragm are as follows: First, the recess is formed in the inflow cannula (e.g. drilling). A core is inserted into the cannula, which serves as a mould surface. It is important that the core is tightly interlocked with the cannula. The recess is filled with sacrificial material, then the core is removed. A 10 µm thin film of Parlene-C is deposited on the inside of the cannula. Finally, the suspended diaphragm is obtained by dissolving the sacrificial material from the outside of the cannula. The recess is then sealed enclosing a silicone oil as pressure transmission liquid and a pressure sensor. First characterization measurements show that the resulting sensor assembly behaves linearly and has an absolute measurement error below 104.2 Pa at a measurement range of 80 kPa-130 kPa.