Abstract of Journal Publication – COST Action FP1404

Performance of Bio-based Building Materials

Editors: Dennis Jones\(^1\), Christian Brischke\(^2\)
\(^1\) Luleå University of Technology in Sweden
\(^2\) University Göttingen in Germany

Preface

The ‘bio-based economy’ represents an increasing area of development globally and covers a wide range of activities incorporating bio-based materials. ‘Bio-based’ in this context means that the materials and products are derived/made from renewable resources, with the criteria that a renewable resource recovers faster than it is drained, in contrast to many mineral and fossil resources. The processing of the forest biomass into value-adding and durable building materials and products, also taking into account the by-product streams, clearly fulfils these criteria today and with proactive strategies also in the future. In addition to this, compared with aluminium, steel and concrete, most such bio-based materials are made with considerably lower energy consumption, and their use acts as a carbon sink, which means that a replacement of materials made from non-renewable resources directly reduces CO\(_2\) emissions. The future strategies for the world’s energy and material supply must consider these facts since some prognoses indicate that the fast growth of the bioenergy sector could result in a higher use than growth of Europe’s forest and agricultural biomass.

The development of building materials incorporating bio-based materials is also an area of rapid development. Solid timber, wood fibres and other materials, such as bamboo, miscanthus, phragmites and other gramineae, are now being used for structural purposes and for roofing and cladding, and there are many textbooks and reference articles related to their use. In particular, the combined use of wood-based and other bio-based materials allows the configuration of diverse composites, such as particle and fibreboards, sandwich panels or in combinations with polymers as extruded profile members (WPC and BPC) and shaped components. Traditional agricultural food plants also have the potential being used for various building applications, for example, lightweight building boards or insulation wall fillings. Flax, hemp, sisal, coir, corn cobs and rice or wheat straw are just a few examples of biofibres used in different applications in the building trade. Wood itself is not only used in its native character but also chemically and thermally modified. Finally, the use of classical and new preservatives allows the use of timber products even under severe outdoor exposure conditions.

This textbook represents one of the key outcomes from COST Action FP1303 (Performance of bio-based building materials). Founded in 1971, COST (European Cooperation in Science and Technology) is the first and widest European framework for the transnational coordination of nationally funded research activities. COST enables breakthrough scientific developments leading to new concepts and products and thereby contributes to strengthen Europe’s research and innovation capacities. It is a unique means for European researchers to jointly develop their own ideas and new initiatives across all scientific disciplines through trans-European networking of nationally funded research activities. Among the key features of COST are
• building capacity by connecting high-quality scientific communities throughout Europe and worldwide
• providing networking opportunities for early career investigations
• increasing the impact of research on policymakers, regulatory bodies and national decision makers, as well as the private sector

The book reviews many of the key properties of bio-based materials and how these materials are becoming materials of choice within modern construction methods. It will consider the current needs and how materials are currently being used, with emphasis on how the material performs during its service life. It brings together the combined knowledge and expertise across the European scientific community leading activities into the use of bio-based materials within construction and aims to provide guidance to these materials and how they perform when used correctly.

Dennis Jones Christian Brischke

Book
The full paper is available at: [LINK](#)

eBook ISBN: 9780081009925

Hardcover ISBN: 9780081009826