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Introduction

Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments
Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral

methods (2007)
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Introduction

Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M
with the following features:

• It is built from a limited set of runs of the original model M called the
experimental design X =

{
x(i), i = 1, . . . , n

}
• It assumes some regularity of the model M and some general functional shape

Name Shape Parameters
Polynomial chaos expansions M̃(x) =

∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = βT · f(x) + Z(x, ω) β , σ2
Z , θ

Support vector machines M̃(x) =
n∑
i=1

aiK(xi,x) + b a , b
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Introduction

Ingredients for building a surrogate model

• Select an experimental design X that covers at best
the domain of input parameters: Latin hypercube
sampling (LHS), low-discrepancy sequences

• Run the computational model M onto X exactly as
in Monte Carlo simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,
compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Introduction

Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages
• Non-intrusive methods: based on

runs of the computational model,
exactly as in Monte Carlo
simulation

• Construction suited to high
performance computing:
“embarrassingly parallel”

Challenges
• Need for rigorous validation

• Communication: advanced
mathematical background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo
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Polynomial chaos expansions Polynomial chaos basis

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Sudret & Der Kiureghian (2000); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• Consider the input random vector X (dim X = M) with given probability
density function (PDF) fX(x) =

∏M

i=1 fXi(xi)

• Assuming that the random output Y =M(X) has finite variance, it can be
cast as the following polynomial chaos expansion:

Y =
∑
α∈NM

yα Ψα(X)

where :
• Ψα(X) : basis functions
• yα : coefficients to be computed (coordinates)

• The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal
polynomials
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Polynomial chaos expansions Polynomial chaos basis

Multivariate polynomial basis

Univariate polynomials
• For each input variable Xi, univariate orthogonal polynomials {P (i)

k , k ∈ N}
are built: 〈

P
(i)
j , P

(i)
k

〉
=
∫
P

(i)
j (u) P (i)

k (u) fXi(u) du = γ
(i)
j δjk

e.g. , Legendre polynomials if Xi ∼ U(−1, 1), Hermite polynomials if Xi ∼ N(0, 1)

• Normalization: Ψ(i)
j = P

(i)
j /

√
γ

(i)
j i = 1, . . . ,M, j ∈ N

Tensor product construction

Ψα(x) def=
M∏
i=1

Ψ(i)
αi (xi) E [Ψα(X)Ψβ(X)] = δαβ

where α = (α1, . . . , αM ) are multi-indices (partial degree in each dimension)
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Polynomial chaos expansions Computing the PCE coefficients

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle
The exact (infinite) series expansion is considered as the sum of a truncated
series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[(

YTΨ(X)−M(X)
)2
]
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Polynomial chaos expansions Computing the PCE coefficients

Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2

Procedure

• Select a truncation scheme, e.g. AM,p =
{
α ∈ NM : |α|1 ≤ p

}
• Select an experimental design and evaluate the

model response
M =

{
M(x(1)), . . . ,M(x(n))

}T

• Compute the experimental matrix
Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

• Solve the resulting linear system

Ŷ = (ATA)−1ATM Simple is beautiful !
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Polynomial chaos expansions Computing the PCE coefficients

Error estimators

• In least-squares analysis, the generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

• The empirical error based on the experimental design X is a poor estimator in
case of overfitting

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2

Leave-one-out cross validation
• From statistical learning theory, model validation shall be carried out using

independent data

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT

B. Sudret (Chair of Risk, Safety & UQ) PCE for time-dependent models 12 / 41



Outline

1 Introduction

2 Polynomial chaos expansions

3 Time-warping PCE
Introduction
Stochastic time warping
Oregonator model
Bouc-Wen model

4 PC-NARX expansions



Time-warping PCE Introduction

Models with time-dependent outputs

Problem statement
• Consider a computational model of a dynamical system:

DΞ × [0, T ] : (ξ, t) 7→ M(ξ, t)

where Ξ is a random vector of uncertain parameters with given PDF fΞ

• Uncertainties may be in:
+ The excitation, denoted by x(ξx, t)

+ And/or in the system’s characteristics (ξs):

i.e.:
M(ξ, t) ≡M(x(ξx, t), ξs)
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Time-warping PCE Introduction

PCEs for time-dependent outputs

Problem statement
MPCE(ξ, t) =

∑
α∈A

yα(t) Ψα(ξ)

Naive idea: time-frozen PCE
• Select an experimental design E =

{
ξ(1), . . . , ξ(n)}, evaluate input excitation

(if any), run the simulator and get a set of trajectories{
M(ξ(i), t), i = 1, . . . , n

}
• By freezing time at a given t0 ∈ [0, T ] one gets:

MPCE(ξ, t0) =
∑
α∈A

yα(t0) Ψα(ξ)

• Coefficients {yα(t0), α ∈ A} may be computed by standard techniques
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Time-warping PCE Introduction

Example: Duffing oscillator

Non-linear SDOF Duffing oscillator:

ẍ(t) + 2ω ζ ẋ(t) + ω2 (x(t) + ε x3(t)
)

= 0

Initial conditions: x(0) = 1, ẋ(0) = 0

Input: 3 uniform random variables

RV Distribution Values
ζ Uniform U [0.015, 0.045]
ω Uniform U [π, 3π]
ε Uniform U [−0.25, −0.75]

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

t (s)

x
(t

)

Samples of trajectories
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Time-warping PCE Introduction

Time-frozen PCE
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(ζ, ω, ε) = (0.03, 8.92,−0.34) (ζ, ω, ε) = (0.04, 3.18,−0.33))
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Time-warping PCE Introduction

Why time-frozen PCE does not work?

• The map ξ 7→ M(ξ, t) becomes increasingly
non linear with time

• The time-frozen distribution of the output
at time t0 becomes more complex (e.g.
multimodal)

• Expansions of higher degree would be
required to keep sufficient accuracy with
time

• For a fixed experimental design, the LOO
error blows up
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Time-warping PCE Introduction

Some literature

• Multi-elements PCEs: decomposition of the random space into
non-overlapping sub-elements Wan & Karniadakis, 2005

• Constant phase interpolation: responses interpolated in the phase space
Witteveen & Bijl, 2008

• Asynchronous time integration: intrusive transformed time variable introduced
to reduce variability Le Mâıtre et al., 2010

• Time-dependent PCEs: new random variables added on-the-fly Gerritsma et al., 2010

• PC flow map composition: long-term response obtained by composing
intermediate PCE-based flow maps Luchtenburg et al., 2014

• PC-NARX: future state determined by current and past states
Spiridonakos & Chatzi, 2015
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Time-warping PCE Stochastic time warping

Stochastic time warping

Heuristics Le Mâıtre et al. (2010)

Introduce a virtual time scale τi for each sample trajectory so that y(ξ(i), τi)
becomes “similar” to a reference trajectory

Measure of dissimilarity

diss [y(t) , yref (t)] def=

∣∣∣∫ T0 y(t) yref (t) dt
∣∣∣√∫ T

0 y2(t) dt ·
∫ T

0 y2
ref (t) dt

• It is the cross-correlation of the two signals
• Bounded between 0 and 1
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Time-warping PCE Stochastic time warping

Stochastic time warping: procedure

Mai & Sudret (2015; 2016);

• Choose a reference trajectory yref (t) =M(ξref , t) where e.g. ξref = µΞ

• Define a stochastic time transform:

τ(ξ, t) = F(ξ, t) e.g. τ(ξ, t) =
Nτ∑
i=1

ci(ξi) fi(t)

In practice: linear transform

τ(ξ) = k(ξ) t+ φ(ξ)

• For each sample trajectory {yi(t), i = 1, . . . , n}, compute the appropriate
rescaling:

(ki, φi) = arg min
k,φ

diss [ yi(k t+ φ), yref (t)]

• Compute a sparse PCE of the parameters of the time transform, e.g. :

k(Ξ) =
∑
α∈A

kα Ψα(Ξ) φ(Ξ) =
∑
α∈A

φα Ψα(Ξ)
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Time-warping PCE Stochastic time warping

Stochastic time warping: procedure

• In the virtual time scale, trajectories show much higher coherency.
τ -frozen PCE expansions apply:

y(Ξ, τ) =
∑
α∈A

yα(τ) Ψα(Ξ)

Predictions for a new sample ξ(0)

• Predict the trajectory in the virtual time scale

y(ξ(0), τ) =
∑
α∈A

yα(τ) Ψα(ξ(0))

• Predict the proper time warping for this new trajectory:

τ(ξ(0)) = k(ξ(0)) t+ φ(ξ(0))

• Map back the predicted trajectory in the real time scale:

y(ξ(0), t) =
∑
α∈A

yα
(
k(ξ(0)) t+ φ(ξ(0))

)
Ψα(ξ(0))
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Time-warping PCE Oregonator model

Oregonator model

The Oregonator model represents a well-stirred, homogeneous chemical system
governed by a three species coupled mechanism Le Mâıtre et al. (2010)

Governing equations

ẋ(t) = k1 y(t)− k2 x(t) y(t) + k3 x(t)− k4 x(t)2

ẏ(t) = −k1 y(t)− k2 x(t) y(t) + k5 z(t)
ż(t) = k3 x(t)− k5 z(t)

Input reaction parameters

Parameter Distribution Values
k1 Uniform U [1.8, 2.2]
k2 Uniform U [0.095, 0.1005]
k3 Gaussian N (104, 1.04)
k4 Uniform U [0.0076, 0.0084]
k5 Uniform U [23.4, 28.6]
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Time-warping PCE Oregonator model

Oregonator model: prediction
Surrogate model

• Experimental design of size
n = 50

• Validation set of size
nval = 10, 000

0 1 2 3 4 5

0

2000

4000

6000

8000

t (s)

x
(t

)

 

 

Reference
Time−frozen PCE
Time−warping PCE

A specific trajectory (ε = 0.0294)

0

5000

10000

0

5000

10000

15000
0

5000

10000

15000

 

x(t)

t
o
 = 5.00

y(t)
 

z
(t

)

Reference
Time−warping PCE

A
trajectory in the state-space

B. Sudret (Chair of Risk, Safety & UQ) PCE for time-dependent models 22 / 41



Time-warping PCE Oregonator model

Oregonator model: mean and std trajectories
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Time-warping PCE Bouc-Wen model

Bouc-Wen nonlinear oscillator

Governing equations

ÿ(t) + 2 ζ ω ẏ(t) + ω2(ρ y(t) + (1− ρ) z(t)) = −x(t)

ż(t) = γẏ(t)− α |ẏ(t)| |z(t)|n−1 z(t)− β ẏ(t) |z(t)|n

x(t) = A sin(ωx t)

Input parameters

Parameter Distribution Mean Standard deviation COV
ζ Uniform 0.02 0.002 0.1
ω Uniform 2π 0.2π 0.1
α Uniform 50 5 0.1
A Uniform 1 0.1 0.1
ωx Uniform π 0.1π 0.1
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Time-warping PCE Bouc-Wen model

Bouc-Wen model: two particular predictions

Surrogate model
• Experimental design of size n = 100
• Validation set of size nval = 10, 000
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Time-warping PCE Bouc-Wen model

Bouc-Wen model: statistical moments
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Time-warping PCE Bouc-Wen model

Bouc-Wen model: evolution of PDF

Surrogate model
• Experimental design of size

n = 100
• Validation set of size

nval = 10, 000
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Time-warping PCEs capture not only the mean and standard deviation
but also the entire PDF
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PC-NARX expansions NARX model

Nonlinear AutoRegressive with eXogenous input model

NARX model Billings, 2013

Based on a time-dependent input excitation x(t) and corresponding system
response y(t), the dynamics is captured through:

y(t) = F (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny)) + εt

where:
• z(t) = (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny))T is the vector of current

and past values
• nx and ny denote the maximum input and output time lags
• εt ∼ N (0, σ2

ε(t)) is the residual error
• F(·) is a functional of NARX terms, usually linear-in-parameters:

y(t) =
ng∑
i=1

ϑi gi(z(t)) + εt
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PC-NARX expansions NARX model

PC-NARX model Spiridonakos et al. , 2015a,2015b

Computational model with uncertainties

y(t, ξx, ξs)
def= M(x(t, ξx), ξs)

• ξx : uncertainty in the input excitation
• ξs : uncertainty in the system

PC-NARX expansion

y(t, ξ) =
ng∑
i=1

ϑi(ξ) gi(z(t)) + εg(t, ξ) ξ = (ξx, ξs)

The NARX stochastic coefficients ϑi(ξ) are represented by PCEs:

ϑi(ξ) =
∑
α∈Ai

ϑi,α ψα(ξ)
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PC-NARX expansions NARX model

PC-NARX model

y(t, ξ) =
ng∑
i=1

∑
α∈Ai

ϑi,α ψα(ξ) gi(z(t)) + ε(t, ξ)

Interpretation
• PC-NARX is a NARX model in which each (random) coefficient is expanded

as a PCE

• Compared to time-frozen PCE, a specific dynamics of the random coefficients
is imposed

• Similar to flow map composition since the response at current instant is used
to predict the response at future instants
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PC-NARX expansions Calibration of a PC-NARX model

Experimental design
Data

• N realizations of the input excitation, cast as
(xk[1], . . . , xk[T ])T , k = 1, . . . , N (T time instants)

• The corresponding system response computed by a simulator, cast as
(yk[1], . . . , yk[T ])T

Example: quarter car model
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PC-NARX expansions Calibration of a PC-NARX model

Deterministic NARX calibration

For a particular realization ξk

• Select NARX model (candidate terms):

z(t) = (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny))T

φ(t) = {gi(z(t)), i = 1, . . . , ng}T

• Use least angle regression (LARS) to select the best explanatory subset of
terms Efron et al. , 2004

• Compute the coefficients ϑk by ordinary least-squares

Prediction error (of model #k on trajectory l)

ε#k
l

=

T∑
t=1

(y(t, ξl)− ŷ#k(t, ξl))2

T∑
t=1

(y(t, ξl)− ȳ(t, ξl))2
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PC-NARX expansions Calibration of a PC-NARX model

Common NARX basis

Premise
To expand the NARX coefficients onto a PC basis, it is necessary to have a
common NARX model for all trajectories

Procedure
• Select K ≤ N trajectories (“NARX learning set”), e.g. with the strongest non

linear behaviour (peak displacement, velocities, etc.)

• Determine the sparse deterministic NARX models for realizations
k = 1, . . . ,K, which leads to P ≤ K different possible models called
#1, . . . ,#P

• Compute the NARX coefficients of the N trajectories, for each model #p, and
evaluate an average error:

εp = 1
N

N∑
k=1

ε#p
k

• Select the final best NARX model that minimizes εp
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PC-NARX expansions Calibration of a PC-NARX model

PCE of the NARX coefficients

PCE calibration
• Once a common NARX basis has been found, N realizations of the NARX

coefficients are available:

ED = {ϑi,k, i = 1, . . . , ng; k = 1, . . . , N}

• ng different sparse PC expansions are built from this experimental design,
using least-angle regression (LAR) Blatman & Sudret, 2011

ϑi(ξ) =
∑
α∈Ai

ϑi,α ψα(ξ)

PC-NARX prediction
• For a new realization of the input parameters ξ0, the NARX coefficients are

first evaluated from PCEs
• Then they are plugged into the NARX model
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Bouc-Wen model

Governing equations Kafali & Grigoriu (2007), Spiridonakos & Chatzi (2015)

ÿ(t) + 2 ζ ω ẏ(t) + ω2(ρ y(t) + (1− ρ) z(t)) = −x(t),
ż(t) = γẏ(t)− α |ẏ(t)| |z(t)|n−1 z(t)− β ẏ(t) |z(t)|n ,

Excitation
x(t) is generated by a probabilistic ground motion model Rezaeian & Der Kiureghian (2010)

x(t) = q(t,α)
n∑
i=1

si (t,λ(ti)) Ui
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Bouc-Wen model

Marginal distributions of the model parameters

Parameters Distribution Support Mean Std
ω (rad/s) Uniform [5.373, 6.567] 5.97 0.3447
α (1/m) Uniform [45, 55] 50 2.887
Ia (s.g) Lognormal (0, +∞) 0.0468 0.164
D5−95 (s) Beta [5, 45] 17.3 9.31
tmid (s) Beta [0.5, 40] 12.4 7.44

ωmid/2π (Hz) Gamma (0, +∞) 5.87 3.11
ω′/2π (Hz) Two-sided exponential [-2, 0.5] -0.089 0.185
ζf (.) Beta [0.02, 1] 0.213 0.143
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Bouc-Wen model: prediction
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Bouc-Wen model: prediction
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Conclusions

• Surrogate models are unavoidable for solving uncertainty quantification
problems involving costly computational models (e.g. transient finite element
models)

• For uncertain dynamical systems under uncertain excitation, time-frozen PCE
usually does not work

• Proper pre-processing using time warping or NARX modelling allows to
transform the data into an auxiliary space suitable for PC expansions

• Extensions to space-time variant problems are currently investigated
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Questions ?

Chair of Risk, Safety & Uncertainty
Quantification

www.rsuq.ethz.ch

The Uncertainty
Quantification Laboratory

www.uqlab.com

Thank you very much for your attention !
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