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Introduction

Computational models in engineering

Complex engineering systems are designed and assessed using computational
models, a.k.a simulators that comprise:

• A mathematical description of the physics
• Numerical algorithms that solve the resulting set of (e.g. partial differential)

equations, e.g. finite element models

Computational models are used:
• Together with experimental data for calibration purposes
• To explore the design space (“virtual prototypes”)
• To optimize the system (e.g. minimize the mass) under performance

constraints
• To assess its robustness w.r.t uncertainty and its reliability
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Introduction

Real world is uncertain

• Differences between the designed and the real
system:

• Dimensions (tolerances in manufacturing)

• Material properties (e.g. variability of the
stiffness or resistance)

• Unforecast exposures: exceptional service loads, natural hazards (earthquakes,
floods, landslides), climate loads (hurricanes, snow storms, etc.),
accidental/malevolent human actions (explosions, fire, etc.)
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Introduction

Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments
Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral

methods (2007)
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Introduction

Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M
with the following features:

• It is built from a limited set of runs of the original model M called the
experimental design X =

{
x(i), i = 1, . . . , n

}
• It assumes some regularity of the model M and some general functional shape

Name Shape Parameters
Polynomial chaos expansions M̃(x) =

∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = βT · f(x) + Z(x, ω) β , σ2
Z , θ

Support vector machines M̃(x) =
m∑
i=1

aiK(xi,x) + b a , b
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Introduction

Ingredients for building a surrogate model

• Select an experimental design X that covers at best
the domain of input parameters: Latin hypercube
sampling (LHS), low-discrepancy sequences

• Run the computational model M onto X exactly as
in Monte Carlo simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,
compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Introduction

Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages
• Non-intrusive methods: based on

runs of the computational model,
exactly as in Monte Carlo
simulation

• Construction suited to high
performance computing:
“embarrassingly parallel”

Challenges
• Need for rigorous validation

• Communication: advanced
mathematical background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo
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Polynomial chaos expansions Polynomial chaos basis

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Sudret & Der Kiureghian (2000); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• Consider the input random vector X (dim X = M) with given probability
density function (PDF) fX(x) =

∏M

i=1 fXi (xi)

• Assuming that the random output Y =M(X) has finite variance, it can be
cast as the following polynomial chaos expansion:

Y =
∑
α∈NM

yα Ψα(X)

where :
• Ψα(X) : basis functions
• yα : coefficients to be computed (coordinates)

• The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal
polynomials
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Polynomial chaos expansions Polynomial chaos basis

Multivariate polynomial basis

Univariate polynomials
• For each input variable Xi, univariate orthogonal polynomials {P (i)

k , k ∈ N}
are built: 〈

P
(i)
j , P

(i)
k

〉
=
∫
P

(i)
j (u) P (i)

k (u) fXi (u) du = γ
(i)
j δjk

e.g. Legendre polynomials if Xi ∼ U(−1, 1), Hermite polynomials if Xi ∼ N(0, 1)

• Normalization: Ψ(i)
j = P

(i)
j /

√
γ

(i)
j i = 1, . . . ,M, j ∈ N

Tensor product construction

Ψα(x) def=
M∏
i=1

Ψ(i)
αi

(xi) E [Ψα(X)Ψβ(X)] = δαβ

where α = (α1, . . . , αM ) are multi-indices (partial degree in each dimension)
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Polynomial chaos expansions Polynomial chaos basis

Example: M = 2 Xiu & Karniadakis (2002)

α = [3 , 3] Ψ(3,3)(x) = P̃3(x1) · H̃e3(x2)

• X1 ∼ U(−1, 1):
Legendre
polynomials

• X2 ∼ N (0, 1):
Hermite
polynomials
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Polynomial chaos expansions Computing the PCE coefficients

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle
The exact (infinite) series expansion is considered as the sum of a truncated
series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[(

YTΨ(X)−M(X)
)2
]
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Polynomial chaos expansions Computing the PCE coefficients

Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2

Procedure

• Select a truncation scheme, e.g. AM,p =
{
α ∈ NM : |α|1 ≤ p

}
• Select an experimental design and evaluate the

model response
M =

{
M(x(1)), . . . ,M(x(n))

}T

• Compute the experimental matrix
Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

• Solve the resulting linear system

Ŷ = (ATA)−1ATM Simple is beautiful !
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Polynomial chaos expansions Computing the PCE coefficients

Error estimators

• In least-squares analysis, the generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

• The empirical error based on the experimental design X is a poor estimator in
case of overfitting

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2

Cross-validation techniques
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Polynomial chaos expansions Computing the PCE coefficients

Leave-one-out cross validation

x
(i)

• An experimental design
X = {x(j), j = 1, . . . , n} is selected

• Polynomial chaos expansions are built using
all points but one, i.e. based on
X\x(i) = {x(j), j = 1, . . . , n, j 6= i}

• Leave-one-out error (PRESS)

ELOO
def= 1
n

n∑
i=1

(
M(x(i))−MPC\i(x(i))

)2

• Analytical derivation from a single PC analysis

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT
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Polynomial chaos expansions Sparse PCE

Curse of dimensionality

• The cardinality of the truncation scheme AM,p is P = (M + p)!
M ! p!

• Typical computational requirements: n = OSR · P where the oversampling
rate is OSR = 2− 3

However ... most coefficients are close to zero !

Example

• Elastic truss structure
with
M = 10 independent
input variables

• PCE of degree p = 5
(P = 3, 003 coeff.)
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Polynomial chaos expansions Sparse PCE

Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); Ian, Guo, Xiu (2012); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by `1-regularization:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
+ λ ‖ yα ‖1

• Different algorithms: LASSO, orthogonal matching pursuit, Bayesian
compressive sensing

Least Angle Regression Efron et al. (2004)
Blatman & Sudret (2011)

• Least Angle Regression (LAR) solves the LASSO problem for different values
of the penalty constant in a single run without matrix inversions

• Leave-one-out cross validation error allows one to select the best model
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Low-rank tensor approximations Theory in a nutshell

Low-rank tensor representations

Rank-1 function
A rank-1 function of x ∈ DX is a product of univariate functions of each
component:

w(x) =
M∏
i=1

v(i)(xi)

Canonical low-rank approximation (LRA)
A canonical decomposition of M(x) is of the form Nouy (2010)

MLRA(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l (xi)

)
where:

• R is the rank (# terms in the sum)
• v

(i)
l (xi) are univariate function of xi

• bl are normalizing coefficients
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Low-rank tensor approximations Theory in a nutshell

Low-rank tensor representations

Polynomial expansions Doostan et al., 2013

By expanding v(i)
l (Xi) onto a polynomial basis orthonormal w.r.t. fXi one

gets:

Ŷ =
R∑
l=1

bl

(
M∏
i=1

(
pi∑
k=0

z
(i)
k,lP

(i)
k (Xi)

))
where:

• P
(i)
k (Xi) is k-th degree univariate polynomial of Xi

• pi is the maximum degree of P (i)
k

• z
(i)
k,l are coefficients of P (i)

k in the l-th rank-1 term

Complexity
Assuming an isotropic representation (pi = p), the number of unknown
coefficients is R(pM + 1)

Linear increase with dimensionality M
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Low-rank tensor approximations Theory in a nutshell

Greedy construction of the LRA

Chevreuil et al. (2015); Konakli & Sudret (2016)

• A greedy construction is carried out by iteratively adding rank-1 terms. The
r-th approximation reads Ŷr =Mr(X) =

∑r

l=1 blwl(X)

• In each iteration, alternate least-squares are used (correction and updating
steps)

Correction step: sequential updating of z(j)
r , j = 1, . . . ,M , to build wr:

z(j)
r = arg min

ζ∈Rpj

∥∥∥∥∥M−M̂r−1 −

(∏
i6=j

pi∑
k=0

z
(i)
k,rP

(i)
k

)(
pj∑
k=0

ζkP
(j)
k

)∥∥∥∥∥
2

E

Updating step: evaluation of normalizing coefficients {b1, . . . , br}:

b = arg min
β∈Rr

∥∥∥∥∥M−
r∑
l=1

βlwl

∥∥∥∥∥
2

E
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Computation of Sobol’ indices From polynomial chaos expansions

Hoeffding-Sobol’ decomposition

Consider a square integrable function x ∈ DX ⊂ RM 7→ M(x) ∈ R, where the
independent input parameters are modelled by a random vector X ∼ fX .

Hoeffding-Sobol’ decomposition

M(X) =M0 +
M∑
i=1

Mi(Xi) +
∑

1≤i<j≤M

Mi,j(Xi, Xj) + . . .+M1,2, ... ,M (X)

=M0 +
∑

u⊂{1, ... ,M}
u6=∅

Mu(Xu),

where u = {i1, . . . , is}, 1 ≤ s ≤M , denotes a subset of {1, . . . ,M} and
Xu = {Xi1 , . . . , Xis}
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Computation of Sobol’ indices From polynomial chaos expansions

Hoeffding-Sobol’ decomposition

Orthogonality of the summands

E [Mu(Xu) Mv(Xv)] = 0 ∀ u, v ⊂ {1, . . . ,M}, u 6= v

Construction
Introducing the conditional effects:

M̃u(Xu) = E [M(X)|Xu]

One gets:
Mu(Xu) = M̃u(Xu)−

∑
v⊂u
v 6=u

Mv(Xv).

In particular, the univariate effects read:

M̃i(Xi) =Mi(Xi) = E [M(X)|Xi]
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Computation of Sobol’ indices From polynomial chaos expansions

Sobol’ indices
Variance decomposition

Var [M(X)] =
M∑
i=1

Di +
∑

1≤i<j≤M

Di,j + . . .+D1,2, ... ,M =
∑

u⊂{1, ... ,M}
u6=∅

Du

where Du is the partial variance

Sobol’indices
Su = Du

D
= Var [Mu(Xu)]

Var [M(X)]

Group indices and total’ indices

S̃u =
Var

[
M̃u(Xu)

]
Var [M(X)] =

∑
v⊂u
v 6=∅

Sv

S̃Tu = 1−
Var

[
M̃∼u(X∼u)

]
Var [M(X)] =

∑
v⊂{1, ... ,M}

v∩u6=∅

Sv
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Computation of Sobol’ indices From polynomial chaos expansions

Sobol decomposition of a polynomial chaos expansions
Sudret CSM (2006), Reliab. Eng. Sys. Safety (2008)

Consider a polynomial chaos expansion MPCE(X) =
∑
α∈A

yα Ψα(X).

The mean and variance read:

E
[
MPCE(X)

]
= y0 Var

[
MPCE(X)

]
=

∑
α∈A\{0}

yα
2

Summands of a PCE

MPCE
u (Xu) =

∑
α∈Au

yαΨα(X), Au = {α ∈ A | αk 6= 0⇔ k ∈ u}

Conditional effects

M̃PCE
u (Xu) =

∑
α∈Ãu

yαΨα(X), Ãu = {α ∈ A | αi = 0 ∀ i /∈ u}
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Computation of Sobol’ indices From polynomial chaos expansions

Sobol indices from polynomial chaos expansions

Using:
DPCE = Var

[
MPCE(X)

]
=

∑
α∈A\{0}

yα
2

one gets the:
• Sobol’ indices

Su =
∑
α∈Au

yα
2/DPCE, Au = {α ∈ A | αk 6= 0⇔ k ∈ u}

• Group Sobol’ indices

S̃PCE
u =

∑
α∈Ãu

yα
2/DPCE, Ãu = {α ∈ A\{0} | αi = 0 ∀ i /∈ u}

• Total Sobol’ indices

S̃T,PCE
u =

∑
α∈ÃT

u

yα
2/DPCE, ÃTu = {α ∈ A | ∃ i ∈ u : αi > 0}
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Computation of Sobol’ indices From low-rank tensor approximations

Moments of LRA

Konakli & Sudret, Reliab. Eng. Sys. Safety (2016)

Consider the canonical decomposition:

MLRA(X) =
R∑
l=1

bl

(
M∏
i=1

(
pi∑
k=0

z
(i)
k,lP

(i)
k (Xi)

))

Mean value

E
[
MLRA(X)

]
=

R∑
l=1

[
bl ·

M∏
i=1

z
(i)
0,l

]

Variance

DLRA def= Var
[
MLRA(X)

]
=

R∑
l=1

R∑
l′=1

bl bl′

[
M∏
i=1

(
pi∑
k=0

z
(i)
k,l z

(i)
k,l′

)
−

M∏
i=1

z
(i)
0,l z

(i)
0,l′

]
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Computation of Sobol’ indices From low-rank tensor approximations

Conditional effects

Univariate effects

M̃LRA
i (Xi) =

R∑
l=1

bl

(
M∏
j 6=i

z
(j)
0,l

)
v

(i)
l (Xi)

Conditional effects

M̃LRA
u (Xu) =

R∑
l=1

bl

(∏
j /∈u

z
(j)
0,l

)(∏
i∈u

v
(i)
l (Xi)

)

Group Sobol’ indices

S̃u =
(
E
[(
M̃LRA

u (Xu)
)2
]
−M2

0

)
/DLRA

with:

E
[(
M̃LRA

u (Xu)
)2
]

=
R∑
l=1

R∑
l′=1

bl bl′

(∏
j /∈u

z
(j)
0,l z

(j)
0,l′

)(∏
i∈u

(
pi∑
k=0

z
(i)
k,l z

(i)
k,l′

))
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Computation of Sobol’ indices From low-rank tensor approximations

Sobol and total Sobol indices

After some bookkeeping
nightmare, one gets

• The first-order and
group Sobol’ indices
at any order

• The total Sobol’
indices
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Computation of Sobol’ indices Comparison

Sobol’ function

Problem statement

M(X) =
20∏
i=1

|4Xi − 2|+ ci
1 + ci

Xi ∼ U(0, 1) independent uniform

where:
c = {1, 2, 5, 10, 20, 50, 100, 500, 500, 500, . . . , 500}T

Analytical solution for Sobol’ indices

Si1, ... ,is = 1
D

is∏
i=i1

Di

where:

Di = 1
3(1 + ci)2 D =

M∏
i=1

(Di + 1)− 1
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Computation of Sobol’ indices Comparison

Sobol’ function – Results

Quality of the surrogate models

Generalization error – Experimental design: Sobol’ sequences, validation set of size 106

N êrr
LRA
G êrr

PCE
G

100 8.08 · 10−2 5.46 · 10−2

200 2.57 · 10−2 3.64 · 10−2

500 2.32 · 10−3 1.45 · 10−2

1,000 4.68 · 10−4 6.34 · 10−3

2,000 2.03 · 10−4 2.48 · 10−3

Moments
Mean and standard deviation of response

N = 200 N = 500
Analytical LRA (ε%) PCE (ε%) LRA (ε%) PCE (ε%)

µY 1.000 1.005 (0.5) 0.998 (−0.2) 1.000 (0.0) 0.995 (−0.5)
σY 0.3715 0.3820 (2.8) 0.3424 (−7.8) 0.3715 (0.0) 0.3536 (−4.8)
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Computation of Sobol’ indices Comparison

Sobol’ function – First order Sobol’ indices
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Computation of Sobol’ indices Comparison

Sobol’ function – Total Sobol’ indices
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Computation of Sobol’ indices Comparison

Sobol’ function – convergence
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Computation of Sobol’ indices Comparison

Stationary heat conduction – problem statement

A

B

D

∇T · n = 0∇T · n = 0

∇T · n = 0

T = 0

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�� �� �� �� �� �� �� �� �� �� �� �� ��

1

Heat conduction in D = 1m × 1m

−∇(κ(z) ∇T (z)) = 500 IA(z)

Thermal conductivity (lognormal random
field)

κ(z) = exp[aκ + bκ g(z)]
[ W
◦C ·m

]
• g(z): standard normal random field with:

ρ(z, z′) = exp (−‖z − z′‖2/`2)
µκ = 1, σκ = 0.3, ` = 0.2 m
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Computation of Sobol’ indices Comparison

Random field discretization

Expansion Optimal Linear Estimation (EOLE) Li & Der Kiureghian (1993)

For an appropriately defined grid {ζ1, . . . , ζn} in D:

ĝ(z) =
M∑
i=1

ξi√
li
φT
i Czζ

• ξi ∼ N (0, 1)

• (li,φi): (eigenvalues, eigenvectors) of matrix Cζζ with C(k,l)
ζζ = ρ(ζk, ζl),

k, l = 1, . . . , n

• C
(k)
zζ = ρ(z, ζk), k = 1, . . . , n

• M=53 modes are selected to represent 99% of the spectrum
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Computation of Sobol’ indices Comparison

Random field discretization

Shapes of first 20 spatial functions in EOLE discretization
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Computation of Sobol’ indices Comparison

Stationary heat conduction - finite element model

A

B

D

1

Finite element discretization Temperature field

Quantity of interest
T̃ = 1

|B|

∫
z∈B

T (z) dz [◦C]
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Computation of Sobol’ indices Comparison

Sobol’ indices obtained from the two surrogate models
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Computation of Sobol’ indices Comparison

Heat transfer - convergence
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• Only 10 out of 53 parameters influence the output

• From an experimental design size of 500 the results are accurate enough
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Gaussian process models (a.k.a. Kriging)

Gaussian process modelling

Gaussian process modelling (a.k.a. Kriging) assumes that the map y =M(x) is a
realization of a Gaussian process:

Y (x, ω) =
p∑
j=1

βj fj(x) + σ Z(x, ω)

where:
• f = {fj , j = 1, . . . , p}T are predefined (e.g. polynomial) functions which

form the trend or regression part

• β = {β1, . . . , βp}T are the regression coefficients

• σ2 is the variance of Y (x, ω)

• Z(x, ω) is a stationary, zero-mean, unit-variance Gaussian process

E [Z(x, ω)] = 0 Var [Z(x, ω)] = 1 ∀x ∈ X

The Gaussian measure artificially introduced is different from the
aleatory uncertainty on the model parameters X
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Gaussian process models (a.k.a. Kriging)

Assumptions on the trend and the zero-mean process

Prior assumptions are made based on the existing knowledge on the model to
surrogate (linearity, smoothness, etc.)

Trend
• Simple Kriging: known constant β

• Ordinary Kriging: p = 1, unknown constant β

• Universal Kriging: fj ’s is a set of polynomial functions,
e.g.

{
fj(x) = xj−1, j = 1, . . . , p

}
in 1D

Type of auto-correlation function of Z(x)
A family of auto-correlation function R(·; θ) is selected:

Cov
[
Z(x), Z(x′)

]
= σ2 R(x,x′; θ)

e.g. Gaussian, generalized exponential, Matérn, etc.
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Gaussian process models (a.k.a. Kriging)

Matérn autocorrelation function (1D)

Definition

R1(x, x′) = 1
2ν−1Γ(ν)

(√
2 ν |x− x

′|
`

)ν
κν

(√
2 ν |x− x

′|
`

)
where ν ≥ 1/2 is the shape parameter, ` is the scale parameter, Γ(·) is the Gamma
function and κν(·) is the modified Bessel function of the second kind

Properties

The values ν = 3/2 and ν = 5/2 are usually used
(
h = |x− x

′|
`

)
:

R1(h; ν = 3/2) = (1 +
√

3h) exp(−
√

3h)

R1(h; ν = 5/2) = (1 +
√

5h+ 5
3 h

2) exp(−
√

5h)
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Gaussian process models (a.k.a. Kriging)

Two approaches to Kriging

Data
• Given is an experimental design X = {x1, . . . ,xN} and the output of the

computational model y = {y1 =M(x1), . . . , yN =M(xN )}

• We assume that M(x) is a realization of a Gaussian process Y (x) such that
the values yi =M(xi) are known at the various points {x1, . . . ,xN}

• Of interest is the prediction at a new point x0 ∈ X, denoted by
Ŷ0 ≡ Ŷ (x0, ω), which will be used as a surrogate M̃(x0)

Two visions
• Ŷ0 is obtained as a linear combination of the observations: BLUP

• Ŷ0 is considered as a conditional Gaussian process:

Ŷ0 = Y (x0 | Y (x1) = y1, . . . , Y (xN ) = yN )
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Gaussian process models (a.k.a. Kriging)

Mean predictor
Santner, William & Notz (2003)

The prediction in a new point x0 ∈ DX is a Gaussian variable:
Ŷ0 ∼ N (µ

Ŷ0
, σ2
Ŷ0

)

Surrogate model: mean predictor

µ
Ŷ0

= fT
0 β̂ + rT

0 R−1
(
y − F β̂

)
where the regression coefficients β̂ are obtained from the generalized
least-square solution:

β̂ =
(
FT R−1 F

)−1 FT R−1 y

Properties
• The mean predictor has a regression part fT

0 β̂ =
∑p

j=1 β̂j fj(x0) and a local
correction

• It interpolates the experimental design:
µ
Ŷi
≡ µ

Ŷ (xi) = yi ∀xi ∈ X
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Gaussian process models (a.k.a. Kriging)

Kriging variance

• The Kriging variance reads:

σ2
Ŷ0

= E
[
(Ŷ0 − Y0)2

]
= σ2

(
1− rT

0 R−1 r0 + uT
0
(
FT R−1 F

)−1
u0

)
with u0 = FT R−1 r0 − f0

• The Kriging predictor is interpolating the data in the experimental design:

σ2
Ŷi
≡ σ2

Ŷ (xi)
= 0 ∀xi ∈ X
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Gaussian process models (a.k.a. Kriging)

Confidence intervals

• Due to Gaussianity of the predictor
Ŷ0 ∼ N (µ

Ŷ0
, σ2
Ŷ0

), one can derive
confidence intervals on the
prediction

• With confidence level (1− α), e.g.
95%, one gets:

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp.design
Kriging predictor

µ
Ŷ0
− 1.96σ

Ŷ0
≤M(x0) ≤ µ

Ŷ0
+ 1.96σ

Ŷ0

• Realizations of the conditional random field may be obtained from those of the
unconditional field
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Gaussian process models (a.k.a. Kriging)

Application to sensitivity analysis

Marrel et al. (2008,2009), Le Gratiet, Cannamela & Iooss (2014)

Le Gratiet, Marelli and Sudret, Handbook on Uncertainty Quantification (2016)

Reformulation
Su = Var [E [Y |Xu]]

Var [Y ] = Cov [Y, Y u]
Var [Y ]

where:
• The components of X are split into two groups X = (Xu,X∼u)

• X ′ is an independent copy of X

• and:

Y
def= M(X)

Y u def= M(Xu,X
′
∼u)
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Gaussian process models (a.k.a. Kriging)

Monte Carlo estimators
Sobol’ (1993, 2001)

Consider two sample sets χ =
{
x1, . . . ,xN

}
and χ′ = {x′1, . . . ,x′N} and define:

yi =M(xi) yu
i =M(xiu,x

′i
∼u)

ȳ = 1
N

N∑
i=1

yi ȳu = 1
N

N∑
i=1

yu
i

• Homma-Saltelli:

ŜHSu =
1
N

∑N

i=1 yi y
u
i − ȳ · ȳu

1
N

∑N

i=1 (yi − ȳ)2

• Janon:

ŜJu =
1
N

∑N

i=1 yi y
u
i − [(ȳ + ȳu)/2]2

1
2N
∑N

i=1 [(yi)2 + (yu
i )2]− [(ȳ + ȳu)/2]2

B. Sudret (Chair of Risk, Safety & UQ) PCE for time-dependent models 48 / 58



Gaussian process models (a.k.a. Kriging)

Confidence intervals on Sobol’ indices

Plug-in estimators
• A Kriging surrogate model is calibrated

• Standard Monte Carlo estimators of the Sobol’ indices can be computed
straightforwardly using the surrogate

Accounting for epistemic uncertainty
• Realizations of the conditional random process Ŷ0 are sampled

• MCS estimates of the Sobol’ indices are computed for each realization

• Summarizing statistics (mean, standard deviation) are obtained
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Gaussian process models (a.k.a. Kriging)

Application: elastic truss

Structural model Blatman & Sudret (2011)

• Response quantity: maximum
deflection v

Probabilistic model

Variable Distribution mean CoV
Hor. bars cross sectionA1 [m] Lognormal 0.002 0.10
Oblique bars cross section A2 [m] Lognormal 0.001 0.10
Young’s moduli E1, E2 [MPa] Lognormal 210,000 0.10
Loads P1, . . . , P6 [KN] Gumbel 50 0.15
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Gaussian process models (a.k.a. Kriging)

Sobol’ first order indices
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Variable Ref. PCE GP
A1 0.365 0.366 0.384
E1 0.365 0.369 0.362
P3 0.075 0.078 0.075
P4 0.074 0.076 0.069
P5 0.035 0.036 0.029
P2 0.035 0.036 0.028
A2 0.011 0.012 0.015
E2 0.011 0.012 0.008
P6 0.003 0.005 0.002
P1 0.002 0.005 0.000

Le Gratiet, Marelli and Sudret, Handbook on

Uncertainty Quantification (2016)

Confidence intervals can
also be obtained from PCE

by bootstrap
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Gaussian process models (a.k.a. Kriging)

Conclusions

• Surrogate models allow the analyst to replace complex computer codes by
fast-to-evaluate functions, that can be sampled for global sensitivity analysis

• Polynomial chaos expansions and low-rank tensor approximations provide
analytical expressions of the sensitivity indices at any order from the expansion
coefficients

• These techniques allow to get accurate results with O(100) runs of the model
up to dimension M = 10− 100)

• Kriging allows one to account for epistemic uncertainty (associated with the
surrogate model) by sampling conditional GPs, at a high cost though

• General purpose software implement the various approaches:
+ R packages sensitivity, CompModSA, DiceKriging, DiceDesign, etc.
+ UQLab
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http://www.uqlab.com
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http://www.uqlab.com
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Gaussian process models (a.k.a. Kriging)

UQLab: Facts and figures

http://www.uqlab.com

• Release of V0.9 on July 1st, 2015
• Release of V0.92 on March 1st, 2016
• 600+ licences in 48 countries

Country # licences
United States 91
France 64
Switzerland 54
China 31
Germany 30
United Kingdom 26
Italy 19
India 19
Belgium 15
Brazil 15

Open source version available in January 2017

B. Sudret (Chair of Risk, Safety & UQ) PCE for time-dependent models 55 / 58

http://www.uqlab.com


Gaussian process models (a.k.a. Kriging)

UQLab users
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Gaussian process models (a.k.a. Kriging)

Online Sobol’ indices calculator

Quoting T. Mara, B. Belfort, V. Fontaine, A. Younes, “Addressing factors fixing
setting from given data: A comparison of different methods”, Env. Model.
Software (2016):

This paper deals with global sensitivity analysis of computer model output. [...]
we show that it is possible to evaluate the following global sensitivity measures:
(i) the Sobol’ indices, (ii) the Borgonovo’s density-based sensitivity measure,
and (iii) the derivative-based global sensitivity measure of Sobol’ and
Kucherenko. [...] The results show that the polynomial chaos expansion for
estimating Sobol’ indices is the most efficient approach.

http://uqlab1.wixsite.com/sobolindices
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Questions ?

Acknowledgements: K. Konakli, S. Marelli

Chair of Risk, Safety & Uncertainty
Quantification

www.rsuq.ethz.ch

The Uncertainty
Quantification Laboratory

www.uqlab.com

Thank you very much for your attention !
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