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Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty quantification for
engineering problems with applications in structural reliability, sensitivity analysis, model

calibration and reliability-based design optimization

Research topics
• Uncertainty modelling for engineering systems

• Structural reliability analysis

• Surrogate models (polynomial chaos expansions, Kriging, support vector
machines)

• Bayesian model calibration and stochastic inverse problems

• Global sensitivity analysis

• Reliability-based design optimization http://www.rsuq.ethz.ch
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Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods (2007)
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Step C: uncertainty propagation

Goal: estimate the uncertainty / variability of the quantities of interest (QoI) Y =M(X) due to the input uncertainty fX

• Output statistics, i.e. mean, standard deviation, etc.

µY = EX [M(X)]

σ2
Y = EX

[
(M(X)− µY )2] Mean/std.

deviation
µ

σ

• Distribution of the QoI
Response

PDF

• Probability of exceeding an admissible threshold yadm

Pf = P (Y ≥ yadm)

Probability

of

failure
Pf
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Limit state function

• For the assessment of the system’s performance, failure criteria are defined, e.g. :

Failure ⇔ QoI =M(x) ≥ yadm
• The failure criterion is cast as a limit state function (performance function) g : x ∈ DX 7→ R such that:

g (x,M(x)) ≤ 0 Failure domain Df
g (x,M(x)) > 0 Safety domain Ds
g (x,M(x)) = 0 Limit state surface

e.g. g(x) = yadm −M(x)

Failure domain

Df = {x: g(x) ≤ 0}

Safe domain Ds

x1

x2

Probability of failure

Pf = P
({
X ∈ Df

})
= P
(
g (X,M(X))

)
=
∫
Df ={x∈DX : g(x,M(x))≤0}

fX(x) dx ≤ 0

• Multidimensional integral (d = 10− 100+), implicit domain of integration
• Failures are (usually) rare events: sought probability in the range 10−2 to 10−8
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Classical methods

Approximation methods Hasofer & Lind (1974), Rackwitz & Fiessler (1978)

• First-/Second- order reliability method (FORM/SORM)

– Relatively inexpensive semi-analytical methods
– Convergence is not guaranteed (e.g. in presence of multiple failure regions)

Simulation methods Melchers (1989), Au & Beck (2001), Koutsourelakis et al. (2001)

• Monte Carlo simulation

– Unbiased but slow convergence rate

• Variance-reduction methods

– e.g. Importance sampling, subset simulation, line sampling, etc.
– Their computational costs remain high (i.e. O(103−4) model runs)

Surrogate models can be used to leverage the computational cost of simulation methods
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational modelM with the following features:
• It is built from a limited set of runs of the original modelM called the experimental design
X =

{
x(i), i = 1, . . . , n

}
• It assumes some regularity of the modelM and some general functional shape

Name Shape Parameters

Polynomial chaos expansions M̃(x) =
∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑

l=1

bl

(
M∏

i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = β
T · f(x) + Z(x, ω) β , σ2

Z , θ

Support vector machines M̃(x) =
n∑

i=1

ai K(xi,x) + b a , b

(Deep) Neural networks M̃(x) = fn (· · · f2 (b2 + f1 (b1 +w1 · x) ·w2)) w, b

• It is fast to evaluate
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Ingredients for building a surrogate model

• Select an experimental design X that covers at best the domain of input
parameters: Latin hypercube sampling (LHS), low-discrepancy sequences

• Run the computational modelM onto X exactly as in Monte Carlo simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages

• Non-intrusive methods: based on runs of the
computational model, exactly as in Monte
Carlo simulation

• Suited to high performance computing:
“embarrassingly parallel”

Challenges

• Need for rigorous validation

• Communication: advanced mathematical
background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo
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Gaussian process modelling

Gaussian process modelling (a.k.a. Kriging) assumes that the map y =M(x) is a realization of a Gaussian process:

Y (x, ω) =
p∑
j=1

βj fj(x) + σ Z(x, ω)

where:
• f = {fj , j = 1, . . . , p}T are predefined (e.g. polynomial) functions which form the trend or regression part

• β = {β1, . . . , βp}T are the regression coefficients

• σ2 is the variance of Y (x, ω)

• Z(x, ω) is a stationary, zero-mean, unit-variance Gaussian process

E [Z(x, ω)] = 0 Var [Z(x, ω)] = 1 ∀x ∈ X

The Gaussian measure artificially introduced is different from the aleatory uncertainty on the
model parameters X
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Kriging equations

Data
• Given is an experimental design X = {x1, . . . ,xN} and the output of the computational model
y = {y1 =M(x1), . . . , yN =M(xN )}

• We assume thatM(x) is a realization of a Gaussian process Y (x) such that the values yi =M(xi) are known
at the various points {x1, . . . ,xN}

• Of interest is the prediction at a new point x0 ∈ X, denoted by Ŷ0 ≡ Ŷ (x0, ω), which will be used as a surrogate
M̃(x0)

Ŷ0 is obtained as as a conditional Gaussian variable:

Ŷ0 = Y (x0 | Y (x1) = y1, . . . , Y (xN ) = yN )
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Kriging mean predictor and variance

Santner, William & Notz (2003)

The conditional distribution of Ŷ0 given the observations {Y (xi) = yi}ni=1 is a Gaussian variable:

Ŷ0 ∼ N (µ
Ŷ0
, σ2
Ŷ0

)

Mean predictor : used as surrogate model

µ
Ŷ0

= fT
0 β̂ + rT

0R−1
(
y − F β̂

)
where the regression coefficients β̂ are obtained from the generalized least-square solution:

β̂ =
(

FT R−1 F
)−1

FT R−1 y

Kriging variance : local prediction uncertainty

σ2
Ŷ0

= E
[
(Ŷ0 − Y0)2

]
= σ2

(
1− rT

0 R−1 r0 + uT
0
(

FT R−1 F
)−1

u0

)
u0 = FT R−1 r0 − f0
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One-dimensional example

Computational model

x 7→ x sinx for x ∈ [0, 15]

Experimental design

Six points selected in the range [0, 15] using Monte
Carlo simulation

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp.design
Kriging predictor

Confidence intervals

With confidence level (1− α), e.g. 95%, one gets:

µ
Ŷ0
− 1.96σ

Ŷ0
≤M(x0) ≤ µ

Ŷ0
+ 1.96σ

Ŷ0
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Sequential updating

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp. design
Add. point
Updated predictor
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Active learning reliability using a Kriging surrogate

Procedure
• Start from an initial experimental design X and build the initial Kriging surrogate of the limit state function ĝ0

• At each iteration k

– Compute an estimation of Pf (and a confidence interval from the current surrogate)

– Check a convergence criterion

– Select the next point(s) to be added to X : enrichment (a.k.a. in-fill) criterion

– Update the Kriging surrogate to ĝk

Early approaches
• Efficient global reliability analysis (EGRA) Bichon et al. (2008)

• Active Kriging - Monte Carlo simulation (AK-MCS) Echard et al. (2011)
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Example: series system
Schöbi et al. , ASCE J. Risk Unc. (2016)

Consider the system reliability analysis defined by:

g(x) = min


3 + 0.1 (x1 − x2)2 − x1+x2√

2
3 + 0.1 (x1 − x2)2 + x1+x2√

2
(x1 − x2) + 6√

2
(x2 − x1) + 6√

2


where X1, X2 ∼ N (0, 1)

• Initial design: LHS of size 12 (transformed into the standard normal space)

• In each iteration, one point is added (maximize the probability of
missclassification)

• The mean predictor µ
M̂

(x) is used, as well as the bounds µ
M̂

(x)± 2σ
M̂

(x) so as to get bounds on Pf :

P̂−
f
≤ P̂ 0

f ≤ P̂
+
f
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Results with classical Kriging
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Active learning reliability methods Teixeira et al. (2021), Moustapha et al. (2021) (submitted)

Numerous papers on active learning called AK-XXX-YYY in the last few
years!

• AK-MCS is a cornerstone for the
development of active learning reliability
strategies

• Most methods in the literature are built by
modifying:

– the surrogate model

– the learning function

– the algorithm for reliability estimation

– the stopping criterion
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A module-oriented survey Moustapha et al. (2021) (submitted)

Monte Carlo simulation Subset simulation Importance sampling Other

Kriging
Bichon et. al (2008) Echard et. al (2011)
Hu & Mahadevan (2016) Wen et al. (2016
) Fauriat & Gayton (2017) Jian et. al
(2017) Peijuan et al. (2017) Sun et al.
(2017) Lelievre et al. (2018) Xiao et
al. (2018) Jiang et al. (2019) Tong et
al. (2019) Wang & Shafieezadeh (2019)
Wang & Shafieezadeh (SAMO, 2019)
Zhang, Wang et al. (2019)

Huang et al. (2016) Tong et al. (2015)
Ling et al. (2019) Zhang et al. (2019)

Dubourg et al. (2012) Balesdent et al.
(2013) Echard et al. (2013) Cadini et
al. (2014) Liu et al. (2015) Zhao et al.
(2015) Gaspar et al. (2017) Razaaly et
al. (2018) Yang et al. (2018) Zhang &
Taflanidis (2018) Pan et al. (2020) Zhang
et al. (2020)

Lv et al. (2015) Bo &
HuiFeng (2018) Guo et al.
(2020)

PCE
Chang & Lu (2020) Marelli & Sudret
(2018) Pan et al. (2020)

SVM
Basudhar & Missoum (2013) Lacaze &
Missoum (2014) Pan et al. (2017)

Bourinet et al. (2011) Bourinet (2017)

RSM/RBF
Li et al. (2018) Shi et al. (2019)

Rajakeshir (1993) Rous-
souly et al. (2013)

Neural networks Chojazyck et al. (2015) Gomes et al.
(2019) Li & Wang (2020) [Deep NN] Sundar & Shields (2016)

Chojazyck et al. (2015)

Other
Schoebi & Sudret (2016) Sadoughi et al.
(2017) Wagner et al. (2021)

− U− EFF− Other variance-based− Distance-based− Bootstrap-based− Sensitivity-based− Cross-validation/Ensemble-based− ad-hoc/other
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General framework

Modular framework which consists of independent blocks that can be assembled in a black-box fashion

Surrogate model

Kriging

PCE

SVR

PC-Kriging

Neural networks
...

Reliability estimation

Monte Carlo

Subset simulation

Importance sampling

Line sampling

Directional sampling
...

Learning function

U

EFF

FBR

CMM

SUR
...

Stopping criterion

LF-based

Stability of β

Stability of Pf

Bounds on β

Bounds on Pf

...
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Active learning for reliability analysis

1: Initialization
2: Initial experimental design ED = {χ(1), . . . ,χ(n)}
3: Converged = FALSE
4: while not(Converged) do
5: Train a surrogate model g̃ on the current experimental design
6: Compute the failure probability P̂ 0

f , and its bounds [P̂−
f
, P̂+

f
] using g̃

7: if Stopping criterion fulfilled then
8: Converged = TRUE
9: else

10: Evaluate the learning function LF on X
11: Enrich the ED: χ∗ = arg minx∈X LF (x)
12: Update the experimental design: ED ← ED ∪ {χ∗}
13: end
14: end
15: Return Probability of failure P̂ 0

f and confidence interval [P̂−
f
, P̂+

f
]
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Extensive benchmark: Set-up

Reliability method Surrogate model Learning function Stopping criterion

Monte Carlo simulation
Kriging U

Beta bounds

Subset simulation Beta stability 3 · 2 · 2 · 3 = 36 strategies

Importance sampling
PC-Kriging EFF

Combined

Monte Carlo simulation
PCE FBR Beta stability 3 strategiesSubset simulation

Importance sampling

Subset simulation, Importance sampling w/o metamodel 2 strategies

In total 39 + 2 = 41 strategies are tested

Moustapha, M., Marelli, S. & Sudret, B. A generalized framework for active learning reliability: survey and benchmark
(2021), ArXiv: 2106.01713.
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Extensive benchmark: options for the various methods

Kriging

� Trend: Constant

� Kernel: Gaussian

� Calibration: MLE

Monte Carlo simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

PCE

� Degree: 1− 20

� q-norm : 0.8

� Calibration: LAR

Importance sampling

� Max. sample size: 104

� Target C.o.V: 2.5%

� Instrumental density:
Standard Gaussian
centered on the MPFP

PC-Kriging

� Same as Kriging

� same as PCE but...

� Degree 1− 3

Subset simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

� Conditional probability:
p0 = 0.25
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Selected problems

• 20 problems selected from the literature

• 11 come from the TNO benchmark
(https://rprepo.readthedocs.io/en/latest/)

• Wide spectrum of problems in terms of

– Dimensionality
– Reliability index β = −Φ−1(Pf )

~
~

Problem M Pf,ref Reference

01 (TNO RP14) 5 7.69 · 10−4 Rozsas & Slobbe 2019

02 (TNO RP24) 2 2.90 · 10−3 Rozsas & Slobbe 2019

03 (TNO RP28) 2 1.31 · 10−7 Rozsas & Slobbe 2019

04 (TNO RP31) 2 3.20 · 10−3 Rozsas & Slobbe 2019

05 (TNO RP38) 7 8.20 · 10−3 Rozsas & Slobbe 2019

06 (TNO RP53) 2 3.14 · 10−2 Rozsas & Slobbe 2019

07 (TNO RP54) 20 9.79 · 10−4 Rozsas & Slobbe 2019

08 (TNO RP63) 100 3.77 · 10−4 Rozsas & Slobbe 2019

09 (TNO RP7) 2 9.80 · 10−3 Rozsas & Slobbe 2019

10 (TNO RP107) 10 2.85 · 10−7 Rozsas & Slobbe 2019

11 (TNO RP111) 2 7.83 · 10−7 Rozsas & Slobbe 2019

12 (4-branch series) 2 3.85 · 10−4 Echard et al. (2011)

13 (Hat function) 2 4.40 · 10−3 Schoebi et al. (2016)

14 (Damped oscillator) 8 4.80 · 10−3 Der Kiureghian (1990)

15 (Non-linear oscillator) 6 3.47 · 10−7 Echard et al. (2011,2013)

16 (Frame) 21 2.25 · 10−4 Echard et al. (2013)

17 (HD function) 40 2.00 · 10−3 Sadoughi et al. (2017)

18 (VNL function) 40 1.40 · 10−3 Bichon et al. (2008)

19 (Transmission tower 1) 11 5.76 · 10−4 FEM (172 bars, 51 nodes)

20 (Transmission tower 2) 9 6.27 · 10−4 FEM (172 bars, 51 nodes)
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Comparison of the various strategies

Approximately 12, 000 reliability analyses were run:
41 strategies - 20 problems - 15 replications

Three evaluation criteria:

• Number of model evaluations: Neval

• Accuracy: ε = |β − βref| /βref

• Efficiency: ∆ = εNeval/Nmed

where Nmed is the median number of model
evaluations for each problem

For each criterion:

• Ranking of the strategies as a whole

• Performance of the methods w.r.t. problem
feature (dimensionality, range of Pf )

Active learning for reliability GT Mécanique & Incertain – October 21, 2021 B. Sudret 25 / 33



Ranking of the strategies: accuracy of β

Percentage of runs

How many times a method ranks best in terms of
smallest error on beta (resp. within 5, 10 or 20 times
this relative error)?

ε = |β − βref| /βref

• Best approach: PC-Kriging + SuS + U + Combined
stopping criterion

• Worst approaches: Kriging + IS + EFF + BS
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Ranking of the strategies: number of model evaluations

Percentage of runs

How many times a method ranks best (resp. within
2, 3, 5 times the lowest cost denoted N∗eval) ?
• Best approach: PC-Kriging + SuS + EFF + BS

• Worst approache: Direct IS
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Ranking of the strategies: efficiency

Percentage of runs

How many times a method ranks best according to
efficiency ∆ (resp. within 5, 10, 20 times the best)?

∆ = εβ
Neval

Neval

where Neval is the median number of model evaluations
for a particular problem (over all methods and replications)

• Best approach: PC-Kriging + SuS + U + Combined
stopping criterion

• Worst approaches: Direct SuS and Direct IS
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Results aggregated by method

Percentage of times a method is first or in the Top 5, 10, 20 w.r.t. ∆ (regardless of the strategy)

• Surrogates: PC-Kriging dominates by far

• Reliability: Slight advantage to subset simulation

• Learning function: U dominates both EFF and FBR

• Stopping criterion: Slight advantage to the stability criterion
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Summary of the results

Recommendations w.r.t. the problem feature

Module Dimensionality Magnitude of the reliability index

M < 20 20 ≤M ≤ 100 β < 3.5 β ≥ 3.5
Surrogate model PCK PCE PCE/PCK PCK

Reliability method SuS SuS SuS SuS

Learning function U FBR U/FBR U

Stopping criterion βbo,βco βbo / βco βbo,βco βbo

Main take-away

There is no drawback in using surrogates compared to a direct solution
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

• Truly black-box benchmark with 27 problems

• Limit state functions not known to the participants and only accessible through an anonymous server

• Our solution: the “best approach” previously highlighted (PCK + SuS + U + Co)

Summary plot (TNO)
• Reference solution: black line

• Zero, one or more points per participant

• X: number of runs (log scale)

• Y: obtained β index

best approach: “on the line / to the left”

Active learning for reliability GT Mécanique & Incertain – October 21, 2021 B. Sudret 31 / 33



TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

Component reliability System reliability
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Conclusions

• Estimating low probabilities of failure in high-dimensional problems requires more refined algorithms than plain MCS

• Recent research on surrogate models (e.g. Kriging and polynomial chaos expansions) and active learning has
brought new extremely efficient algorithms

• Accurate estimations of Pf ’s (not of β !) are obtained with O(100) runs of the computer code regardless of their
magnitude

• All the presented algorithms are available in the general-purpose uncertainty quantification software UQLab (V.1.4,
“Active learning reliability” module)
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www.uqlab.com
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UQLab: The Uncertainty Quantification Software

• free access to academia

• Close to 4,000 registered users

• 1,500+ active users from 92 countries

http://www.uqlab.com

• The cloud version of UQLab, accessible via
an API (SaaS)

• Available with python bindings for beta
testing

https://uqpylab.uq-cloud.io/

Country # Users

United States 620

China 571

France 362

Switzerland 302

Germany 283

United Kingdom 163

India 160

Italy 151

Brazil 144

Canada 92

As of October 19, 2021
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

The Uncertainty Quantification
Software

www.uqlab.com

The Uncertainty Quantification
Community

www.uqworld.org

Thank you very much for your attention !
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