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Introduction

Computational models

Computer simulation aims at reproducing the behaviour of complex natural or man-made
systems.
Computational models combine:

@ A description of the physical phenomena (e.g. mechanics, heat transfer, fluid dynamics,
etc.) by a set of equations

@ Discretization procedures which transform the (partial differential) equations into linear
algebra problems

@ Solvers which provide an approximate solution to these equations.
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Real world

Model

Underlying physics

@ Aerodynamics (hyperboloid shape)
@ Structural mechanics (concrete shell)

Structural mechanics (prestressed concrete)
Durability (leak tightness)

Neutronics

Computational fluid dynamics
Fracture mechanics
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Introduction
on framework

ion technique:

Why do we use computational models in engineering?

Computational models are used as virtual prototypes which help the engineer assess and
optimize the performance of the system under consideration.

Example: design of a cooling tower

From the specifications of the plant nuclear power and the existing
cooling source the required cooling capacity is determined.

@ Aerodynamics: size of the tower (diameter/shape/height) for
optimal natural draught

@ Structural mechanics: thickness of the shell, quantity of
reinforcing steel bars under prescribed operating conditions and
environmental loads (temperature, wind, snow, etc.)
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Introduction

Computational models: the abstract viewpoint

As a result of discretizing and solving the set of equations describing the physics, a
computational model is a black-box program that computes quantities of interest as a function
of input parameters.

Vector of input @
parameters

z e RM

Model response
y=M(z) € RY

p

B. Sudret (Chair of Risk & Safety) Inaugural lecture



Introduction

Computational models: the abstract viewpoint

As a result of discretizing and solving the set of equations describing the physics, a
computational model is a black-box program that computes quantities of interest as a function

of input parameters.

Vector of input
. Model response
arameters
P y= M(z) € RV

z e RM

@ Geometry @ Analytical formula @ Displacements
@ Material properties @ Finite element model @ Strains, stresses
@ Loading @ Comput. workflow @ Temperature, etc.

April 9th, 2013
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Introduction

Where are the uncertainties?

In order to make the best use of a computational model, assumptions on the values of the input
parameters shall be made in order to provide reliable predictions on the system behaviour.

Sources of uncertainty

@ What is the exact thickness of the shell?
@ What is the value of the concrete strength?

@ What is the maximal expected wind velocity?

@ Lack of knowledge (epistemic uncertainty)
o Natural variability (aleatory uncertainty)
e Model error (e.g. simplifications)
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Outline

© Introduction
© Uncertainty quantification framework

o Uncertainty propagation techniques
@ Monte Carlo simulation
@ Surrogate models

@ Application examples
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Uncertainty quantification framework

Global framework for uncertainty quantification

Step A

Model(s) of the system

Assessment criteria

Computational model

Sudret (Chair of Risk & Safety)
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Uncertainty quantification framework

Step B

Quantification of

Global framework for uncertainty quantification

sources of uncertainty

Step A

Model(s) of the system

Assessment criteria
Random variables

Computational model
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Uncertainty quantification framework

Step B

Quantification of

Global framework for uncertainty quantification

sources of uncertainty

Step A

Model(s) of the system

Assessment criteria
Random variables

Step C

ys

Uncertainty propagation

.
Computational model

Distribution

Mean, std. deviation

Probability of failure
B. Sudret (Chair of Risk & Safety)

Inaugural lecture

Sudret, B. Uncertainty propagation and sensitivity analysis in mechanical models, Habilitation thesis, 2007.

=

April 9th, 2013

10



Uncertainty quantification framework

Step B

Quantification of

Global framework for uncertainty quantification

sources of uncertainty

Step A

Model(s) of the system

Assessment criteria
\

Random variables

Step C

Uncertainty propagation

\

Computational model

Distribution

Mean, std. deviation

Probability of failure
B. Sudret (Chair of Risk & Safety)
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Uncertainty quantification framework

Step B: Quantification of the sources of uncertainty
Experimental data is available

@ What does the data look like?
descriptive statistics (histograms)

@ What is the best probabilistic model?
statistical inference

Preliminary analysis: expert judgment

(

@ Best practices from the literature (i.e. lognormal distributions for material properties)
Scarce data + expert information

e r; :
@ Engineering judgment (e.g. reasonable bounds)

@ Bayesian inference methods

B. Sudret (Chair of Risk & Safety)
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Uncertainty quantification framework

Step C/C’: Uncertainty propagation and sensitivity analysis

@ Understanding a physical phenomenon

What is the final use of the computational model?

- Sensitivity analysis: detection of the important parameters

- Calibration of the model w.r.t. available experimental data
@ Robust design: variability of the system’s performance in operation
o (Reliability-based) design optimization

- Parametric study: evolution of the output when one or several parameters vary in a range
@ Reliability analysis: probability of non-performance / failure

B. Sudret (Chair of Risk & Safety)
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Uncertainty propagation techniques

Outline

e Uncertainty propagation techniques
@ Monte Carlo simulation
@ Surrogate models
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Introduction
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Monte Carlo simulation

Some history

@ The idea of random experiments using computers has been
introduced by S. Ulam in 1946 to solve neutronics problem

@ The name “Monte Carlo simulation” is attributed to John

Von Neumann in reference to the casinos in Monaco e oo
Principle

Reproduce numerically the variability of the model parameters using a random number

generator

— Gaussian distribution

s 10
Data (n=100)
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Introduction

Uncertainty quantification framework

Uncertainty propagation techniques
t

App!

Monte Carlo simulation

Some history

@ The idea of random experiments using computers has been
introduced by S. Ulam in 1946 to solve neutronics problem

@ The name “Monte Carlo simulation” is attributed to John
Von Neumann in reference to the casinos in Monaco

Principle

Monte Carlo simulation
Surrogate models

Source: www.monaco.mc

Reproduce numerically the variability of the model parameters using a random number

generator

Monte Carlo simulation (n=100,000)
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Introduction
Uncertainty quantification fra o Monte Carlo simulation
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a

The “Virtual Factory”

Monte Carlo simulation allows the engineer to assess the performance of a large number of
virtual systems featuring different realizations of the input parameters.

Ll

Bridge
Truss structure
AT Jom === 77 A
http:/ /www.cparama.com/ Finite element truss model
Questions Sources of uncertainty
@ What is the range of the maximal deflection at midspan? o Geometry
@ How safe is the bridge w.r.t. the admissible deflection? o Steel quality

@ Applied loads

B. Sudret (Chair of Risk & Safety) Inaugural lecture April 9th, 2013
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Monte Carlo simulation
Uncertainty propagation techniques Surrogate models

Sample set of the quantity of interest

Structural model

—| A |
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Sample set of the quantity of interest

Structural model
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Monte Carlo simulation
Uncertainty propagation techniques Surrogate models

Sample set of the quantity of interest

Structural model
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Monte Carlo simulation
Uncertainty propagation techniques Surrogate models

Sample set of the quantity of interest

X, Structural model

_:'-.
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Monte Carlo simulation
Uncertainty propagation techniques Surrogate models

Scattering of the quantity of interest

Statistical moments

Monte Carlo simulation provides a sample set of response quantities, say
Y={M(x;),i=1, ..., Nycs} whose statistics may be studied:

@ Mean value

Nucs
NMCS ; M(a:)
@ Standard deviation Cter:::rjl
Nucs 1/2
1
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<
5
|
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Monte Carlo simulation
Uncertainty propagation techniques Surrogate models

Scattering of the quantity of interest

Distribution analysis

X

X, Structural model

——{Iﬁﬂﬁ?#i—b —
X5
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Monte Carlo simulation
Uncertainty propagation techniques Surrogate models

Scattering of the quantity of interest

Distribution analysis

Histogram
X
= - -—
N % Structural model A Sample
e BAVAVAVAVAV S R
e s —
—aihe e
X
R i Distribution
—Hasr—
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Monte Carlo simulation
Uncertainty propagation techniques Surrogate models

Reliability analysis

Computational models can be used to assess the performance of a system w.r.t. some
prescribed criterion.

(SIA / Eurocodes in civil engineering, FAA regulations in aeronautics, etc.)

A performance function g corresponding to the margin between some quantity of interest and
the associated admissible threshold ¢,4,, is defined:

9(@, M(@)) = taam — M(z)
@ In a deterministic design paradigm, the criterion should be fulfilled when using some
design value of the input vector, say x4:

>0 : design OK
<0 : design not OK

@ In the world of uncertainty quantification, some realizations of the system may pass the
criterion, some other may fail

zg — g(zg, M(2q)) —

[ "Probability of failure” }
[m] = -

B. Sudret (Chair of Risk & Safety)
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Uncertainty propagation techniques

Monte Carlo simulation for reliability analysis

Monte Carlo simulation
Surrogate models

Computational assessment of virtual structures

A
X, Failure
Domain
X B
gl IRAVAVAVAVAVAN ‘
R — —
VX
| Performance function
AL Ne

Safe
g(X. M(X)) ]

Domain

X
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Uncertainty propagation techniques

Monte Carlo simulation for reliability analysis

Monte Carlo simulation
Surrogate models

Computational assessment of virtual structures

Failure

Domain
WA

L ]
[Per‘fnrmance function

Safe
g(X. M(X)) ]

Domain
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Uncertainty propagation techniques

Monte Carlo simulation for reliability analysis

Monte Carlo simulation
Surrogate models

Computational assessment of virtual structures

Failure

Domain
L Sy

Performance function

Safe
Domain
g(X. M(X))

X
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Uncertainty propagation techniques

Monte Carlo simulation for reliability analysis

Monte Carlo simulation
Surrogate models

Computational assessment of virtual structures

X, i Failure
Domain
L »
X, — eee
| ~AAAAAD .
o ——] — .o
X
/ Performance function
e [

¢ ..S.a.fe"
g(X. M(X)) ]

Domaine
oe

X1
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Uncertainty propagation techniques

Monte Carlo simulation for reliability analysis

Monte Carlo simulation
Surrogate models

Computational assessment of virtual structures

X, h Failure
Domain
[] »
% — e 0o
— | A .
—> ' Py
e — l
° L ..S.a.fe" XI
X_ | - Domaine
Performance function s | ®®
e g(X. M(X))
Probability of failure
B. Sudret (Chair of Risk & Safety)
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Uncertainty quantificati amewo Monte Carlo simulation
Uncertainty propagati Surrogate models
Apr amples

Some features of Monte Carlo simulation

Advantages
@ Universal method: only rely upon simulating random numbers (“sampling”) and running
repeatedly the computational model

@ Suited to High Performance Computing: “embarrassingly parallel”
@ Sound statistical foundations: convergence when Nycg — 00

Drawbacks
@ Statistical uncertainty: results are not exactly reproducible when a new analysis is carried
out (handled through confidence intervals)

@ Low efficiency

Example: suppose Py = 0.001 is to be computed
@ At least 1,000 samples are needed in order to observe one single failure (in the mean!)

@ About 100 times more (i.e. 100,000 samples) are required to have a +£10% accuracy

B. Sudret (Chair of Risk & Safety) Inaugural lecture April 9th, 2013 21 / 39
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Uncertainty propagation techniques Surrogate models

Outline

e Uncertainty propagation techniques

@ Surrogate models
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Uncertainty propagation techniques

Surrogate models for uncertainty quantification

A surrogate model M is an approximation of the original computational model with the
following features:

@ It is built from a limited set of runs of the original model M called the experimental
design X ={z;, i=1, ... ,m}

@ It assumes some regularity of the model M and some general functional shape

Name Shape Parameters
Polynomial chaos expansions M(z) = Z o Vo () an
B acA
Kriging M(z) =B f(z) + Z(z,w) B, 03,0
m
Support vector machines M(z) = Z a; K(xi,x) + b a,b
i=1
] = =
B. Sudret (Chair of Risk & Safety)

Inaugural lecture
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Uncertainty propagation techniques

Ingredients for building a surrogate model

Latin Hypercube Sampling, low-discrepancy sequences

@ Select an experimental design X that covers at best the domain of input parameters:
@ Smartly post-process the data {X, M(X)} through a learning algorithm
Name

Polynomial chaos expansions

@ Run the computational model M onto & exactly as in Monte Carlo simulation
Kriging

Support vector machines
o Validate the surrogate model

B. Sudret (Chair of Risk & Safety)

Learning method

sparse grids, regression, LAR

maximum likelihood, Bayesian inference

quadratic programming

Inaugural lecture
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Uncertainty propagation techniques
Validation of a surrogate model

surrogate model built from a given experimental design,
e.g. the mean-square error:

@ An error estimate allows one to assess the accuracy of a

e =E[(M(X) - M(X))’]
1 Nyal

Nval

k=1

[M(zy) — M(zy)]”

B. Sudret (Chair of Risk & Safety)
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Uncertainty propagation techniques

Mon

Surrogate m’osc‘izrl‘:kmm
Validation of a surrogate model

@ An error estimate allows one to assess the accuracy of a

surrogate model built from a given experimental design,
e.g. the mean-square error:

e =B [(M(X) - M(X))’] LR
1 ® - 2 ce, UL

N [(M(zi) — M(mi)] -
val =1 i .,

° 8 °
@ For the sake of robustness a validation set that is different from the learning set X’ should
be used

B. Sudret (Chair of Risk & Safety)
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Uncertainty propagation techniques

Mon

Surrogate m’osc‘izrl‘:kmm
Validation of a surrogate model

@ An error estimate allows one to assess the accuracy of a

surrogate model built from a given experimental design,
e.g. the mean-square error:

e =B [(M(X) - M(X))’] LR
1 ® - 2 ce, UL

N [(M(zi) — M(mi)] -
val =1 i .,

° 8 °
@ For the sake of robustness a validation set that is different from the learning set X’ should
be used

@ Techniques such as the leave-one-out cross-validation or bootstrap may be used to
decrease the computational burden

B. Sudret (Chair of Risk & Safety)

Inaugural lecture
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Truss structure

Uncertainty propagation techniques

Problem statement

Monte Carlo simulation
Surrogate models
l P[ ]’ II P[ |

Input: 10 independent random variables
Eud, ‘ moduli)
le ;

@ Bars properties (2 cross-sections, 2 Young's
o Loads (6 parameters)
Uncertainty quantification

Output: maximal deflection
@ Distribution of the maximal deflection?
@ Mean value and standard deviation?

o Reliability analysis: Prob[v > £ =12 cm]?

B. Sudret (Chair of Risk & Safety)

Inaugural lecture

Blatman, G. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, Université Blaise Pascal, Clermont-Feprand, 2009,
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Uncertainty propagation techniques

Truss structure

Monte Carlo simulation

Surrogate models

o4 N —Retergnce
Statistical moments " | PG expension
Reference Monte Carlo  Polynomial chaos 02; l / \\
100,000 runs 30 runs ;DL_ 02) W \\
Mean (cm) 7.94 8.02 £ 0.49 7.98 0.15 I/ \
Std. dev. (cm) 1.11 1.36 £ 0.10 1.10 01 /l \
0.05 / /
0 10 15
Reliability analysis Max. deflecion (cm)
Reference Polynomial chaos

100,000 runs

500 runs

10 cm
11 cm
12 cm
13 cm

4.39e-02 + 3.0%
8.61e-03 + 6.7%
1.62e-03 + 15.4%
2.20e-04 + 41.8%

4.30e-02 + 0.9%
8.71e-03 + 2.1%
1.51e-03 £+ 5.1%
2.03e-04 + 13.8%

B. Sudret (Chair of Risk & Safety)

Inaugural lecture

April 9th, 2013
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Application examples

Outline

@ Application examples
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que:
Application examples

Risk analysis for a pressure vessel

Question

What is the probability of crack propagation in a pressure vessel
in case of a severe pressurized thermal shock?

Uncertainties
@ Size and position of metallurgical defects

@ Steel toughness (which depends on the alloy composition)

@ Ageing due to irradiation

Conditional probability of crack propagation for different incident scenarios
(transients) combined into a global probabilistic safety assessment

Dubourg, V. et al. échantil\onnage préférentiel quasi-optimal par krigeage pour I'évaluation de la fiabilité des cuves de réacteurs, Proc. 7th JN'Fiab;Conf., Chambéry £2012)

B. Sudret (Chair of Risk & Safety) Inaugural lecture April 9th, 2013
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Application examples

Natural hazards: performance-based design w.r.t earthquakes

Question

What is the probability of collapse of a building as a function of
the “intensity” of a potentiel earthquake?

Uncertainties

@ Properties of the structure (material strength, stiffness of the
connections, etc.)

o Earthquake magnitude, duration, peak ground acceleration

Non linear transient finite element analysis of the structure
for different synthetic earthquakes

B. Sudret (Chair of Risk & Safety) Inaugural lecture April 9th, 2013 30 / 39



Application examples

Natural hazards: performance-based design w.r.t earthquakes

@ The vulnerability is represented by a fragility
curve (probability of attaining some state of
damage conditionally on the PGA)

06 a-t400 |

@ Seismologists provide models for the PGA w.r.t.
the local seismicity (occurrence / magnitude)

Probabilit of failure

=

@ Damage-related costs may be incorporated
towards a global risk assessment

PGA mis?

[ Performance-based earthquake engineering ]

Yang, T., Moehle, J., Stojadinovic, B. & Der Kiureghian, A. Seismic performance evaluation of facilities: methodology and implementation J. Struct. Eng. (ASCE), 2009, 135,

1146-1154.
Sudret, B., Mai, C.V, Computing seismic fragility curves using polynomial chaos expansions, ICOSSAR'2013, New York. o & = =
April 9th, 2013
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Application examples

Durability of concrete structures

Questions

co,

@ What is the probability of corrosion-induced damage after 20
years of service?

< <
VR ‘f)

-
2,

&ilof), 400, Gac0FrGT S @ What is the expected (resp. 95%- quantile) concrete surface that
is affected by concrete rebars corrosion due to concrete

carbonation (resp. chloride ingress)?

(Source: http://www.cement.org)

Uncertainties

@ CO; (resp. chlorides) diffusion parameters

@ Rebars position (concrete cover)
(Source: http://www.structuremag.org) (] Corrosion kinetics

@ Spatial variability

C
g
I
it

B. Sudret (Chair of Risk & Safety) Inaugural lecture

April 9th, 2013



Application examples

Durability of concrete structures

Questions
. ?) TR @ What is the .probability of corrosion-induced damage after 20
: S5 e years of service?
’Cq(OH);%CO'Z.—')C'aCO,iHZO‘W @ What is the expected (resp. 95%- quantile) concrete surface that

is affected by concrete rebars corrosion due to concrete
carbonation (resp. chloride ingress)?

Uncertainties

@ CO; (resp. chlorides) diffusion parameters
@ Rebars position (concrete cover)
(Source: http://www.structuremag.org) (] Corrosion kinetics . . .
Sudret, B. Probabilistic models for the extent of damage in degrading
o Spat|a| Var|ab|||ty reinforced concrete structures Reliab. Eng. Sys. Safety, 2008, 93, 410-422
[ Indicators for long-term infrastructure management ]
=) F = =
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Application examples

Robust design of submarine hulls

Shielding,

Pressure hull

Question

Elliptical bulkhead

prR2 =

Elliptical end with cone  Single bay reference structure.

How to minimize the volume of a single bay reference structure
while ensuring a high reliability level w.r.t buckling failure?

min V(d) such that P (peoi(X, d) < peery) < 10°F

B. Sudret (Chair of Risk & Safety)

After Tafreshi & Bailey (2007)

Inaugural lecture
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Application examples

Robust design of submarine hulls

Uncertainties
@ Tolerances in the dimensions / straightness of the stiffeners
@ Geometrical imperfections of the shell

@ Variability of the material properties (elasto-plastic constitutive
laws)

Optimal robust design ensuring a high level of structural
reliability

Dubourg, V. et al. Modélisation probabiliste de champs d'imperfections géométriques de coques résistantes de sous-marins, Proc. 10¢ Coll.

B. Sudret (Chair of Risk & Safety)

Inaugural lecture

Nat.Calcul des Structures, Giens, 2011.
[m] = = =
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Effect of electromagnetic waves onto human bodies

Courtesy J. Wiart (Orange Labs) / PhD A. Ghanmi

@ The specific absorption rate (SAR) characterizes the energy
absorbed by the human body exposed to waves (e.g. cellular
phones, wifi, etc.)

o Computational dosimetry allows one to estimate the SAR for a
given “phantom”, i.e. a computational model of the human body

(Maxwell equations solved by FDTD (finite difference in time domain))

9 E : electric field
E
SAR = o0— o : tissues conductivity

p 1 mass density

B. Sudret (Chair of Risk & Safety) Inaugural lecture April 9th, 2013 35 /39



Application examples

Effect of electromagnetic waves onto human bodies

Courtesy J. Wiart (Orange Labs) / PhD A. Ghanmi

@ The specific absorption rate (SAR) characterizes the energy
absorbed by the human body exposed to waves (e.g. cellular
phones, wifi, etc.)

o Computational dosimetry allows one to estimate the SAR for a
given “phantom”, i.e. a computational model of the human body

(Maxwell equations solved by FDTD (finite difference in time domain))

9 E : electric field
E
SAR = o0— o : tissues conductivity

p 1 mass density

Question

How to assess the variability of the SAR over a population with ﬁw" ”" ﬂ\lh
different morphology, different phones, different use, etc.?

B. Sudret (Chair of Risk & Safety) Inaugural lecture April 9th, 2013 35 /39



Application examples

Effect of electromagnetic waves onto human bodies

Uncertainties
e Morphology of the body (e.g. children vs. adults)
@ Posture

@ Type of cellular phone / Position of the phone After Findlay & Dimbylow (2007)

Estimation of the distribution of SAR within a given population to provide
regulating authorities with detailed information

A.Ghanmi et al. , Analysis of the influence of the position of the mobile on SAR induced using polynomial chaos decomposition, Proc. XXXth URSI Scientific symposium, 2011.

B. Sudret (Chair of Risk & Safety) Inaugural lecture



Application examples

Conclusion

@ Uncertainty quantification has become a hot topic in many (if not all) domains of applied
science and engineering

@ It is a transdisciplinary field which takes advantage from research progress in the
mathematical- (statistics, PDEs), engineering- (civil, mechanical, chemical, etc.) and
computer science communities

@ Generic analysis tools may be developed and disseminated towards the community
“The UQLab platform”

@ Good UQ studies rely upon fruitful discussions between the field- and UQ- specialists:
scientists and engineers should have a significant education in statistics and probability
theory

u]
8
I
i
it
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Application examples

Future research trends

@ More accurate modelling of the input uncertainty in case of statistical dependence (copula
theory)

@ Progress in surrogate models: parsimonious vs. robust models in order to tackle
large-scale simulation problems

e Dissemination of good practices towards the engineering community (reduce the
mathematical abstraction to the minimum)

u]
8
I
i
it
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Thank you very much for your attention!

B. Sudret (Chair of Risk & Safety) Inaugural lecture April 9th, 2013 39 /39



	Introduction
	Uncertainty quantification framework
	Uncertainty propagation techniques
	Monte Carlo simulation
	Surrogate models

	Application examples

