Kriging for non-parametric ML estimation from regioncensored data

Y. BENNANI Université de Nice Sophia Antipolis

Affiliation: Laboratoire I3S

Email: "bennani@i3s.unice.frBennani"<bennani@i3s.unice.fr>-URL:http://www.i3s.unice.fr/I3S/labos/labo4.html

Master: M2 Modélisation Aléatoire, Université Paris 7

Ph.D. (2012-2015): Université de Nice Sophia Antipolis

Supervisor(s): Dr. Luc Pronzato (UNS-CNRS) and Dr. Maria-João Rendas (UNS-CNRS)

Abstract:

We consider a non-parametric density estimation problem with region-censored observations. The study is motivated by prevention of decompression sickness accidents through prediction of the amount of nitrogen bubbles produced during deep-sea diving. It relies on measurements of bubble grades – which reflect the peak gas volume in the diver's body – on a set of dives made by individuals in the population under analysis.

It is assumed that the instantaneous volume of gas $B(\theta, P(\cdot), t)$ flowing through the right-ventricule of a diver characterised by a set of biophysical parameters θ when executing dive profile $P(\cdot)$ (a function of time) is well described by a known mathematical model [1]. Bubble grades, $G \in \{0, \ldots, 4\}$, are a strongly quantified version of peak gas volume (see Fig. 1):

$$G(\theta, P(.)) = i \Leftrightarrow \tau_i \le \max(B(\theta, P(\cdot), t)) < \tau_{i+1},$$

where $\tau_0 = 0 < \tau_1 < \cdots < \tau_4 < \tau_5 = \infty$ is a set of thresholds assumed known.

Figure 1: Left: dive profile $P(\cdot)$. Right: model response (blue) and grade computation (threshold are shown in red). Observed grade is equal to 3 in this case.

We address determination of $\hat{\pi}_{\theta}, \theta \in \Theta$, the non-parametric Maximum Likelihood estimate (NPMLE) of the distribution of θ in the population under study. Observation of grade G = i when executing $P(\cdot)$ only indicates that $\theta \in \mathcal{R}_i(P(\cdot)) = \{\theta \in \Theta : \tau_i \leq \max_t(B(\theta, P(\cdot), t)\} < \tau_{i+1}\}$ and thus we face a problem of density estimation from (region-)censored observations. For interval-censored observations it is known [3, 4] that $\hat{\pi}_{\theta}$ is affected by several forms of indeterminacy, the major being that only the probability mass over the (finitely many) elements of a partition \mathcal{P} of the parameter space, determined by the set \mathcal{R} of observed regions $\mathcal{R}_i(P(\cdot))$, can be estimated. Moreover, $\hat{\pi}_{\theta}$ is concentrated on a subset of the elements of \mathcal{P} , that can be found from the intersection graph of \mathcal{R} , see Fig. 2. These features carry over to censoring by regions of arbitrary geometry, as in our case, requiring only a slightly more complex determination of the support of $\hat{\pi}_{\theta}$.

Figure 2: Definition of \mathcal{P} for the observation of grades 1 and 3 for profile P_1 , grade 2 for P_2 and grade 1 for P_3 ($\theta \in \Theta \subset \mathbb{R}^2$). Left: observed regions and partition \mathcal{P} (the support of the $\hat{\pi}_{\theta}$ is indicated in black). Right: intersection graph of \mathcal{R} (support of $\hat{\pi}_{\theta}$ is determined by its cliques).

Central to the determination of the NPMLE is the identification of the regions $\mathcal{R}_i(P(\cdot))$, that must resort to numerical methods, requiring computation of the model response to $P(\cdot)$ over a dense grid covering Θ . In our case, we have 444 measures of grades along 48 different decompression profiles, rendering impractical direct use of the biophysical model. To overcome this problem, we rely on a set of kriged observation models, that predict the value of $\max_t B(\theta, P(\cdot), t)$, from the model response over a sparse (11×11) grid. The response surface was estimated by simple kriging for an isotropic Mattern kernel using the package STK [2].

We present the NPML estimate of the probability mass of π_{θ} over the elements of \mathcal{P} , which is based on a fast multiplicative algorithm [5]. We illustrate the pathological behaviour of this estimator, in particular its sensitivity to the detailed geometry of \mathcal{P} , and propose alternative (regularised) solutions that account for the entropy of the estimated distribution.

Our ultimate goal is to predict the distribution of grades for an arbitrary profile $P(\cdot)$: $\hat{p}_P(i) = \hat{\pi}_{\theta}(\mathcal{R}_i(P(\cdot))) = \sum_{A \in \mathcal{P}} \hat{\pi}_{\theta}(A \cap \mathcal{R}_i(P(\cdot)))$. These estimates are affected by two distinct uncertainties: (a) we do not know $\hat{\pi}_{\theta}(A \cap \mathcal{R}_i(P(\cdot)))$ since $\mathcal{R}_i(P(\cdot)) \notin \mathcal{P}$ for new profiles; (b) the identification of $\mathcal{R}_i(P(\cdot))$ relies on kriging and is thus uncertain. We present upper and lower bounds on each $\hat{p}_P(i)$ that take into account (a). Assessment of uncertainty source (b) concerns the determination of level sets based on kriging, as approached e.g. in [6] using the notions of Vorob'ev expectation and deviation and will be considered in the near future.

References

- Julien Hugon. Vers une modélisation biophysique de la décompression. PhD Dissertation, University of Aix-Marseille 2, 2010.
- [2] Small Tool for Kriging (STK), http://sourceforge.net/projects/kriging/
- [3] Bruce W. Turnbull. The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society. Series B (Methodological), 1976, 290–295.
- [4] Robert Gentleman and Alain C. Vandal. Nonparametric estimation of the bivariate CDF for arbitrarily censored data. Canadian Journal of Statistics, Vol.30, No. 4, 2002, 557–571.
- [5] Radoslav Harman and Luc Pronzato. Improvements on removing nonoptimal support points in D-optimum design algorithms. Statistics & probability letters, Vol. 77, No. 1, 2007, 90–94.
- [6] Clément Chevalier, David Ginsbourger, Julien Bect, Ilya Molchanov Estimating and quantifying uncertainties on level sets using the Vorob'ev expectation and deviance with Gaussian process models. In proceeding of: mODa 10, Advances in Model-Oriented Design and Analysis, Physica-Verlag HD, 35-43.

Short biography – After obtaining an engineer diploma (2008) and the master degree (2009), Y. Bennani worked in banking before starting a PhD thesis at Laboratory I3S (2012) on the estimation of the risk of decompression accidents among deep-sea divers. His thesis is conducted in the framework of contract DGA-DGCIS SAFE DIVE, a joint partnership between the company BF-Systèmes, Institut Langevin (ESPCI Paristech), and the laboratory I3S (UNS-CNRS).