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Email: robert.gantner@sam.math.ethz.ch – URL: http://www.sam.math.ethz.ch

Master: MSc. CSE ETH Zürich
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Introduction In recent years, various methods have been developed for solving parametric operator
equations, focusing on the estimation of parameters given measurements of the parametric solution,
subject to a stochastic observation error model. The Bayesian approach [7] to such inverse problems for
PDEs will be considered here and solved using adaptive, deterministic sparse tensor Smolyak quadrature
schemes from [4, 5]. Multiple solutions of the Bayesian inverse problem based on different measurements
are often averaged using a standard Monte Carlo approach. We develop a multilevel Monte Carlo method
achieving an error of the same order while requiring less work [1, 2, 3].

Bayesian Inversion of Parametric Operator Equations We assume an operator equation de-
pending on a distributed, uncertain parameter u with values in a separable Banach space X of the form

Given u ∈ X̃ ⊆ X, find q ∈ X : A(u; q) = F (u) in Y ′ (1)

where we denote by X and Y two reflexive Banach spaces over R with (topological) duals X ′ and Y ′,
respectively and A(u; ·) ∈ L(X ,Y ′). Assuming that the forcing function F : X̃ 7→ Y ′ is known, and the
uncertain operator A(u; ·) : X 7→ Y ′ is locally boundedly invertible for uncertain input u in a sufficiently
small neighborhood X̃, we define the uncertainty-to-observation map G : X̃ 7→ RK with the structure

X ⊇ X̃ 3 u 7→ G(u) := O(G(u;F )) ∈ Y . (2)

Here, X̃ 3 u 7→ q(u) = G(u;F ) ∈ X denotes the response of the forward problem for a given instance of
u ∈ X̃ and O an observation operator O ∈ L(X ,RK), K <∞. The goal of computation is the low-order
statistics of a quantity of interest (QoI) φ given noisy observational data δ of the form δ = G(u) + η,
where δ represents the observation G(u) perturbed by the normally distributed noise η. We assume u
to be parametrized by u = u(y) := 〈u〉 +

∑
j∈J yjψj ∈ X for some “nominal” value 〈u〉 and coefficient

sequence y = (yj)j∈J, J = {1, . . . , J} where the yj are uniformly distributed on [−1, 1].

Bayes’ theorem characterizes moments of the QoI as mathematical expectations with respect to the prior
measure µ0 on U , which here is given as the countable product of uniform measures. In particular, we
are interested in φ = G, the response of the system. To this end, we use Bayes’ Theorem to obtain an
expression for y|δ, as in [6, 7]. This yields our desired expectation as an integral over the prior measure
µ0. Defining Zδ :=

∫
U

exp (−Φ(y; δ))µ0(dy) > 0, we obtain

Eµ
δ

[φ] =

∫
U

φ(y)µδ(dy) =
1

Zδ

∫
U

φ(y) exp

(
−1

2
‖δ − G(y)‖2Γ

)
µ0(dy) =:

Z ′δ
Zδ
. (3)

This formulation of the expectation Eµδ [·] is based on just one measurement δ. For a given model for
the measurement errors η, we would like to additionally compute the expectation over the assumed error
distribution, in this case γKΓ (η), the K-variate Gaussian measure with s.p.d. covariance matrix Γ.

Here, we assume the observation noise η to be statistically independent from the uncertain param-

eter u in (1). Thus, the total expectation of the QoI φ in terms of Z ′δ and Zδ is EγKΓ
[
Eµδ [φ]

]
=∫

RK
Z′δ
Zδ

∣∣∣
δ=G(y0)+η

γKΓ (dη), where G(y0) denotes the observation at the unknown, exact parameter y0.
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In practice, we are given a set of measurements ∆ := {δi, i = 1, . . . ,M} with which this outer expectation
should be approximated. The measurements can be taken at different positions, i.e. with respect to
different observation maps Oi in (2). We consider the notationally more convenient case where the
measurements are all obtained using the same observation map. We do, however, impose the restriction
that the measurements are homoscedastic, i.e. δi is Gaussian with the same covariance Γ for all δi ∈ ∆.

Approximation of Posterior Expectation The inner expectation over the posterior distribution µδ

is replaced by an approximation Eµ
δ

τL [φ] with tolerance parameter τL > 0. We assume the work required

to compute this approximation to be bounded by C(Γ)τ−sL , with C(Γ) > 0 independent of τL and s > 0.

Our method of choice for approximating Eµδ [φ] is the adaptive Smolyak quadrature algorithm developed
in [4, 5], which adaptively constructs a sparse tensor quadrature rule that approximates Zδ and Z ′δ.
For forward problems belonging to a certain sparsity class, analytic regularity of the Bayesian posterior
suggests dimension-independent convergence rates for the adaptive, deterministic Smolyak quadrature
fulfilling the work bound C(Γ)τ−sL , where s depends on the sparsity class.

Binned Multilevel Monte Carlo The approach proposed here is based on the multilevel Monte Carlo
method originally applied by [3] and formulated in the current form for PDEs by [1]. Our approximation

to EγKΓ
[
Eµδ [φ]

]
is given by

E
γKΓ
ML,L[Eµ

δ

τL [φ]] :=

L∑
`=0

E
γKΓ
M`

[
Eµ

δ

τ`
[φ]− Eµ

δ

τ`−1
[φ]
]
, (4)

where E
γKΓ
M`

[·] denotes the sample mean over M` samples and Eµ
δ

τ`
[·] denotes the posterior expectation

approximation introduced above. We show that, assuming a certain distribution of samples per level,
one can find a tolerance for each level such that the rate of convergence of the error etot vs. the work

WL
tot fulfills the optimal relationship etot = O

((
WL

tot

)− 1
2

)
, which is superior to Monte Carlo depending

on the sparsity class of the underlying problem.

Applications The proposed approach is applicable for instance for definite and indefinite elliptic and
parabolic evolution problems with scalar and tensoral unknowns. Furthermore, uncertainty in domains
and high-dimensional initial value problems can be treated. Numerical experiments yielding the optimal
rate of convergence when using the binned multilevel Monte Carlo algorithm will be presented and
compared to standard Monte Carlo simulations.
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