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Abstract:

Recently, statistical researchers have shown increased interest in Gaussian process modeling with mono-
tonicity constraints (see [2], [4] and [5]). In computer experiments, the true function (scalar output) may
be known to be monotone with respect to some or all input variables. We propose a new methodology
based on the Bayesian Gaussian process metamodeling to sample from posterior distribution including
monotonicity information in the monovariate case.
Let y = f(x) be a monotonic increasing function where the input x is assumed to be scalar and in the
domain [0, 1]. We consider a set of computer experiments {(xi, yi) | i = 1, · · · , n} of size n and assume
that

yi = f(xi), 1 ≤ i ≤ n. (1)

Also suppose thatM is the space of increasing functions and (Yx)x∈[0,1] is a zero-mean Gaussian process
(GP) with kernel k(x, x′) given by a priori knowledge about the relationship between the input x and the
output y. The following experimental results (see figures below) are obtained with the classical Gaussian
kernel.
We are interested in the simulation of the conditional (or posterior) distribution of the GP Y given data
and monotonicity information

Yxi = yi, 1 ≤ i ≤ n,
Y ∈M.

(2)

The important step is to approximate the GP by a finite-dimensional GP Y N

Y N
x =

N∑
j=1

ξjφj(x), (3)

in which ξ =

 ξ1
...
ξN

 is a zero-mean Gaussian random vector with covariance matrix ΓN .

Such a decomposition can be seen as a Karhunen-Loève approximation of the process Y where the
deterministic basis functions φj (1 ≤ j ≤ N) are chosen in the space M of increasing functions and
where random coefficients ξj partially reflect the randomness of the Gaussian process Y .
Due to the special choice of the basis functions φj , the crucial property here is that Y N should be a
monotonic increasing function if and only if the N coefficients ξj are all nonnegative. Now, we are
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mainly interested in the new formulation of the problem : simulate the conditional distribution of the
random Gaussian vector ξ given

∑N
j=1 ξjφj(xi) = yi, 1 ≤ i ≤ n (n interpolation linear equations)

ξj ≥ 0, 1 ≤ j ≤ N (N inequality conditions)
(4)

The advantage of such a methodology is that any posterior sample of the vector ξ leads to a monotone
interpolating function. By a Monte Carlo technique, the conditional mean value of the function could be
computed and be thought as the conditional monotone kriging mean. The conditional monotone kriging
variance and confidence bounds can be calculated as well.
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