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Abstract: Hierarchical or multilevel modeling establishes a convenient framework for solving complex
inverse problems [1, 2] in the presence of uncertainty. In the last two decades it has been studied from
a frequentist [3] and a Bayesian perspective [4]. We will adopt a Bayesian point of view to statistical
inversion and uncertainty quantification and present a Bayesian multilevel framework that allows for
inversion and optimal analysis of “perfect” or noise-free data in the presence of aleatory and epistemic
types of uncertainty and in experimental situations when data is scarce or expensive to acquire. In
this contribution to the annual MascotNum workshop we will discuss the abovementioned framework on
the basis of an application example within the domain of aerospace engineering [5]. We will not only
illustrate the very potential of Bayesian multilevel modeling as well as ways to overcome its immanent
major challenges, but more importantly we will discuss the main observations, considerations and key
questions that the practical problem solution [6] has given rise to.

A forward model M : (m,x, ζ,d) 7→ ỹ describes a system or phenomenon under consideration. Through-
out a number of i = 1, . . . , n experiments forward model inputs may be represented corresponding to
a certain model of epistemic and aleatory uncertainty. There are fixed albeit insufficiently well-known
model parametersm, model inputs x and ζ that are subject to imperfectly or perfectly known variability,
respectively, and experimental conditions d that are known with certainty. Constant yet unknown model
parameters are represented as random variables M ∼ πM (m) where πM (m) is a Bayesian prior belief
about their true values. Model inputs with perfectly known variability are modeled as experiment-specific
realizations ζi of random variables (Zi |θZ) ∼ fZ |ΘZ

(ζi |θZ) with known hyperparameters θZ that pre-
scribe the variability. Model inputs with imperfectly known variability are modeled as experiment-specific
realizations xi of exchangeable random variables (Xi |θX) ∼ fX |ΘX

(xi |θX) with hyperparameters θX

about which only Bayesian prior knowledge ΘX ∼ πΘX
(θX) is available. Experimental conditions di

possibly differ throughout the experiments yet they are (deterministic) perfectly known values.

A “complex” inverse problem is posed when model responses ỹi = M(m,xi, ζi,di) are measured in
n experiments, forward model inputs comply with the aforementioned uncertainty model and inference
focuses on the unknowns (m, θX). While classical Bayesian multilevel modeling deals with the analysis of
“imperfect” data yi = ỹi+εi, i.e. model-measurement discrepancy is accounted for by residual terms that
are modeled as outcomes εi of a random variables Ei ∼ fEi

(εi) with distributions fEi
(εi), the problem

formulation at hand deals with “perfect” data ỹi. Interestingly, in the context present the analysis of
“perfect” data is more involved than the analysis of “imperfect” data in mathematical and numerical
terms. Thus firstly we will devise a Bayesian multilevel model involving “perfect” data. Subsequently we
will show how Bayesian calibration of the formulated multilevel model can be accomplished by analyzing
the entirety of collected data 〈ỹi〉 = (ỹ1, . . . , ỹn). The inferential prior distribution π(m, θX), that
represents the knowledge about the quantities of interest (m, θX) prior to analyzing the data, will be
updated in order to obtain the posterior distribution π(m, θX |〈ỹi〉). To that end a likelihood function
L(〈ỹi〉|m, θX ; θZ) has to be formulated as well as a means for its efficient evaluation.
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Figure 1: DAG of the generic multilevel model. Vertices symbolize unknown ( ) or known ( ) quantities and directed edges
represent their deterministic ( ) or probabilistic ( ) relations. Quantities are shown in a way that reflects their uncertainty.

Since for the specific problem at hand such a likelihood function is not available in closed-form, we
will propose a statistical simulator of the likelihood which is based on Monte Carlo (MC) sampling
and kernel density estimation (KDE). Moreover, in order to explore the posterior of the quantities of
interest, we will devise dedicated Markov chain Monte Carlo (MCMC) algorithms. The very principle
of MCMC is to construct a Markov chain whose long-run distribution approaches the desired posterior.
By virtue of Bayes’ law closed-form approximations of the likelihood directly induce approximations on
the level of the posterior. However, if calls to the likelihood function L, over the course of the Markov
chain, are replaced by calls to a statistical estimator L̂, an approximation is introduced on the level of
the Markov chain transition kernel. This raises the distinctly important question as to which degree
the induced equilibrium distribution is in conformity with the true posterior, i.e. the issue of posterior
fidelity. In turn the practical question becomes how to “optimally” tune free algorithmic parameters,
e.g. the number of MC samples, the bandwidth of the KDE and parameters of the MCMC simulation.
We will present a heuristic way of approaching those delicate issues. Beyond that, we will demonstrate
how data augmentation [7] can be utilized in the outlined multilevel context. Data augmentation is a
powerful technique from the vast MCMC toolkit that traditionally aims at enhancing MCMC efficiency by
introducing hidden data as auxiliary variables. Instead we will herein introduce latent data as auxiliary
variables in order to enhance the adequacy of likelihood estimations and the fidelity of the posterior
densities that are eventually obtained.
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variational data assimilation he joined the Chair of Risk, Safety and Uncertainty Quantification, where
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