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Abstract:

There is an ongoing trend for replacing real life experiments by computer simulations. The physical
behaviour is substituted by a computational model which approximates the system response of the
physical system. Advances in research lead to more complex and more accurate computational models
which are at the same time more costly to evaluate, i.e. time-consuming. There is a conflicting situation
between accuracy and speed. Applications such as reliability analysis or optimization algorithms require
a large number of model evaluations, e.g. the computation of a system’s failure probability or the optimal
value of a parameter. These operations are reasonable when the computational model is easy-to-evaluate,
i.e. when a model evaluation is inexpensive and the system response of a large number of input samples
is processed fast.

Metamodelling provides a framework for replacing an expensive-to-evaluate computational model Y =
M(X) by a simple although approximative surrogate model. The surrogate model (also called meta-
model) allows one to predict the system response of a large number of input samples at low cost.
The metamodel is built from a small number N of support points called the experimental design
X = {χ(i), i = 1, . . . , N} for which the original model is evaluated. The input and output values/vectors
are used to determine an appropriate metamodel with a certain metamodelling technique. Two of the
more popular non-intrusive metamodelling techniques are Polynomial Chaos Expansions (PCE) and
Kriging (also called Gaussian process modelling).

PCE surrogates the computational model M by a finite set of orthonormal polynomials in the input
variables (Ghanem and Spanos, 2003). In the context of uncertainty quantification, the latter are defined
in coherency with the probability distribution functions of those input variables. The coefficients of a
PC expansion may be computed using e.g. least-square minimization algorithms. PCE assumes that
the computational model is a black-box model, i.e. only information about the input values and model
response are available (the inner structure and features of the model (nonlinearity, interaction between
parameters, etc.) are assumed unknown).

Kriging is called a stochastic metamodelling technique which assumes that the computational model is a
realization of a Gaussian random field whose properties are inferred from the experimental design and the
associated model output (Santner et al., 2003). The experimental design points provide the information
to compute the optimal correlation parameters by e.g. maximum likelihood method. The prediction of
the surrogate at a new point results in a Gaussian variable represented by its mean value and variance
value called Kriging mean prediction and prediction variance.

Although these two techniques have become popular for solving uncertainties propagation, optimization
or sensitivity problems, their combination has not been considered yet. In this paper, the new meta-
modelling technique Polynomial-Chaos-Kriging (PC-Kriging) is proposed. This metamodel is based on
the classical universal Kriging approach where the trend (regression part) is a sum of functions in the

mailto:schoebi@ibk.baug.ethz.ch
http://www.ibk.ethz.ch/su/people/schoebir/index_EN
http://www.ibk.ethz.ch/su/people/schoebir/index_EN


MascotNum Annual Conference, April 23-25, 2014, ETH Zürich (Switzerland)

general case. In PC-Kriging a sparse set of orthonormal polynomials serves as the trend of the universal
Kriging model. The general formulation of the metamodel is then:

M(X) ≈M(PCK)(x) =

P∑
k=1

βk fk(x) + σ2 Z(x, ω) (1)

where
∑P

k=1 βk fk(x) is the mean value of the Gaussian process (so-called trend) and Z(x, ω) is a
zero mean, unit variance Gaussian process described by a set of hyper-parameters ω = {θ, R}. The
autocorrelation function R(x,x′;θ) describes the correlation between two samples given its parameters
θ. f(x) = {fk(x), k = 1, . . . , P} are the multidimensional orthonormal polynomials, its coefficients are
βk, x are realizations of the input variablesX, σ2 is the Kriging variance. The sparse set of P polynomials
is determined by using hyperbolic index sets and least angle regression based of the experimental design
{χ(i)} (Blatman and Sudret, 2011). In an iterative manner and one-by-one, a polynomial out of the
determined sparse set is added to the Kriging model. The iteration starts with the polynomial which is
the most correlated to the system response. Then the classical equations to fit the Kriging model are
used to determine the correlation parameters, the Kriging variance and the trend coefficients (Bachoc,
2013). The P PC-Kriging models are then compared by means of the leave-one-out error and the optimal
PC-Kriging metamodel (with minimal leave-one-out error) is chosen.

The performance of PC-Kriging is compared to ordinary Kriging (constant trend β0) and pure PCE on
six easy-to-evaluate benchmark problems in the field of optimization and metamodelling. The results
show that PC-Kriging performs better or at least as good as PCE and/or Kriging. Especially, for
small experimental designs PC-Kriging is preferable to the two distinct approaches. From the numerical
experiments is appears that some problems are better suited for PCE whereas some problems are better
handled by Kriging. PC-Kriging converges to the best of the two simple approaches and leads to a
smaller squared residual error. For large sample sizes, PC-Kriging performs similar to PCE, so that the
added value of PC-Kriging is questionable in that case.

Heuristically, the behaviour of PC-Kriging can be explained as follows: the set of polynomials approx-
imates the global behaviour whereas the correlation part models the local variabilities between the
support points. The combination of these two effects leads to a higher accuracy and thus to a better
metamodel. The validation of PC-Kriging is shown on numerous analytical benchmark functions which
are easy-to-evaluate.

References

Bachoc, F. (2013). Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian
processes with model misspecifications. Comp. Stat. Data An. 66, 55–69.

Blatman, G. and B. Sudret (2011). Adaptive sparse polynomial chaos expansion based on Least Angle
Regression. J. Comput. Phys 230, 2345–2367.

Ghanem, R. and P. Spanos (2003). Stochastic Finite Elements : A Spectral Approach. Courier Dover
Publications.

Santner, T., B. Williams, and W. Notz (2003). The Design and Analysis of Computer Experiments.
Springer, New York.
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Schöbi, PC-Kriging - 2 -


