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Email: jonas.sukys@sam.math.ethz.ch – URL: http://www.sam.math.ethz.ch/~sukysj/

Master: ETH Zürich
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Abstract:

A large number of problems in physics and engineering such as global climate, propagation of tsunamis
and avalanches, waves in the solar atmosphere, design of efficient aircraft, and the structural mechanics
are modeled by systems of non-linear partial differential equations termed as systems of balance laws:{

Ut(x, t) + div(F(x,U)) = S(x, t,U),

U(x, 0) = U0(x),
∀(x, t) ∈ D× R+. (1)

Examples of conservation laws include the shallow water equations of oceanography, the Euler equations
of aerodynamics, the Magnetohydrodynamics (MHD) equations of plasma physics and the equations
of elasticity. In general, solutions of (1) develop shock waves in finite time even for smooth initial
data. Hence, solutions are sought in the sense of distributions, additionally imposing entropy conditions
to ensure uniqueness. For fluxes that are non-linear or with varying coefficients, analytical solution
formulas are only available in very special cases. Apart from many other numerical methods, Finite
Volume methods (FVM) emerged as the the most successful paradigm for practical computations in
geophysics, aerodynamics and astrophysics. In FVM, the corresponding numerical fluxes are based on
(approximate) solutions of Riemann problems at mesh cell interfaces. Higher order spatial accuracy
is obtained by non-oscillatory reconstruction procedures such as TVD limiting, (W)ENO or by the
Discontinuous Galerkin (DG) method; higher order temporal accuracy is obtained by SSP-RK method.

Uncertainty quantification. A Finite Volume scheme requires the initial data, fluxes, and source terms
as inputs. These inputs are, in general, uncertain, i.e., initial condition U0 = U0(x, ω), source term
S = S(x, ω,U) and fluxes F = F(x, ω,U) are random fields where ω ∈ Ω and (Ω,Σ,P) denotes a
complete probability space. Consequently, the solution U is sought as the random entropy solution of
the random balance law :{

U(x, t, ω)t + div(F(x, ω,U)) = S(x, ω,U),

U(x, t, ω) = U0(x, ω),
(x, t) ∈ D× R+, ω ∈ Ω. (2)

Under certain assumptions on input data U0, S, F, the existence of the k-th statistical moments Mk(U)
of the random entropy solution is established. The next step is the design of efficient numerical methods
for the approximation of the random balance law (2). These methods include the stochastic Galerkin,
stochastic collocation and stochastic Finite Volume. Currently these methods are not able to handle large
number of uncertainty sources, are intrusive (existing deterministic solvers need to be reconfigured) and
hard to parallelize. Hence, we focus on the sampling-type Monte Carlo methods.

Multi-Level Monte Carlo Finite Volume Method

Due to the slow convergence of the conventional Monte Carlo FVM sampling methods, we propose the
Multi-Level Monte Carlo method (MLMC-FVM). MLMC was introduced by Giles for Itô SPDE. The
key idea is to simultaneously draw MC samples on a hierarchy of nested grids:
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0. Nested meshes: Consider nested meshes {T`}∞`=0 of the domain D with corresponding mesh
widths ∆x` = 2−`∆x0, where ∆x0 is the mesh width of the coarsest resolution.

1. Sample: For each level ` ∈ N0, we draw M` independent identically distributed (i.i.d) samples Ii`
with i = 1, . . . ,M` from the random input data I(ω) and approximate these by cell averages.

2. Solve: For each level ` and each realization Ii`, the balance law (1) is solved for Ui,n
∆x`

and Ui,n
∆x`−1

by the FVM method on meshes T` and T`−1 with mesh widths ∆x` and ∆x`−1, respectively.

3. Estimate Statistics: Fix L < ∞ corresponding to the highest level. Denoting MC estimator
with M = M` by EM`

, the expectation of the random solution field U is estimated by

EL[Un
∆xL

] :=

L∑
`=0

EM`
[Un

∆x`
−Un

∆x`−1
]. (5)

To equilibrate the statistical and the spatio-temporal errors, we require M` = O(22(L−`)s) for 0 ≤ ` ≤ L.
Notice that that the largest number of MC samples is required on the coarsest mesh level ` = 0, whereas
only a few MC samples are needed for ` = L. Using such M`, we obtained the error vs. work estimate

‖E[U(tn)]− EL[Un
∆xL

](ω)‖L2(Ω,·) .

{
(Work)min{−s/(d+1),1/2} · log(Work) if s 6= (d + 1)/2,

(Work)−1/2 · log (Work)
3/2

if s = (d + 1)/2.
(7)

The above estimate (7) shows that the MLMC-FVM is superior to the MC-FVM. For s < (d + 1)/2,
estimate (7) is exactly of the same order (modulo a log term) as the estimate for the deterministic FVM.

Parallel implementation. We have developed a massively parallel code ALSVID-UQ, which implements
the MLMC-FVM algorithm to solve the systems of stochastic balance laws (2). We designed novel static
and adaptive load balancing procedures and achieved linear (strong and weak) scaling up to 40 000 cores.

Numerical example. We consider three-dimensional Euler equations in domain D = [0, 1]3 and the so-
called cloud-shock initial data with 11 sources of uncertainty, i.e. with random initial shock at random
location (near x = 0.1) heading towards high density cloud with uncertain shape of its boundary and
uncertain inner density. The mean and variance for the density of the solution at time t = 0.06 are
shown in Figure Figure 1. The results are from a MLMC-WENO run with 7 nested levels of resolution
(L = 6) and the finest resolution is set to 10243 mesh. The flow in this case consists of the supersonic
initial shock moving to the right, interacting with the high density bubble and leading to a complex
flow pattern that consists of a leading bow shock, trailing tail shocks and a very complex center region
possessing sharp gradients as well as turbulent like smooth features. Runtime: 5 hours on 21 844 cores.

Figure 1: Mean and variance of density in the cloud-shock estimated with MLMC-FVM.
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