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Computational models

Complex engineering systems are designed using computational models that are
based on:

A mathematical description of the physics

Numerical algorithms that solve the resulting set of (e.g. partial
differential) equations, e.g. finite element models

Computational models are used:
Together with experimental data for calibration purposes
To explore the design space (“virtual prototypes”)
To optimize the system w.r.t cost constraints
To assess its robustness w.r.t uncertainty and its reliability
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Sources of uncertainty

Differences between the designed and the real
system:

Dimensions (tolerances in manufacturing)

Material properties (e.g. variability of the
stiffness or resistance)

Unforecast exposures: exceptional service loads, natural hazards
(earthquakes, floods), climate loads (hurricanes, snow storms, etc.)
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Uncertainty quantification in engineering and applied
sciences

Uncertainty quantification arrives on top of well defined simulation
procedures (legacy codes)

State-of-the-art computational models are complex: coupled problems
(thermo-mechanics), plasticity, large strains, contact, buckling, etc.

A single simulation is already costly (e.g. several hours)

The input variables modelling aleatory uncertainty are often non Gaussian.
The size of the input random vector is typically 10-100

Need for non intrusive and parsimonious methods for
uncertainty quantification
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Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

Consider the input random vector X (dim X = M) with given probability
density function (PDF) fX(x) =

∏M

i=1 fXi(xi)

Assuming that the random output Y =M(X) has finite variance, it can
be cast as the following polynomial chaos expansion:

Y =
∑
α∈NM

yα Ψα(X)

where :
yα : coefficients to be computed (coordinates)
Ψα(X) : basis functions

The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal
polynomials
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Multivariate polynomial basis

Univariate orthogonal polynomials {P (i)
k , k ∈ N} are built for each input

variable Xi:〈
P

(i)
j (xi), P (i)

k (xi)
〉

=
∫
P

(i)
j P

(i)
k fXi(xi) dxi = γ

(i)
j δjk

Normalization:

Ψ(i)
j = P

(i)
j /

√
γ

(i)
j i = 1, . . . ,M, j ∈ N

Tensor product construction

Ψα(x) def=
M∏
i=1

Ψ(i)
αi (xi) E [Ψα(X)Ψβ(X)] = δαβ
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Example: M = 2 Xiu & Karniadakis (2002)

α = [3 , 3] Ψ(3,3)(x) = P̃3(x1) · H̃e3(x2)

X1 ∼ U(−1, 1):
Legendre
polynomials

X2 ∼ N (0, 1):
Hermite
polynomials
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Isoprobabilistic transform

Classical orthogonal polynomials are defined for reduced variables, e.g. :
standard normal variables N (0, 1)

standard uniform variables U(−1, 1)

In practical UQ problems the physical parameters are modelled by random
variables that are:

not necessarily reduced, e.g. X1 ∼ N (µ, σ), X2 ∼ U(a, b), etc.

not necessarily from a classical family, e.g. lognormal variable

Need for isoprobabilistic transforms
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Isoprobabilistic transform

Independent variables
Given the marginal CDFs Xi ∼ FXi i = 1, . . . ,M

A one-to-one mapping to reduced variables is used:

Xi = F−1
Xi

(
ξi + 1

2

)
if ξi ∼ U(−1 , 1)

Xi = F−1
Xi

(Φ(ξi)) if ξi ∼ N (0, 1)

The best choice is dictated by the least non linear transform

General case Sklar’s theorem (1959)

The joint CDF is defined through its marginals and copula

FX(x) = C (FX1 (x1), . . . , FXM (xM ))

Rosenblatt or Nataf isoprobabilistic transform is used
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Truncation scheme

For practical computation, a truncated series is defined:

Y =
∑
α∈A

yα Ψα(X)

The classical truncation scheme contains all multi-indices of total degree
|α| def=

∑M

i=1 αi smaller than p

AM,p = {α ∈ NM : |α| ≤ p} card AM,p ≡ P =
(
M + p

p

)
M\p 2 3 5 7 10

2 6 10 21 36 66
3 10 20 56 120 286
5 21 56 252 792 3,003

10 66 286 3,003 19,448 184,756
50 1,326 23,426 3,478,761 264,385,836 75,394,027,566

100 5,151 176,851 96,560,646 26,075,972,546 46,897,636,623,981

Curse of dimensionality
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Various methods for computing the coefficients

Intrusive approaches
Historical approaches: projection of the equations residuals in the Galerkin
sense Ghanem et al. ; Le Mâıtre et al. , Babuska, Tempone et al. .; Karniadakis et al. , etc.

Proper generalized decompositions Nouy et al. , 2007-10

Non intrusive approaches
Non intrusive methods consider the computational model M as a black
box
They rely upon a design of numerical experiments, i.e. a n-sample
X = {x(i) ∈ DX , i = 1, . . . , n} of the input parameters
Different classes of methods are available:

projection: by simulation or quadrature Matthies & Keese, 2005; Le Mâıtre et al.

stochastic collocation Xiu, 2007-09; Nobile, Tempone et al. , 2008; Ma & Zabaras, 2009

least-square minimization Berveiller et al. , 2006; Blatman & S., 2008-11
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Statistical approach: least-square minimization

Isukapalli (1999); Berveiller et al. (2006)

Principle
The exact (infinite) series expansion is considered as the sum of a
truncated series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[(

YTΨ(X)−M(X)
)2
]
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Least-Square Minimization: discretized solution

Ordinary least-square (OLS)
An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2

Procedure
Select an experimental design and evaluate the
model response

M =
{
M(x(1)), . . . ,M(x(n))

}T

Compute the experimental matrix
Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

Solve the resulting linear system

Ŷ = (ATA)−1ATM Simple is beautiful !
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Error estimators

In least-squares analysis, the generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

The empirical error based on data set X :

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2

is a poor estimator (overfitting):
Model validation shall be carried out with independent data

Leave-one-out cross validation
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Leave-one-out cross validation

x
(i)

An experimental design
X = {x(j), j = 1, . . . , n} is selected

Polynomial chaos expansions are built
using all points but one, i.e. based on
X\x(i) = {x(j), j = 1, . . . , n, j 6= i}

Leave-one-out error (PRESS)

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC\i(x(i))

)2

Computing directly from a single PC analysis

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT
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Least-squares analysis: Wrap-up

Algorithm 1: OLS

1: Input: Computational budget n
2: Initialization
3: Experimental design X = {x(1), . . . ,x(n)}
4: Run model X = {x(1), . . . ,x(n)}
5: PCE construction
6: for p = pmin : pmax do
7: Select candidate basis AM,p
8: Solve OLS problem
9: Compute eLOO(p)

10: end
11: p∗ = arg min eLOO(p)
12: Return Best PCE of degree p∗
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Post-processing sparse PC expansions

Statistical moments
Due to the orthogonality of the basis functions (E [Ψα(X)Ψβ(X)] = δαβ)
and using E [Ψα 6=0] = 0 the statistical moments read:

Mean: µ̂Y = y0

Variance: σ̂2
Y =

∑
α∈A\0

y2
α

Distribution of the QoI
The PCE can be used as a response surface for
sampling:

yj =
∑
α∈A

yα Ψα(xj) j = 1, . . . , nbig

The PDF of the response is estimated by
histograms or kernel smoothing
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Sensitivity analysis

Goal Sobol’ (1993); Saltelli et al. (2000)

Global sensitivity analysis aims at quantifying which input parameter(s)
(or combinations thereof) influence the most the response variability
(variance decomposition)

Hoeffding-Sobol’ decomposition (X ∼ U([0, 1]M ))

M(x) =M0 +
M∑
i=1

Mi(xi) +
∑

1≤i<j≤M

Mij(xi, xj) + · · ·+M12...M (x)

=M0 +
∑

u⊂{1, ... ,M}

Mu(xu) (xu
def= {xi1 , . . . , xis})

The summands satisfy the orthogonality condition:∫
[0,1]M

Mu(xu)Mv(xv) dx = 0 ∀ u 6= v
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Sobol’ indices

Total variance: D ≡ Var [M(X)] =
∑

u⊂{1, ... ,M}

Var [Mu(Xu)]

Sobol’ indices:
Su

def= Var [Mu(Xu)]
D

First-order Sobol’ indices:

Si = Di
D

Di = VarXi [Mi(Xi)]

Quantify the additive effect of each input parameter separately

Total Sobol’ indices:
STi

def=
∑
u⊃i

Su

Quantify the total effect of Xi, including interactions with the other
variables.
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Link with PC expansions
Sobol decomposition of a PC expansion Sudret, RESS (2006-08)

Obtained by reordering the terms of the (truncated) PC expansion
MPC(X) def=

∑
α∈A yα Ψα(X)

Interaction sets
∀ u def= {i1, . . . , is} : Au = {α ∈ A : k ∈ u⇔ αk 6= 0}

MPC(x) =M0+
∑

u⊂{1, ... ,M}

Mu(xu) where Mu(xu) def=
∑
α∈Au

yα Ψα(x)

PC-based Sobol’ indices
Su = Du/D =

∑
α∈Au

y2
α/

∑
α∈A\0

y2
α

The Sobol’ indices are obtained analytically, at any order from the
coefficients of the PC expansion
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Why are sparse representations relevant?

Elastic truss structure
M = 10 independent input variables
(loads / Young’s moduli / cross sections)
PCE of degree p = 5 (3,003 coefficients)

0 500 1000 1500 2000 2500 3000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

α

|a
α
/a

0
|

 

 

Mean
p = 1
p = 2
p = 3
p > 3

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 25 / 60



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Why sparse PCE?
How sparse PCE?
Application: global sensitivity analysis in hydrogeology

Low-rank truncation schemes

Ockham’s razor
“entia non sunt multiplicanda praeter necessitatem” (entities must
not be multiplied beyond necessity) W. Ockham (c. 1287-1347)

Sparsity-of-effects principle
In most engineering problems, only low-order interactions between the input
variables are relevant.

Use of low-rank monomials

Definition
The rank of a multi-index α is the number of active variables of Ψα, i.e. the
number of non-zero terms in α:

||α||0 =
M∑
i=1

1{αi>0}
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Hyperbolic truncation sets

Definition Blatman (2009); Blatman & Sudret, J. Comp. Phys (2011)

The q−norm of a multi-index α is defined by:

||α||q ≡

(
M∑
i=1

αqi

)1/q

, 0 < q ≤ 1

The hyperbolic truncation sets read:

AM,pq = {α ∈ NM : ||α||q ≤ p}

Limit cases
q = 1 : standard truncation scheme (all polynomials of maximal total
degree p)
q → 0 : additive model (no interaction)
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Hyperbolic truncation sets
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Hyperbolic truncation sets

For a given value of 0 < q ≤ 1, the index of sparsity tends to zero when
M and p increase
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How to get sparse expansions? Blatman & Sudret, JCP (2011)

Sparsity in the solution can be induced by `1-regularization:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
+ λ ‖ yα ‖1

Different algorithms: LASSO, (Bayesian) compressive sensing
Doostan & Owhadi (2011); Ian, Guo, Xiu (2012); Sargsyan et al. (2014); Jakeman, Eldred, Sargsyan (2015)

Least Angle Regression Efron et al. (2004)

Least Angle Regression (LAR) solves the LASSO problem for different
values of the penalty constant in a single run

The various PC expansions obtained have 1, 2, . . . ,min(n, |A|) terms
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Least angle regression Efron et al. , 2004

Implementation

Consider a 3-dimensional vector
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Least angle regression Efron et al. , 2004

Implementation

The algorithm is initialized with Y (0) = 0. The residual is
R = Y =M(X)
The most correlated regressor is Ψα1
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Least angle regression Efron et al. , 2004

Implementation

A move in the direction Ψα1 is carried out so that the residual
Y − a(1)

1 Ψα1 becomes equicorrelated with Ψα1 and Ψα2

The 1-term sparse approximation of Y is a(1)
1 Ψα1
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Least angle regression Efron et al. , 2004

Implementation

A move is jointly made in the direction Ψα1 + Ψα2 until the residual
becomes equicorrelated with a third regressor
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A move is jointly made in the direction Ψα1 + Ψα2 until the residual
becomes equicorrelated with a third regressor
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Least angle regression Efron et al. , 2004

Implementation

This gives the 2-term sparse approximation
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Least angle regression Efron et al. , 2004

Implementation

etc.
In finite dimension, LAR eventually yields the same results as projection in
P steps

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 31 / 60



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Why sparse PCE?
How sparse PCE?
Application: global sensitivity analysis in hydrogeology

Least angle regression
Path of solutions

Iteration
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A path of solutions is obtained
containing 1, 2, ..,min(n, |A|)
terms.
Leave-one-out error ELOO is
computed for each solution and
the best model (smallest error) is
selected

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

hi: i-th diagonal term of matrix A(ATA)−1AT and Aij = Ψj(x(i))
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Sparse PCE: wrap up

Algorithm 2: LAR-based Polynomial chaos expansion

1: Input: Computational budget n
2: Initialization
3: Sample experimental design X = {x(1), . . . ,x(n)}
4: Evaluate model response Y = {M(x(1)), . . . ,M(x(n)})
5: PCE construction
6: for p = pmin : pmax do
7: for q ∈ Q do
8: Select candidate basis AM,pq

9: Run LAR for extracting the optimal sparse basis A∗(p, q)
10: Compute coefficients {yα, α ∈ A∗(p, q)} by OLS
11: Compute eLOO(p, q)
12: end
13: end
14: (p∗, q∗) = arg min eLOO(p, q)
15: Return Optimal sparse basis A∗(p, q), PCE coefficients, eLOO(p∗, q∗)
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Tolerance-driven sparse PCE: wrap up

Algorithm 3: Tolerance-driven Sparse PCE

1: Input
2: Initial and max. computational budget nini, nmax batch size B
3: Target error TOL
4: Initialization
5: Apply LARbasedPCE(nini), return eLOO(nini)
6: Enrich ED
7: n← nini
8: while (eLOO(n) > TOL) & (n+B ≤ nmax) do
9: Enrich ED: X ← X ∪ {x(1), . . . ,x(B)}

10: n← n+B
11: Apply LARbasedPCE(n)
12: end
13: Return Final ED size n, optimal sparse basis and PCE coefficients, eLOO(n)
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1 Introduction

2 Polynomial chaos expansions: small dimension

3 Sparse polynomial chaos expansions
Why sparse PCE?
How sparse PCE?
Application: global sensitivity analysis in hydrogeology

4 Time-variant problems
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The UQLab framework

UQLab ...
... The Uncertainty Quantification Laboratory

“Make uncertainty quantification available for anybody, in any field
of applied science and engineering”

Matlab-based core managing system
(MODEL / INPUT / ANALYSIS objects)

Modules: surrogate models (Gaussian processes / polynomial chaos
expansions), sensitivity analysis, reliability analysis
Dispatcher to HPC infrastructure
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Geological model Joint work with University of Neuchâtel

Deman, Konakli, BS, Kerrou, Perrochet & Benabderrahmane, Reliab. Eng. Sys. Safety (submitted)

Idealized model of the
Paris Basin
Two-dimensional cross
section
(25 km long / 1,040 m
depth) with 5× 5 m
mesh (106 elements)
15 homogeneous layers

Steady-state flow with Dirichlet boundary conditions:

∇ · (K · ∇H) = 0
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Mean life-time expectancy

Definition
The Mean Lifetime Expectancy MLE(x) is the time required for a
molecule of water at point x to get out of the boundaries of the model

Map of mean lifetime expectancy (nominal case)
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Probabilistic model of porosity / conductivity
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K̂x[m/s]

Nominal conductivity (Kx) vs. porosity
Layer Kx [m/s] φ [-]

K3 9.01E−09 0.0100
K1-K2 4.53E−09 0.1150

L2c 1.10E−06 0.1389
L2b 3.46E−07 0.1110
L2a 1.62E−07 0.1139
L1b 1.49E−05 0.1604
L1a 1.17E−06 0.1549

C3ab 4.59E−08 0.0984
C2 1.99E−13 0.1580
C1 1.89E−06 0.0470
D4 1.65E−05 0.0905
D3 1.76E−06 0.1016
D2 2.62E−07 0.0623
D1 3.23E−06 0.0688
T 1.95E−12 0.0810

In each layer, bounds on porosity:
φi ∼ U [φimin , φimax]

Deterministic mapping to the conductivity
log10(Ki

x) = fi(φi) (layer-dependent)
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Other parameters

Parameter Notation Range
Porosity φi, i = 1, . . . , 15 [φimin , φ

i
max]

Anisotropy of hydraulic conductivity
tensor

AiK , i = 1, . . . , 15 [0.01 , 1]

Euler angle of hydraulic conductivity
tensor

θi, i = 1, . . . , 15 [−30 , 30](◦)

Longitudinal component of disper-
sivity tensor

αiL, i = 1, . . . , 15 [5 , 25]

Anisotropy of dispersivity tensor Aiα, i = 1, . . . , 15 [5 , 25]

Hydraulic gradient (10−3m/m)
Dogger sequence ∇HD [0.64 , 0.96]
Oxfordian sequence ∇HO [2.40 , 3.60]
Top of the model ∇Htop [2.72 , 4.08]

78 independent variables with uniform distributions
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Polynomial chaos expansions

Experimental design of size 2,000 (Maximin Latin Hypercube Sampling).
Independent validation set of size 2,000

Truncation scheme: p = 8, q = 0.5

Sparse basis size: 185 / Full-basis size 5.3× 1010. Only 68 out of 78
parameters are included
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Sobol’ sensitivity indices
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Parameter
∑

j
S

(1)
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φ 0.8664

AK 0.0088

θ 0.0029

αL 0.0076

Aα 0.0000

∇H 0.0057

Uncertainties on the porosities (and associated conductivities) drive the
MLE uncertainty
Second-order effects have been identified
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Sobol’ sensitivity indices: using 200 model runs
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Only 200 model runs allow one to detect the important parameters
out of 78

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 43 / 60



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Introduction
Non linear Duffing oscillator

Outline

1 Introduction

2 Polynomial chaos expansions: small dimension

3 Sparse polynomial chaos expansions

4 Time-variant problems
Introduction
Non linear Duffing oscillator
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Problem statement

Premise: In case of time-dependent governing equations, the response of
the system is a time-dependent function:

Y (t) =M(X; t)

ordinary differential equations with random coefficients (chemical reactions)
fluid dynamics
structural dynamics (e.g. earthquake engineering)

Time-frozen PCE
Consider the discretized deterministic solutions nTS time steps:

yi(tj) =M(x(i); tj) i = 1, . . . , n, j = 1, . . . , nTS
Build up PCE independently at each time-instant (considered frozen)

Y (tj) =
∑
α∈Atj

yα(tj) Ψα(X)

Fails due to increasing complexity of the input/output map when
t→ +∞
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Example: rigid body dynamics

Mai & S., MascotNum Workshop, 2015

http://www.esa.int/spaceinimages/Missions/
Rosetta

Rotation of a rigid body described by Euler’s
equations

Mx = Ixx ω̇x − (Iyy − Izz)ωy ωz
My = Iyy ω̇y − (Izz − Ixx)ωz ωx
Mz = Izz ω̇z − (Ixx − Iyy)ωx ωy

Mx = My = Mz = 0
x(0) = 0, y(0) = 1, z(0) = 1

Ixx = 1− c
2 Iyy, Izz = 1 + c

2 Iyy

Reduced system
ẋ = yz

ẏ = c× xz
ż = −xy

where c ∼ U(−0.8 , 0.6)
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Different trajectories for various values of c
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Stochastic dependence y(c, t) for different time instants t
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Time-frozen PCE: LOO error
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Stochastic time warping

Heuristics Le Mâıtre et al. (2010)

Introduce a virtual time scale τ such that the current trajectory y(x(i), τ) is
“similar” to a reference trajectory

Measure of dissimilarity

diss [y(t) , yref (t)] def=

∣∣∣∫ T0 y(t) yref (t) dt
∣∣∣√∫ T

0 y2(t) dt ·
∫ T

0 y2
ref (t) dt

It is the cross-correlation of the two signals
Bounded between 0 and 1
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Stochastic time warping: procedure

Mai & Sudret (2015)

Choose a reference trajectory yref (t) =M(xref , t) where e.g.
xref = µX

Define a stochastic time transform:

τ(X) = k(X) t+ φ(X)

For each sample trajectory {yi(t), i = 1, . . . , n}, compute the
appropriate rescaling:

(ki, φi) = arg min
k,φ

diss [ yi(k t+ φ), yref (t)]

Compute a sparse PCE of the parameters of the time transform:

k(X) =
∑
α∈A

kα Ψα(X) φ(X) =
∑
α∈A

φα Ψα(X)
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Stochastic time warping: procedure

In the virtual time scale, trajectories show much higher coherency.
τ -frozen PCE expansions apply:

y(X, τ) =
∑
α∈A

yα(τ) Ψα(X)

Predictions for a new sample x(0)

Predict the trajectory in the virtual time scale

y(x(0), τ) =
∑
α∈A

yα(τ) Ψα(x(0))

Predict the proper time warping:

τ(x(0)) = k(x(0)) t+ φ(x(0))

Map back the predicted trajectory in the real time scale:

y(x(0), t) =
∑
α∈A

yα
(
k(x(0)) t+ φ(x(0))

)
Ψα(x(0))
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Application – non linear Duffing oscillator

Non-linear SDOF Duffing oscillator:

ẍ(t) + 2ω ζ ẋ(t) + ω2 (x(t) + ε x3(t)
)

= 0

Initial conditions: x(0) = 1, ẋ(0) = 0

Input: 3 uniform random variables

ζ = 0.05(1 + 0.05 ξ1), ξ1 ∼ U(−1, 1)
ω = 2π(1 + 0.2 ξ2), ξ2 ∼ U(−1, 1)
ε = −0.5(1 + 0.5 ξ3), ξ3 ∼ U(−1, 1)
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Time-frozen PCE
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Time-warped PCE
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Validation: mean and standard deviation (time-warping
PCE)

Validation set: 10,000 Monte Carlo samples
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Earthquake engineering applications

Mai & Sudret (2015)

Structural systems under earthquake
excitation

Parametrized input signal in high dimension:

â(t) = α1t
α2−1exp(−α3t)

n∑
i=1

si (t,λ(ti)) Ui
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L L
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Goal
Predict the output trajectories through time-variant PCE, e.g. the
interstorey drift
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Conclusions

Polynomial chaos expansions are a versatile tool for solving engineering
uncertainty quantification problems

Sparse expansions are extremely efficient for global sensitivity analysis
(e.g. ∼ x00 model runs for 50-100 input variables)

An a posteriori built-in error estimator is available through leave-one-out
cross validation, leading to adaptive methods (incl. adaptive experimental
designs)

Ingredients such as isoprobabilistic transforms, least-square analysis and
low-rank truncation schemes are easy to understand

... and easy to implement in a general-purpose software
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Outlook and ongoing projects

More compact representations: low-rank tensor approximations
Chevreuil et al. (2013), Konakli & Sudret, UNCECOMP’2015

Optimal small size experimental designs and local error estimation:
Polynomial-chaos based Kriging

Kersaudy et al. , JCP (2015) ; Schöbi & Sudret, IJUQ (2015)

PCE expansions in case of imprecise probability description of the input
parameters through p-boxes

Schöbi & Sudret, ICASP (2015)

Spectral likelihood expansions for solving Bayesian inverse problems
Nagel & Sudret, PANACM (2015)
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Questions ?
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