
DEPARTMENT OF CIVIL, ENVIRONMENTAL  AND GEOMATIC ENGINEERING 
CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION 

Sparse polynomial chaos expansions for solving
high-dimensional UQ problems

Bruno Sudret

1st International Conference on Uncertainty Quantification in
Computational Sciences and Engineering



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty
quantification for engineering problems with applications in structural
reliability, sensitivity analysis, model calibration and reliability-based

design optimization

Research topics
Structural reliability analysis
Polynomial chaos expansions and stochastic
finite element methods
Gaussian process modelling (Kriging)
Bayesian model calibration and stochastic
inverse problems
Global sensitivity analysis
Reliability-based design optimization

http://www.rsuq.ethz.ch

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 2 / 60

http://www.rsuq.ethz.ch


UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Computational models

Complex engineering systems are designed using computational models that are
based on:

A mathematical description of the physics

Numerical algorithms that solve the resulting set of (e.g. partial
differential) equations, e.g. finite element models

Computational models are used:
Together with experimental data for calibration purposes
To explore the design space (“virtual prototypes”)
To optimize the system w.r.t cost constraints
To assess its robustness w.r.t uncertainty and its reliability
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Sources of uncertainty

Differences between the designed and the real
system:

Dimensions (tolerances in manufacturing)

Material properties (e.g. variability of the
stiffness or resistance)

Unforecast exposures: exceptional service loads, natural hazards
(earthquakes, floods), climate loads (hurricanes, snow storms, etc.)
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Uncertainty quantification in engineering and applied
sciences

Uncertainty quantification arrives on top of well defined simulation
procedures (legacy codes)

State-of-the-art computational models are complex: coupled problems
(thermo-mechanics), plasticity, large strains, contact, buckling, etc.

A single simulation is already costly (e.g. several hours)

The input variables modelling aleatory uncertainty are often non Gaussian.
The size of the input random vector is typically 10-100

Need for non intrusive and parsimonious methods for
uncertainty quantification
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B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 6 / 60



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

PCE basis
Computing the coefficients
Post-processing

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

Consider the input random vector X (dim X = M) with given probability
density function (PDF) fX(x) =

∏M

i=1 fXi(xi)

Assuming that the random output Y =M(X) has finite variance, it can
be cast as the following polynomial chaos expansion:

Y =
∑
α∈NM

yα Ψα(X)

where :
yα : coefficients to be computed (coordinates)
Ψα(X) : basis functions

The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal
polynomials
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Multivariate polynomial basis

Univariate orthogonal polynomials {P (i)
k , k ∈ N} are built for each input

variable Xi:〈
P

(i)
j (xi), P (i)

k (xi)
〉

=
∫
P

(i)
j P

(i)
k fXi(xi) dxi = γ

(i)
j δjk

Normalization:

Ψ(i)
j = P

(i)
j /

√
γ

(i)
j i = 1, . . . ,M, j ∈ N

Tensor product construction

Ψα(x) def=
M∏
i=1

Ψ(i)
αi (xi) E [Ψα(X)Ψβ(X)] = δαβ
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Example: M = 2 Xiu & Karniadakis (2002)

α = [3 , 3] Ψ(3,3)(x) = P̃3(x1) · H̃e3(x2)

X1 ∼ U(−1, 1):
Legendre
polynomials

X2 ∼ N (0, 1):
Hermite
polynomials
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Isoprobabilistic transform

Classical orthogonal polynomials are defined for reduced variables, e.g. :
standard normal variables N (0, 1)

standard uniform variables U(−1, 1)

In practical UQ problems the physical parameters are modelled by random
variables that are:

not necessarily reduced, e.g. X1 ∼ N (µ, σ), X2 ∼ U(a, b), etc.

not necessarily from a classical family, e.g. lognormal variable

Need for isoprobabilistic transforms
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Isoprobabilistic transform

Independent variables
Given the marginal CDFs Xi ∼ FXi i = 1, . . . ,M

A one-to-one mapping to reduced variables is used:

Xi = F−1
Xi

(
ξi + 1

2

)
if ξi ∼ U(−1 , 1)

Xi = F−1
Xi

(Φ(ξi)) if ξi ∼ N (0, 1)

The best choice is dictated by the least non linear transform

General case Sklar’s theorem (1959)

The joint CDF is defined through its marginals and copula

FX(x) = C (FX1 (x1), . . . , FXM (xM ))

Rosenblatt or Nataf isoprobabilistic transform is used
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Truncation scheme

For practical computation, a truncated series is defined:

Y =
∑
α∈A

yα Ψα(X)

The classical truncation scheme contains all multi-indices of total degree
|α| def=

∑M

i=1 αi smaller than p

AM,p = {α ∈ NM : |α| ≤ p} card AM,p ≡ P =
(
M + p

p

)
M\p 2 3 5 7 10

2 6 10 21 36 66
3 10 20 56 120 286
5 21 56 252 792 3,003

10 66 286 3,003 19,448 184,756
50 1,326 23,426 3,478,761 264,385,836 75,394,027,566

100 5,151 176,851 96,560,646 26,075,972,546 46,897,636,623,981

Curse of dimensionality
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Various methods for computing the coefficients

Intrusive approaches
Historical approaches: projection of the equations residuals in the Galerkin
sense Ghanem et al. ; Le Mâıtre et al. , Babuska, Tempone et al. .; Karniadakis et al. , etc.

Proper generalized decompositions Nouy et al. , 2007-10

Non intrusive approaches
Non intrusive methods consider the computational model M as a black
box
They rely upon a design of numerical experiments, i.e. a n-sample
X = {x(i) ∈ DX , i = 1, . . . , n} of the input parameters
Different classes of methods are available:

projection: by simulation or quadrature Matthies & Keese, 2005; Le Mâıtre et al.

stochastic collocation Xiu, 2007-09; Nobile, Tempone et al. , 2008; Ma & Zabaras, 2009

least-square minimization Berveiller et al. , 2006; Blatman & S., 2008-11
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Statistical approach: least-square minimization

Isukapalli (1999); Berveiller et al. (2006)

Principle
The exact (infinite) series expansion is considered as the sum of a
truncated series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[(

YTΨ(X)−M(X)
)2
]
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Least-Square Minimization: discretized solution

Ordinary least-square (OLS)
An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2

Procedure
Select an experimental design and evaluate the
model response

M =
{
M(x(1)), . . . ,M(x(n))

}T

Compute the experimental matrix
Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

Solve the resulting linear system

Ŷ = (ATA)−1ATM Simple is beautiful !
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Error estimators

In least-squares analysis, the generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

The empirical error based on data set X :

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2

is a poor estimator (overfitting):
Model validation shall be carried out with independent data

Leave-one-out cross validation
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Leave-one-out cross validation

x
(i)

An experimental design
X = {x(j), j = 1, . . . , n} is selected

Polynomial chaos expansions are built
using all points but one, i.e. based on
X\x(i) = {x(j), j = 1, . . . , n, j 6= i}

Leave-one-out error (PRESS)

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC\i(x(i))

)2

Computing directly from a single PC analysis

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT
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Least-squares analysis: Wrap-up

Algorithm 1: OLS

1: Input: Computational budget n
2: Initialization
3: Experimental design X = {x(1), . . . ,x(n)}
4: Run model X = {x(1), . . . ,x(n)}
5: PCE construction
6: for p = pmin : pmax do
7: Select candidate basis AM,p
8: Solve OLS problem
9: Compute eLOO(p)

10: end
11: p∗ = arg min eLOO(p)
12: Return Best PCE of degree p∗
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Post-processing sparse PC expansions

Statistical moments
Due to the orthogonality of the basis functions (E [Ψα(X)Ψβ(X)] = δαβ)
and using E [Ψα 6=0] = 0 the statistical moments read:

Mean: µ̂Y = y0

Variance: σ̂2
Y =

∑
α∈A\0

y2
α

Distribution of the QoI
The PCE can be used as a response surface for
sampling:

yj =
∑
α∈A

yα Ψα(xj) j = 1, . . . , nbig

The PDF of the response is estimated by
histograms or kernel smoothing
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Sensitivity analysis

Goal Sobol’ (1993); Saltelli et al. (2000)

Global sensitivity analysis aims at quantifying which input parameter(s)
(or combinations thereof) influence the most the response variability
(variance decomposition)

Hoeffding-Sobol’ decomposition (X ∼ U([0, 1]M ))

M(x) =M0 +
M∑
i=1

Mi(xi) +
∑

1≤i<j≤M

Mij(xi, xj) + · · ·+M12...M (x)

=M0 +
∑

u⊂{1, ... ,M}

Mu(xu) (xu
def= {xi1 , . . . , xis})

The summands satisfy the orthogonality condition:∫
[0,1]M

Mu(xu)Mv(xv) dx = 0 ∀ u 6= v
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Sobol’ indices

Total variance: D ≡ Var [M(X)] =
∑

u⊂{1, ... ,M}

Var [Mu(Xu)]

Sobol’ indices:
Su

def= Var [Mu(Xu)]
D

First-order Sobol’ indices:

Si = Di
D

Di = VarXi [Mi(Xi)]

Quantify the additive effect of each input parameter separately

Total Sobol’ indices:
STi

def=
∑
u⊃i

Su

Quantify the total effect of Xi, including interactions with the other
variables.
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Link with PC expansions
Sobol decomposition of a PC expansion Sudret, RESS (2006-08)

Obtained by reordering the terms of the (truncated) PC expansion
MPC(X) def=

∑
α∈A yα Ψα(X)

Interaction sets
∀ u def= {i1, . . . , is} : Au = {α ∈ A : k ∈ u⇔ αk 6= 0}

MPC(x) =M0+
∑

u⊂{1, ... ,M}

Mu(xu) where Mu(xu) def=
∑
α∈Au

yα Ψα(x)

PC-based Sobol’ indices
Su = Du/D =

∑
α∈Au

y2
α/

∑
α∈A\0

y2
α

The Sobol’ indices are obtained analytically, at any order from the
coefficients of the PC expansion
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Why are sparse representations relevant?

Elastic truss structure
M = 10 independent input variables
(loads / Young’s moduli / cross sections)
PCE of degree p = 5 (3,003 coefficients)
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Low-rank truncation schemes

Ockham’s razor
“entia non sunt multiplicanda praeter necessitatem” (entities must
not be multiplied beyond necessity) W. Ockham (c. 1287-1347)

Sparsity-of-effects principle
In most engineering problems, only low-order interactions between the input
variables are relevant.

Use of low-rank monomials

Definition
The rank of a multi-index α is the number of active variables of Ψα, i.e. the
number of non-zero terms in α:

||α||0 =
M∑
i=1

1{αi>0}
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Hyperbolic truncation sets

Definition Blatman (2009); Blatman & Sudret, J. Comp. Phys (2011)

The q−norm of a multi-index α is defined by:

||α||q ≡

(
M∑
i=1

αqi

)1/q

, 0 < q ≤ 1

The hyperbolic truncation sets read:

AM,pq = {α ∈ NM : ||α||q ≤ p}

Limit cases
q = 1 : standard truncation scheme (all polynomials of maximal total
degree p)
q → 0 : additive model (no interaction)
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Hyperbolic truncation sets
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Hyperbolic truncation sets

For a given value of 0 < q ≤ 1, the index of sparsity tends to zero when
M and p increase
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How to get sparse expansions? Blatman & Sudret, JCP (2011)

Sparsity in the solution can be induced by `1-regularization:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
+ λ ‖ yα ‖1

Different algorithms: LASSO, (Bayesian) compressive sensing
Doostan & Owhadi (2011); Ian, Guo, Xiu (2012); Sargsyan et al. (2014); Jakeman, Eldred, Sargsyan (2015)

Least Angle Regression Efron et al. (2004)

Least Angle Regression (LAR) solves the LASSO problem for different
values of the penalty constant in a single run

The various PC expansions obtained have 1, 2, . . . ,min(n, |A|) terms
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Least angle regression Efron et al. , 2004

Implementation

Consider a 3-dimensional vector
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Least angle regression Efron et al. , 2004

Implementation

The algorithm is initialized with Y (0) = 0. The residual is
R = Y =M(X)
The most correlated regressor is Ψα1
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Least angle regression Efron et al. , 2004

Implementation

A move in the direction Ψα1 is carried out so that the residual
Y − a(1)

1 Ψα1 becomes equicorrelated with Ψα1 and Ψα2

The 1-term sparse approximation of Y is a(1)
1 Ψα1
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Least angle regression Efron et al. , 2004

Implementation

A move is jointly made in the direction Ψα1 + Ψα2 until the residual
becomes equicorrelated with a third regressor
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A move is jointly made in the direction Ψα1 + Ψα2 until the residual
becomes equicorrelated with a third regressor
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Least angle regression Efron et al. , 2004

Implementation

This gives the 2-term sparse approximation
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Least angle regression Efron et al. , 2004

Implementation

etc.
In finite dimension, LAR eventually yields the same results as projection in
P steps
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Least angle regression
Path of solutions

Iteration
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A path of solutions is obtained
containing 1, 2, ..,min(n, |A|)
terms.
Leave-one-out error ELOO is
computed for each solution and
the best model (smallest error) is
selected

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

hi: i-th diagonal term of matrix A(ATA)−1AT and Aij = Ψj(x(i))
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Sparse PCE: wrap up

Algorithm 2: LAR-based Polynomial chaos expansion

1: Input: Computational budget n
2: Initialization
3: Sample experimental design X = {x(1), . . . ,x(n)}
4: Evaluate model response Y = {M(x(1)), . . . ,M(x(n)})
5: PCE construction
6: for p = pmin : pmax do
7: for q ∈ Q do
8: Select candidate basis AM,pq

9: Run LAR for extracting the optimal sparse basis A∗(p, q)
10: Compute coefficients {yα, α ∈ A∗(p, q)} by OLS
11: Compute eLOO(p, q)
12: end
13: end
14: (p∗, q∗) = arg min eLOO(p, q)
15: Return Optimal sparse basis A∗(p, q), PCE coefficients, eLOO(p∗, q∗)
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Tolerance-driven sparse PCE: wrap up

Algorithm 3: Tolerance-driven Sparse PCE

1: Input
2: Initial and max. computational budget nini, nmax batch size B
3: Target error TOL
4: Initialization
5: Apply LARbasedPCE(nini), return eLOO(nini)
6: Enrich ED
7: n← nini
8: while (eLOO(n) > TOL) & (n+B ≤ nmax) do
9: Enrich ED: X ← X ∪ {x(1), . . . ,x(B)}

10: n← n+B
11: Apply LARbasedPCE(n)
12: end
13: Return Final ED size n, optimal sparse basis and PCE coefficients, eLOO(n)
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Outline

1 Introduction

2 Polynomial chaos expansions: small dimension

3 Sparse polynomial chaos expansions
Why sparse PCE?
How sparse PCE?
Application: global sensitivity analysis in hydrogeology

4 Time-variant problems

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 35 / 60



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Why sparse PCE?
How sparse PCE?
Application: global sensitivity analysis in hydrogeology

The UQLab framework

UQLab ...
... The Uncertainty Quantification Laboratory

“Make uncertainty quantification available for anybody, in any field
of applied science and engineering”

Matlab-based core managing system
(MODEL / INPUT / ANALYSIS objects)

Modules: surrogate models (Gaussian processes / polynomial chaos
expansions), sensitivity analysis, reliability analysis
Dispatcher to HPC infrastructure
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Geological model Joint work with University of Neuchâtel

Deman, Konakli, BS, Kerrou, Perrochet & Benabderrahmane, Reliab. Eng. Sys. Safety (submitted)

Idealized model of the
Paris Basin
Two-dimensional cross
section
(25 km long / 1,040 m
depth) with 5× 5 m
mesh (106 elements)
15 homogeneous layers

Steady-state flow with Dirichlet boundary conditions:

∇ · (K · ∇H) = 0
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Mean life-time expectancy

Definition
The Mean Lifetime Expectancy MLE(x) is the time required for a
molecule of water at point x to get out of the boundaries of the model

Map of mean lifetime expectancy (nominal case)
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Probabilistic model of porosity / conductivity
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Nominal conductivity (Kx) vs. porosity
Layer Kx [m/s] φ [-]

K3 9.01E−09 0.0100
K1-K2 4.53E−09 0.1150

L2c 1.10E−06 0.1389
L2b 3.46E−07 0.1110
L2a 1.62E−07 0.1139
L1b 1.49E−05 0.1604
L1a 1.17E−06 0.1549

C3ab 4.59E−08 0.0984
C2 1.99E−13 0.1580
C1 1.89E−06 0.0470
D4 1.65E−05 0.0905
D3 1.76E−06 0.1016
D2 2.62E−07 0.0623
D1 3.23E−06 0.0688
T 1.95E−12 0.0810

In each layer, bounds on porosity:
φi ∼ U [φimin , φimax]

Deterministic mapping to the conductivity
log10(Ki

x) = fi(φi) (layer-dependent)
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Other parameters

Parameter Notation Range
Porosity φi, i = 1, . . . , 15 [φimin , φ

i
max]

Anisotropy of hydraulic conductivity
tensor

AiK , i = 1, . . . , 15 [0.01 , 1]

Euler angle of hydraulic conductivity
tensor

θi, i = 1, . . . , 15 [−30 , 30](◦)

Longitudinal component of disper-
sivity tensor

αiL, i = 1, . . . , 15 [5 , 25]

Anisotropy of dispersivity tensor Aiα, i = 1, . . . , 15 [5 , 25]

Hydraulic gradient (10−3m/m)
Dogger sequence ∇HD [0.64 , 0.96]
Oxfordian sequence ∇HO [2.40 , 3.60]
Top of the model ∇Htop [2.72 , 4.08]

78 independent variables with uniform distributions

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 40 / 60



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Why sparse PCE?
How sparse PCE?
Application: global sensitivity analysis in hydrogeology

Polynomial chaos expansions

Experimental design of size 2,000 (Maximin Latin Hypercube Sampling).
Independent validation set of size 2,000

Truncation scheme: p = 8, q = 0.5

Sparse basis size: 185 / Full-basis size 5.3× 1010. Only 68 out of 78
parameters are included
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Sobol’ sensitivity indices
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Parameter
∑

j
S

(1)
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φ 0.8664

AK 0.0088

θ 0.0029

αL 0.0076

Aα 0.0000

∇H 0.0057

Uncertainties on the porosities (and associated conductivities) drive the
MLE uncertainty
Second-order effects have been identified
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Sobol’ sensitivity indices: using 200 model runs
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Only 200 model runs allow one to detect the important parameters
out of 78
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2 Polynomial chaos expansions: small dimension

3 Sparse polynomial chaos expansions

4 Time-variant problems
Introduction
Non linear Duffing oscillator
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Problem statement

Premise: In case of time-dependent governing equations, the response of
the system is a time-dependent function:

Y (t) =M(X; t)

ordinary differential equations with random coefficients (chemical reactions)
fluid dynamics
structural dynamics (e.g. earthquake engineering)

Time-frozen PCE
Consider the discretized deterministic solutions nTS time steps:

yi(tj) =M(x(i); tj) i = 1, . . . , n, j = 1, . . . , nTS
Build up PCE independently at each time-instant (considered frozen)

Y (tj) =
∑
α∈Atj

yα(tj) Ψα(X)

Fails due to increasing complexity of the input/output map when
t→ +∞
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Example: rigid body dynamics

Mai & S., MascotNum Workshop, 2015

http://www.esa.int/spaceinimages/Missions/
Rosetta

Rotation of a rigid body described by Euler’s
equations

Mx = Ixx ω̇x − (Iyy − Izz)ωy ωz
My = Iyy ω̇y − (Izz − Ixx)ωz ωx
Mz = Izz ω̇z − (Ixx − Iyy)ωx ωy

Mx = My = Mz = 0
x(0) = 0, y(0) = 1, z(0) = 1

Ixx = 1− c
2 Iyy, Izz = 1 + c

2 Iyy

Reduced system
ẋ = yz

ẏ = c× xz
ż = −xy

where c ∼ U(−0.8 , 0.6)
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Different trajectories for various values of c
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Stochastic dependence y(c, t) for different time instants t
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Time-frozen PCE: LOO error
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Stochastic time warping

Heuristics Le Mâıtre et al. (2010)

Introduce a virtual time scale τ such that the current trajectory y(x(i), τ) is
“similar” to a reference trajectory

Measure of dissimilarity

diss [y(t) , yref (t)] def=

∣∣∣∫ T0 y(t) yref (t) dt
∣∣∣√∫ T

0 y2(t) dt ·
∫ T

0 y2
ref (t) dt

It is the cross-correlation of the two signals
Bounded between 0 and 1
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Stochastic time warping: procedure

Mai & Sudret (2015)

Choose a reference trajectory yref (t) =M(xref , t) where e.g.
xref = µX

Define a stochastic time transform:

τ(X) = k(X) t+ φ(X)

For each sample trajectory {yi(t), i = 1, . . . , n}, compute the
appropriate rescaling:

(ki, φi) = arg min
k,φ

diss [ yi(k t+ φ), yref (t)]

Compute a sparse PCE of the parameters of the time transform:

k(X) =
∑
α∈A

kα Ψα(X) φ(X) =
∑
α∈A

φα Ψα(X)
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Stochastic time warping: procedure

In the virtual time scale, trajectories show much higher coherency.
τ -frozen PCE expansions apply:

y(X, τ) =
∑
α∈A

yα(τ) Ψα(X)

Predictions for a new sample x(0)

Predict the trajectory in the virtual time scale

y(x(0), τ) =
∑
α∈A

yα(τ) Ψα(x(0))

Predict the proper time warping:

τ(x(0)) = k(x(0)) t+ φ(x(0))

Map back the predicted trajectory in the real time scale:

y(x(0), t) =
∑
α∈A

yα
(
k(x(0)) t+ φ(x(0))

)
Ψα(x(0))
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Application – non linear Duffing oscillator

Non-linear SDOF Duffing oscillator:

ẍ(t) + 2ω ζ ẋ(t) + ω2 (x(t) + ε x3(t)
)

= 0

Initial conditions: x(0) = 1, ẋ(0) = 0

Input: 3 uniform random variables

ζ = 0.05(1 + 0.05 ξ1), ξ1 ∼ U(−1, 1)
ω = 2π(1 + 0.2 ξ2), ξ2 ∼ U(−1, 1)
ε = −0.5(1 + 0.5 ξ3), ξ3 ∼ U(−1, 1)

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

t (s)

x
(t

)

Samples of trajectories

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE for high-dimensional problems UNCECOMP - May 26th, 2015 53 / 60



UQ framework
Polynomial chaos expansions: small dimension

Sparse polynomial chaos expansions
Time-variant problems

Introduction
Non linear Duffing oscillator

Time-frozen PCE
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Time-warped PCE
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Validation: mean and standard deviation (time-warping
PCE)

Validation set: 10,000 Monte Carlo samples
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Earthquake engineering applications

Mai & Sudret (2015)

Structural systems under earthquake
excitation

Parametrized input signal in high dimension:

â(t) = α1t
α2−1exp(−α3t)

n∑
i=1

si (t,λ(ti)) Ui

L
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L L

1 1
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Goal
Predict the output trajectories through time-variant PCE, e.g. the
interstorey drift
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Conclusions

Polynomial chaos expansions are a versatile tool for solving engineering
uncertainty quantification problems

Sparse expansions are extremely efficient for global sensitivity analysis
(e.g. ∼ x00 model runs for 50-100 input variables)

An a posteriori built-in error estimator is available through leave-one-out
cross validation, leading to adaptive methods (incl. adaptive experimental
designs)

Ingredients such as isoprobabilistic transforms, least-square analysis and
low-rank truncation schemes are easy to understand

... and easy to implement in a general-purpose software
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Outlook and ongoing projects

More compact representations: low-rank tensor approximations
Chevreuil et al. (2013), Konakli & Sudret, UNCECOMP’2015

Optimal small size experimental designs and local error estimation:
Polynomial-chaos based Kriging

Kersaudy et al. , JCP (2015) ; Schöbi & Sudret, IJUQ (2015)

PCE expansions in case of imprecise probability description of the input
parameters through p-boxes

Schöbi & Sudret, ICASP (2015)

Spectral likelihood expansions for solving Bayesian inverse problems
Nagel & Sudret, PANACM (2015)
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Questions ?

Acknowledgements:
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Thank you very much for
your attention !
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