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UQ framework

Computational models in engineering

Complex engineering systems are designed and assessed using computational
models, a.k.a simulators

A computational model combines:
• A mathematical description of the physical

phenomena (governing equations), e.g. mechanics,
electromagnetism, fluid dynamics, etc.

• Discretization techniques which transform
continuous equations into linear algebra problems

• Algorithms to solve the discretized equations
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UQ framework

Computational models in engineering

Computational models are used:
• Together with experimental data for calibration purposes

• To explore the design space (“virtual prototypes”)

• To optimize the system (e.g. minimize the mass) under performance
constraints

• To assess its robustness w.r.t uncertainty and its reliability
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UQ framework

Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes
quantities of interest (QoI) (a.k.a. model responses) as a function of input
parameters

Computational
model M

Vector of input
parameters
x ∈ RM

Model response
y =M(x) ∈ RQ

• Geometry
• Material properties
• Loading

• Analytical formula
• Finite element

model
• Comput. workflow

• Displacements
• Strains, stresses
• Temperature, etc.
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UQ framework

Real world is uncertain

• Differences between the designed and the real
system:
• Dimensions (tolerances in manufacturing)

• Material properties (e.g. variability of the
stiffness or resistance)

• Unforecast exposures: exceptional service loads, natural hazards (earthquakes,
floods, landslides), climate loads (hurricanes, snow storms, etc.), accidental
human actions (explosions, fire, etc.)
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Uncertainty quantification: why surrogate models?

Outline

1 Introduction

2 Uncertainty quantification: why surrogate models?

3 Polynomial chaos expansions
PCE basis
Computing the coefficients
Sparse PCE
Post-processing
Extensions

4 Low-rank tensor approximations
Theory in a nutshell
Reliability of a truss structure

5 Kriging (a.k.a Gaussian process modelling)
Kriging equations
Use in structural reliability
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Uncertainty quantification: why surrogate models?

Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments
Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral

methods (2007)
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Uncertainty quantification: why surrogate models?

Step B: Quantification of the sources of uncertainty

Goal: represent the uncertain parameters based on
the available data and information Probabilistic model fX

Experimental data is available
• What is the distribution of each parameter ?

• What is the dependence structure ?
Copula theory
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No data is available: expert judgment
• Engineering knowledge (e.g. reasonable

bounds and uniform distributions)
• Statistical arguments and literature (e.g.

extreme value distributions for climatic
events)

Scarce data + expert infor-
mation
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Uncertainty quantification: why surrogate models?

Step C: uncertainty propagation

Goal: estimate the uncertainty / variability of the quantities of interest (QoI)
Y =M(X) due to the input uncertainty fX

• Output statistics, i.e. mean, standard deviation,
etc.

µY = EX [M(X)]

σ2
Y = EX

[
(M(X)− µY )2]

Mean/std.
deviation

µ

σ

• Distribution of the QoI
Response

PDF

• Probability of exceeding an admissible threshold
yadm

Pf = P (Y ≥ yadm)

Probability
of

failure
Pf
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Uncertainty quantification: why surrogate models?

Step C’: sensitivity analysis

Goal: determine what are the input parameters (or combinations thereof) whose
uncertainty explains the variability of the quantities of interest

• Screening: detect input parameters
whose uncertainty has no impact on the
output variability

• Feature setting: detect input parameters
which allow one to best decrease the
output variability when set to a
deterministic value

• Exploration: detect interactions between
parameters, i.e. joint effects not
detected when varying parameters
one-at-a-time
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Uncertainty quantification: why surrogate models?

Uncertainty propagation using Monte Carlo simulation

Principle: Generate virtual prototypes of the system using random numbers

• A sample set X = {x1, . . . ,xn} is drawn according to the input distribution
fX

• For each sample the quantity of interest (resp. performance criterion) is
evaluated, say Y = {M(x1), . . . ,M(xn)}

• The set of quantities of interest is used for moments-, distribution- or
reliability analysis
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Uncertainty quantification: why surrogate models?

Advantages/Drawbacks of Monte Carlo simulation

Advantages
• Universal method: only rely upon

sampling random numbers and
running repeatedly the
computational model

• Sound statistical foundations:
convergence when NMCS →∞

• Suited to High Performance
Computing: “embarrassingly
parallel”

Drawbacks
• Statistical uncertainty: results are

not exactly reproducible when a
new analysis is carried out
(handled by computing confidence
intervals)

• Low efficiency: convergence rate
∝ n−1/2

Monte Carlo for reliability analysis
To compute Pf = 10−k with an accuracy
of ±10% (coef. of variation of 5%),
4 · 10k+2 runs are required
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Uncertainty quantification: why surrogate models?

Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M
with the following features:
• It is built from a limited set of runs of the original model M called the

experimental design X =
{
x(i), i = 1, . . . , N

}
• It assumes some regularity of the model M and some general functional shape

Name Shape Parameters
Polynomial chaos expansions M̃(x) =

∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = βT · f(x) + Z(x, ω) β , σ2
Z , θ

Support vector machines M̃(x) =
m∑
i=1

aiK(xi,x) + b a , b
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Uncertainty quantification: why surrogate models?

Ingredients for building a surrogate model
• Select an experimental design X that covers at best

the domain of input parameters: Latin hypercube
sampling (LHS), low-discrepancy sequences

• Run the computational model M onto X exactly as
in Monte Carlo simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,
compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Uncertainty quantification: why surrogate models?

Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages
• Non-intrusive methods: based on

runs of the computational model,
exactly as in Monte Carlo
simulation

• Suited to high performance
computing: “embarrassingly
parallel”

Challenges
• Need for rigorous validation

• Communication: advanced
mathematical background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo
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Polynomial chaos expansions

Outline

1 Introduction

2 Uncertainty quantification: why surrogate models?

3 Polynomial chaos expansions
PCE basis
Computing the coefficients
Sparse PCE
Post-processing
Extensions

4 Low-rank tensor approximations

5 Kriging (a.k.a Gaussian process modelling)
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Polynomial chaos expansions PCE basis

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Sudret & Der Kiureghian (2000); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• Consider the input random vector X (dim X = M) with given probability
density function (PDF) fX(x) =

∏M

i=1 fXi (xi)

• Assuming that the random output Y =M(X) has finite variance, it can be
cast as the following polynomial chaos expansion:

Y =
∑
α∈NM

yα Ψα(X)

where :
• Ψα(X) : basis functions
• yα : coefficients to be computed (coordinates)

• The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal
polynomials
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Polynomial chaos expansions PCE basis

Multivariate polynomial basis

Univariate polynomials
• For each input variable Xi, univariate orthogonal polynomials {P (i)

k , k ∈ N}
are built: 〈

P
(i)
j , P

(i)
k

〉
=
∫
P

(i)
j (u) P (i)

k (u) fXi (u) du = γ
(i)
j δjk

e.g. , Legendre polynomials if Xi ∼ U(−1, 1), Hermite polynomials if Xi ∼ N(0, 1)

• Normalization: Ψ(i)
j = P

(i)
j /

√
γ

(i)
j i = 1, . . . ,M, j ∈ N

Tensor product construction

Ψα(x) def=
M∏
i=1

Ψ(i)
αi

(xi) E [Ψα(X)Ψβ(X)] = δαβ

where α = (α1, . . . , αM ) are multi-indices (partial degree in each dimension)
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Polynomial chaos expansions PCE basis

Example: M = 2 Xiu & Karniadakis (2002)

α = [3 , 3] Ψ(3,3)(x) = P̃3(x1) · H̃e3(x2)

• X1 ∼ U(−1, 1):
Legendre
polynomials

• X2 ∼ N (0, 1):
Hermite
polynomials
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Polynomial chaos expansions PCE basis

Isoprobabilistic transform

• Classical orthogonal polynomials are defined for reduced variables, e.g. :
• standard normal variables N (0, 1)
• standard uniform variables U(−1, 1)

• In practical UQ problems the physical parameters are modelled by random
variables that are:
• not necessarily reduced, e.g. X1 ∼ N (µ, σ), X2 ∼ U(a, b), etc.
• not necessarily from a classical family, e.g. lognormal variable

Need for isoprobabilistic transforms
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Polynomial chaos expansions PCE basis

Isoprobabilistic transform

Independent variables
• Given the marginal CDFs Xi ∼ FXi i = 1, . . . ,M

• A one-to-one mapping to reduced variables is used:

Xi = F−1
Xi

(
ξi + 1

2

)
if ξi ∼ U(−1 , 1)

Xi = F−1
Xi

(Φ(ξi)) if ξi ∼ N (0, 1)

• The best choice is dictated by the least non linear transform

General case: addressing dependence Sklar’s theorem (1959)

• The joint CDF is defined through its marginals and copula

FX(x) = C (FX1 (x1), . . . , FXM (xM ))

• Rosenblatt or Nataf isoprobabilistic transform is used
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Polynomial chaos expansions Computing the coefficients

Outline

1 Introduction

2 Uncertainty quantification: why surrogate models?

3 Polynomial chaos expansions
PCE basis
Computing the coefficients
Sparse PCE
Post-processing
Extensions

4 Low-rank tensor approximations

5 Kriging (a.k.a Gaussian process modelling)
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Polynomial chaos expansions Computing the coefficients

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle
The exact (infinite) series expansion is considered as the sum of a truncated
series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[(

YTΨ(X)−M(X)
)2
]

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 23 / 70



Polynomial chaos expansions Computing the coefficients

Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2

Procedure

• Select a truncation scheme, e.g. AM,p =
{
α ∈ NM : |α|1 ≤ p

}
• Select an experimental design and evaluate the

model response

M =
{
M(x(1)), . . . ,M(x(n))

}T

• Compute the experimental matrix

Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

• Solve the resulting linear system

Ŷ = (ATA)−1ATM Simple is beautiful !
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Polynomial chaos expansions Computing the coefficients

Error estimators
• In least-squares analysis, the generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

• The empirical error based on the experimental design X is a poor estimator in
case of overfitting

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2

• The coefficient of determination R2 is often used as an error estimator:

R2 = 1− Eemp
Var [Y] Var [Y] = 1

n
(M(x(i))− Ȳ)2

R2 is a poor estimator of the accuracy of the PCE when there is
overfitting
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Polynomial chaos expansions Computing the coefficients

Leave-one-out cross validation

x
(i)

• An experimental design
X = {x(j), j = 1, . . . , n} is selected

• Polynomial chaos expansions are built using
all points but one, i.e. based on
X\x(i) = {x(j), j = 1, . . . , n, j 6= i}

• Leave-one-out error (PRESS)

ELOO
def= 1
n

n∑
i=1

(
M(x(i))−MPC\i(x(i))

)2

• Analytical derivation from a single PC analysis

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 26 / 70



Polynomial chaos expansions Computing the coefficients

Least-squares analysis: Wrap-up

Algorithm 1: Ordinary least-squares

1: Input: Computational budget n
2: Initialization
3: Experimental design X = {x(1), . . . ,x(n)}
4: Run model Y = {M(x(1)), . . . ,M(x(n))}
5: PCE construction
6: for p = pmin : pmax do
7: Select candidate basis AM,p
8: Solve OLS problem
9: Compute eLOO(p)

10: end
11: p∗ = arg min eLOO(p)
12: Return Best PCE of degree p∗
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Polynomial chaos expansions Sparse PCE

Outline

1 Introduction
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Polynomial chaos expansions Sparse PCE

Curse of dimensionality

• The cardinality of the truncation scheme AM,p is P = (M + p)!
M ! p!

• Typical computational requirements: n = OSR · P where the oversampling
rate is OSR = 2− 3

However ... most coefficients are close to zero !

Example

• Elastic truss structure
with
M = 10 independent
input variables

• PCE of degree p = 5
(P = 3, 003 coeff.)
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Polynomial chaos expansions Sparse PCE

Hyperbolic truncation sets

Sparsity-of-effects principle Blatman & Sudret, Prob. Eng. Mech (2010); J. Comp. Phys (2011)

In most engineering problems, only low-order interactions between the input
variables are relevant

• q−norm of a multi-index α:

||α||q ≡

(
M∑
i=1

αqi

)1/q

, 0 < q ≤ 1

• Hyperbolic truncation sets:

AM,pq = {α ∈ NM : ||α||q ≤ p}

Dim. input vector M
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M

,p
q

|
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Polynomial chaos expansions Sparse PCE

Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); Ian, Guo, Xiu (2012); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by `1-regularization:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
+ λ ‖ yα ‖1

• Different algorithms: LASSO, orthogonal matching pursuit, Bayesian
compressive sensing

Least Angle Regression Efron et al. (2004)
Blatman & Sudret (2011)

• Least Angle Regression (LAR) solves the LASSO problem for different values
of the penalty constant in a single run without matrix inversion

• Leave-one-out cross validation error allows one to select the best model
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Polynomial chaos expansions Sparse PCE

Sparse PCE: wrap up

Algorithm 2: LAR-based Polynomial chaos expansion

1: Input: Computational budget n
2: Initialization
3: Sample experimental design X = {x(1), . . . ,x(n)}
4: Evaluate model response Y = {M(x(1)), . . . ,M(x(n)})
5: PCE construction
6: for p = pmin : pmax do
7: for q ∈ Q do
8: Select candidate basis AM,pq

9: Run LAR for extracting the optimal sparse basis A∗(p, q)
10: Compute coefficients {yα, α ∈ A∗(p, q)} by OLS
11: Compute eLOO(p, q)
12: end
13: end
14: (p∗, q∗) = arg min eLOO(p, q)
15: Return Optimal sparse basis A∗(p, q), PCE coefficients, eLOO(p∗, q∗)
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Polynomial chaos expansions Post-processing

Outline
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Polynomial chaos expansions Post-processing

Post-processing sparse PC expansions

Statistical moments
• Due to the orthogonality of the basis functions (E [Ψα(X)Ψβ(X)] = δαβ) and

using E [Ψα 6=0] = 0 the statistical moments read:

Mean: µ̂Y = y0

Variance: σ̂2
Y =

∑
α∈A\0

y2
α

Distribution of the QoI
• The PCE can be used as a response surface for

sampling:

yj =
∑
α∈A

yα Ψα(xj) j = 1, . . . , nbig

• The PDF of the response is estimated by histograms
or kernel smoothing
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Polynomial chaos expansions Post-processing

Sensitivity analysis

Goal Sobol’ (1993); Saltelli et al. (2000)

Global sensitivity analysis aims at quantifying which input parameter(s) (or
combinations thereof) influence the most the response variability (variance
decomposition)

Hoeffding-Sobol’ decomposition (X ∼ U([0, 1]M ))

M(x) =M0 +
M∑
i=1

Mi(xi) +
∑

1≤i<j≤M

Mij(xi, xj) + · · ·+M12...M (x)

=M0 +
∑

u⊂{1, ... ,M}

Mu(xu) (xu
def= {xi1 , . . . , xis})

• The summands satisfy the orthogonality condition:∫
[0,1]M

Mu(xu)Mv(xv) dx = 0 ∀ u 6= v
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Polynomial chaos expansions Post-processing

Sobol’ indices

Total variance: D ≡ Var [M(X)] =
∑

u⊂{1, ... ,M}

Var [Mu(Xu)]

• Sobol’ indices:
Su

def= Var [Mu(Xu)]
D

• First-order Sobol’ indices:

Si = Di
D

= Var [Mi(Xi)]
D

Quantify the additive effect of each input parameter separately

• Total Sobol’ indices:
STi

def=
∑
u⊃i

Su

Quantify the total effect of Xi, including interactions with the other variables.
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Polynomial chaos expansions Post-processing

Link with PC expansions

Sobol decomposition of a PC expansion Sudret, CSM (2006); RESS (2008)

Obtained by reordering the terms of the (truncated) PC expansion
MPC(X) def=

∑
α∈A yα Ψα(X)

Interaction sets

For a given u def= {i1, . . . , is} : Au = {α ∈ A : k ∈ u⇔ αk 6= 0}

MPC(x) =M0 +
∑

u⊂{1, ... ,M}

Mu(xu) where Mu(xu) def=
∑
α∈Au

yα Ψα(x)

PC-based Sobol’ indices

Su = Du/D =
∑
α∈Au

y2
α/

∑
α∈A\0

y2
α

The Sobol’ indices are obtained analytically, at any order from the
coefficients of the PC expansion
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Polynomial chaos expansions Post-processing

Example: sensitivity analysis in hydrogeology

Source: http://www.futura-sciences.com/

Source: http://lexpansion.lexpress.fr/

• When assessing a nuclear waste
repository, the Mean Lifetime
Expectancy MLE(x) is the time
required for a molecule of water
at point x to get out of the
boundaries of the system

• Computational models have
numerous input parameters (in
each geological layer) that are
difficult to measure, and that
show scattering
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Polynomial chaos expansions Post-processing

Geological model Joint work with University of Neuchâtel

Deman, Konakli, Sudret, Kerrou, Perrochet & Benabderrahmane, Reliab. Eng. Sys. Safety (2016)

• Two-dimensional idealized model of the Paris Basin (25 km long / 1,040 m
depth) with 5× 5 m mesh (106 elements)

• Steady-state flow simulation with Dirichlet boundary conditions:

∇ · (K · ∇H) = 0

• 15 homogeneous layers with uncertainties in:
• Porosity (resp. hydraulic conductivity)
• Anisotropy of the layer properties (inc.

dispersivity)
• Boundary conditions (hydraulic gradients)

78 input parameters
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Polynomial chaos expansions Post-processing

Sensitivity analysis

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

T

D1

D2

D3

D4

C1

C2

C3ab

L1a

L1b
L2a
L2b
L2c

K1K2

K3

K̂x[m/s]

Geometry of the layers Conductivity of the layers

Question

What are the parameters (out of 78) whose uncertainty drives the
uncertainty of the prediction of the mean life-time expectancy?
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Polynomial chaos expansions Post-processing

Sensitivity analysis: results

Technique: Sobol’indices computed from polynomial chaos expansions

0.01

0.2

0.4

0.6

0.8

φD4 φC3ab φL1b φL1a φC1 ∇H2 φL2a φD1 AD4

K
AC3ab

a

Total Sobol’ Indices

S
T
o
t

i

Parameter
∑

j
Sj

φ (resp. Kx) 0.8664

AK 0.0088

θ 0.0029

αL 0.0076

Aα 0.0000

∇H 0.0057

Conclusions
• Only 200 model runs allow one to detect the 10 important parameters out of

78

• Uncertainty in the porosity/conductivity of 5 layers explain 86% of the
variability

• Small interactions between parameters detected
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Polynomial chaos expansions Post-processing

Bonus: univariate effects

The univariate effects of each variable are obtained as a straightforward
post-processing of the PCE

Mi(xi)
def= E [M(X)|Xi = xi] , i = 1, . . . ,M
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Polynomial chaos expansions Extensions

Polynomial chaos expansions in structural dynamics
Spiridonakos et al. (2015); Mai, Spiridonakos, Chatzi & Sudret, IJUQ (2016); Mai & Sudret, SIAM JUQ (2017)

Premise
• For dynamical systems, the complexity of the

map ξ 7→ M(ξ, t) increases with time.

• Time-frozen PCE does not work beyond first
time instants

0 5 10 15 20 25 30
−1

−0.5
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0.5

1

t(s)

x
(t

)

 

 

Reference

Time−frozen PCE

PC-NARX
• Use of non linear autoregressive with exogenous input models (NARX) to

capture the dynamics:
y(t) = F (x(t), . . . , x(t− nx), y(t− 1), . . . , y(t− ny)) + εt ≡ F (z(t)) + εt

• Expand the NARX coefficients of different random trajectories onto a PCE
basis

y(t, ξ) =
ng∑
i=1

∑
α∈Ai

ϑi,α ψα(ξ) gi(z(t)) + ε(t, ξ)
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Polynomial chaos expansions Extensions

Earthquake engineering – Bouc-Wen oscillator

Governing equations Kafali & Grigoriu (2007), Spiridonakos & Chatzi (2015)

ÿ(t) + 2 ζ ω ẏ(t) + ω2(ρ y(t) + (1− ρ) z(t)) = −x(t),
ż(t) = γẏ(t)− α |ẏ(t)| |z(t)|n−1 z(t)− β ẏ(t) |z(t)|n ,

Excitation
x(t) is generated by a probabilistic ground motion model Rezaeian & Der Kiureghian (2010)

x(t) = q(t,α)
n∑
i=1

si (t,λ(ti)) Ui
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Polynomial chaos expansions Extensions

Bouc-Wen model

Marginal distributions of the model parameters

Parameters Distribution Support Mean Std
ω (rad/s) Uniform [5.373, 6.567] 5.97 0.3447
α (1/m) Uniform [45, 55] 50 2.887

Ia (s.g) Lognormal (0, +∞) 0.0468 0.164
D5−95 (s) Beta [5, 45] 17.3 9.31
tmid (s) Beta [0.5, 40] 12.4 7.44

ωmid/2π (Hz) Gamma (0, +∞) 5.87 3.11
ω′/2π (Hz) Two-sided exponential [-2, 0.5] -0.089 0.185
ζf (.) Beta [0.02, 1] 0.213 0.143
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Polynomial chaos expansions Extensions

Bouc-Wen model: prediction
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Polynomial chaos expansions Extensions

Earthquake engineering – frame structure

L
H
H
H

a(t)^

L L

1 1

• 2D steel frame with uncertain properties
submitted to synthetic ground motions

• Experimental design of size 300
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Surrogate model of single trajectories
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Polynomial chaos expansions Extensions

Frame structure – fragility curves

First-storey drift
• PC-NARX calibrated based on 300 simulations
• Reference results obtained from 10,000 Monte Carlo simulations
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Polynomial chaos expansions Extensions

Other usage of polynomial chaos expansions
Bayesian inversion
• PCE of the forward model used in conjunction

with Markov Chain Monte Carlo (MCMC)
simulation

Nagel & Sudret, PEM (2016)

• Spectral likelihood expansions
Nagel & Sudret, J. Comp. Phys. (2016)

Propagation of mixed epistemic/aleatory uncertain-
ties
• Input uncertainty modelled by free (resp.)

parametric p-boxes
• Uncertainty propagation using augmented spaces

and optimization
Schöbi & Sudret, PEM (2017) ; J. Comp. Phys (2017)
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Low-rank tensor approximations

Outline

1 Introduction

2 Uncertainty quantification: why surrogate models?

3 Polynomial chaos expansions

4 Low-rank tensor approximations
Theory in a nutshell
Reliability of a truss structure

5 Kriging (a.k.a Gaussian process modelling)
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Low-rank tensor approximations Theory in a nutshell

Introduction

• Polynomial chaos expansions (PCE) represent the model output on a fixed,
predetermined basis:

Y =
∑
α∈NM

yα Ψα(X) Ψα(X) =
M∏
i=1

P (i)
αi

(Xi)

• Sparse PCEs are built from a pre-selected set of candidate basis functions A

• High-dimensional problems (e.g. M > 50) may still be challenging for sparse
PCE in case of small experimental designs (n < 100)
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Low-rank tensor approximations Theory in a nutshell

Low-rank tensor representations

Rank-1 function
A rank-1 function of x ∈ DX is a product of univariate functions of each
component:

w(x) =
M∏
i=1

v(i)(xi)

Canonical low-rank approximation (LRA)
A canonical decomposition of M(x) is of the form Nouy, Arch. Comput. Meth. Eng. (2010)

MLRA(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l (xi)

)
where:
• R is the rank (# terms in the sum)
• v(i)

l (xi) are univariate function of xi
• bl are normalizing coefficients
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Low-rank tensor approximations Theory in a nutshell

Low-rank tensor representations

Polynomial expansions Doostan et al., 2013

By expanding v(i)
l (Xi) onto polynomial basis orthonormal w.r.t. fXi one gets:

Ŷ =
R∑
l=1

bl

(
M∏
i=1

(
pi∑
k=0

z
(i)
k,l P

(i)
k (Xi)

))
where:
• P (i)

k (Xi) is k-th degree univariate polynomial of Xi
• pi is the maximum degree of P (i)

k

• z(i)
k,l are coefficients of P (i)

k in the l-th rank-1 term

Complexity
Assuming an isotropic representation (pi = p), the number of unknown
coefficients is R(p ·M + 1)

Linear increase with dimensionality M
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Low-rank tensor approximations Theory in a nutshell

Greedy construction of the LRA

Chevreuil et al. (2015); Konakli & Sudret (2016)

• An greedy construction is carried out by iteratively adding rank-1 terms. The
r-th approximation reads Ŷr =Mr(X) =

∑r

l=1 blwl(X)

• In each iteration, alternate least-squares are used (correction and updating
steps)

Correction step: sequential updating of z(j)
r , j = 1, . . . ,M , to build wr:

z(j)
r = arg min

ζ∈Rpj

∥∥∥∥∥M−M̂r−1 −

(∏
i6=j

pi∑
k=0

z
(i)
k,r P

(i)
k

)(
pj∑
k=0

ζk P
(j)
k

)∥∥∥∥∥
2

E

Updating step: evaluation of normalizing coefficients {b1, . . . , br}:

b = arg min
β∈Rr

∥∥∥∥∥M−
r∑
l=1

βlwl

∥∥∥∥∥
2

E
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Low-rank tensor approximations Reliability of a truss structure

Elastic truss

Structural model Blatman & Sudret (2011)

• Response quantity: maximum
deflection U

• Reliability analysis:

Pf = P (U ≥ ulim)

Probabilistic model

Variable Distribution mean CoV
Hor. bars cross sectionA1 [m] Lognormal 0.002 0.10
Oblique bars cross section A2 [m] Lognormal 0.001 0.10
Young’s moduli E1, E2 [MPa] Lognormal 210,000 0.10
Loads P1, . . . , P6 [KN] Gumbel 50 0.15
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Low-rank tensor approximations Reliability of a truss structure

Elastic truss

Konakli & Sudret, Prob. Eng. Mech (2016)

Surrogate modelling error
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• Smaller validation error for
LRA when ED is small
(N < 100)

• Faster error decrease for
PCE

• However ...
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Low-rank tensor approximations Reliability of a truss structure

Elastic truss: validation plots

Konakli & Sudret, Prob. Eng. Mech (2016)

Low-rank approximation Polynomial chaos expansion

Polynomial chaos approximation is biased in the high values
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Low-rank tensor approximations Reliability of a truss structure

PDF of the truss deflection

Size of the experimental design: 50 (resp. 100) samples from Sobol’ sequence

Kernel density estimates of the PDF in the linear scale
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Low-rank tensor approximations Reliability of a truss structure

PDF of the truss deflection

Size of the experimental design: 50 (resp. 100) samples from Sobol’ sequence

Kernel density estimates of the PDF in the log scale
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Low-rank tensor approximations Reliability of a truss structure

Truss deflection - reliability analysis

Probability of failure
• LRA/PCE built from 50 samples

• Post-processing by crude Monte Carlo simulation: Pf = P (U ≥ ulim)
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Number of model evaluations
ulim(m) SORM IS

0.10 387 375
0.11 365 553
0.12 372 660
0.13 367 755
0.14 379 1,067
0.15 391 1,179

Full curve at the cost of 50 finite element analyses

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 58 / 70



Kriging (a.k.a Gaussian process modelling)

Outline

1 Introduction

2 Uncertainty quantification: why surrogate models?

3 Polynomial chaos expansions

4 Low-rank tensor approximations

5 Kriging (a.k.a Gaussian process modelling)
Kriging equations
Use in structural reliability
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Kriging (a.k.a Gaussian process modelling) Kriging equations

Gaussian process modelling (a.k.a Kriging)

Santner, Williams & Notz (2003)

Kriging assumes that M(x) is a trajectory of an underlying Gaussian process

M(x) ≈M(K)(x) = βTf(x) + σ2 Z(x, ω)

where:
• βTf(x): trend
• Z(x, ω): zero mean, unit variance Gaussian process with autocorrelation

function, e.g. :

R
(
x, x′

)
= exp

(
M∑
k=1

−
(
xk − x′k
θk

)2
)

• σ2: variance

The Gaussian measure artificially introduced is different from the
aleatory uncertainty on the model parameters X
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Kriging (a.k.a Gaussian process modelling) Kriging equations

Kriging prediction
Unknown parameters
• Parameters {θ, β, σ2} are estimated from the experimental design
Y = {yi =M(χi) , i = 1, . . . , n} by maximum likelihood estimation, cross
validation or Bayesian calibration

Mean predictor
µ
Ŷ

(x) = f (x)T β̂ + r (x)TR−1 (Y − F β̂)
where:

ri(x) = R
(
x− x(i), θ

)
Rij = R

(
x(i) − x(j), θ

)
Fij = fj

(
x(i)
)
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Kriging variance

σ2
Ŷ

(x) = σ2
Y

(
1−
〈
f (x)T r (x)T

〉 [ 0 FT

F R

]−1 [
f (x)
r (x)

])
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Kriging (a.k.a Gaussian process modelling) Use in structural reliability

Use of Kriging for structural reliability analysis

• From a given experimental design X =
{
x(1), . . . ,x(n)}, Kriging yields a

mean predictor µ
Ŷ

(x) and the Kriging variance σ
Ŷ

(x)

• The mean predictor is substituted for the “true” limit state function, defining
the surrogate failure domain

Df 0 =
{
x ∈ DX : µ

Ŷ
(x) ≤ 0

}
• The probability of failure is approximated by: Kaymaz, Struc. Safety (2005)

P 0
f = IP

[
µ
Ŷ

(X) ≤ 0
]

=
∫
D0

f

fX(x) dx = E
[
1D0

f
(X)

]
• Monte Carlo simulation can be used on the surrogate model:

P̂ 0
f = 1

N

N∑
k=1

1D0
f
(xk)
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Kriging (a.k.a Gaussian process modelling) Use in structural reliability

Confidence bounds on the probability of failure

Shifted failure domains Dubourg et al. , Struct. Mult. Opt. (2011)

• Let us define a confidence level (1− α) and k1−α = Φ−1(1− α/2), i.e. 1.96 if
1− α = 95%, and:

D−f =
{
x ∈ DX : µ

Ŷ
(x) + k1−α σ

Ŷ
(x) ≤ 0

}
D+
f =

{
x ∈ DX : µ

Ŷ
(x)− k1−α σ

Ŷ
(x) ≤ 0

}
• Interpretation (1− α = 95%):

• If x ∈ D0
f it belongs to the true failure domain with a 50% chance

• If x ∈ D+
f it belongs to the true failure domain with 95% chance:

conservative estimation

Bounds on the probability of failure

D−f ⊂ D
0
f ⊂ D+

f ⇔ P−f ≤ P
0
f ≤ P+

f
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Kriging (a.k.a Gaussian process modelling) Use in structural reliability

Adaptive designs for reliability analysis
Premise
• When using high-fidelity computational models for assessing structural

reliability, the goal is to minimize the number of runs

• Adaptive experimental designs allow one to start from a small ED and enrich it
with new points in suitable regions (i.e. close to to the limit state surface)

Enrichment (infill) criterion Bichon et al. , (2008, 2011); Echard et al. (2011); Bect et al. (2012)

The following learning function is used:

LF (x) = |µM̂(x)|
σM̂(x)

• Small if µM̂(x) ≈ 0 (x close to the limit state surface) and/or σM̂(x) >> 0
(poor local accuracy)

• The probability of misclassification is Φ(−LF (x))
• At each iteration, the new point is: χ∗ = arg minLF (x)
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Kriging (a.k.a Gaussian process modelling) Use in structural reliability

PC-Kriging

Schöbi & Sudret, IJUQ (2015); Kersaudy et al. , J. Comp. Phys (2015); chöbi & Sudret, ASME J. Risk (2016);

Heuristics: Combine polynomial chaos expansions (PCE) and Kriging
• PCE approximates the global behaviour of the computational model
• Kriging allows for local interpolation and provides a local error estimate

Universal Kriging model with a sparse PC expansion as a trend

M(x) ≈M(PCK)(x) =
∑
α∈A

aαψα(x) + σ2Z(x, ω)

PC-Kriging calibration
• Sequential PC-Kriging: least-angle regression (LAR) detects a sparse basis,

then PCE coefficients are calibrated together with the auto-correlation
parameters

• Optimized PC-Kriging: universal Kriging models are calibrated at each step of
LAR
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Kriging (a.k.a Gaussian process modelling) Use in structural reliability

Conclusions

• Surrogate models are unavoidable for solving uncertainty quantification
problems involving costly computational models (e.g. finite element models)

• Depending on the analysis, specific surrogates are most suitable: polynomial
chaos expansions for distribution- and sensitivity analysis, low-rank tensor
approximations and Kriging for reliability analysis

• Kriging and PC-Kriging are suitable for adaptive algorithms (enrichment of the
experimental design)

• All these techniques are non-intrusive: they rely on experimental designs, the
size of which is a user’s choice

• They are versatile, general-purpose and field-independent

• All the presented algorithms are available in the general-purpose uncertainty
quantification software UQLab
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Kriging (a.k.a Gaussian process modelling) Use in structural reliability

UQLab
www.uqlab.com

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 67 / 70



Kriging (a.k.a Gaussian process modelling) Use in structural reliability

UQLab: The Uncertainty Quantification Laboratory

http://www.uqlab.com

• Release of V0.9 on July 1st, 2015;
V0.92 on March 1st, 2016

• Release of V1.0 on April 28th, 2017
UQLabCore + Modules

• 1250 downloads, 700+ active users
from 59 countries

Country # Users
United States 237
France 150
Switzerland 126
China 101
Germany 77
United Kingdom 71
Italy 47
India 36
Canada 32
Belgium 30
As of April 1st, 2018
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UQLab users
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

The Uncertainty
Quantification

Laboratory
www.uqlab.com

Thank you very much for your attention !
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