ETHzurich A=

Recent developments in surrogate modelling for
uncertainty quantification

Bruno Sudret

i from K. Konakh cv Mai, S. Marelll ey Schobn

,,,,,,

ELEVATION

ISUMA/Uhcertalntles Conference -
4 Apr|| 9] 2088 I

s lCVRA /

I|J i

L/‘r,**f/‘l
/ S



How to cite?

This presentation is an extended version of the keynote lecture given at the
3rd International Conference on Vulnerability, Risk Analysis and Management
(ICVRAM), jointly organized with the 7th International Symposium on Uncertainty
Modelling and Analysis (ISUMA) and the 4th International Symposium on
Uncertainty Quantification and Stochastic Modelling in Florianopolis (Brazil),
April 8-11, 2018
(http://icvramisuma2018.org/).

How to cite

Sudret, B. Recent developments in surrogate modelling for uncertainty
quantification (2018), Proc. 3rd Int. Conf. on Vulnerability, Risk Analysis and
Management (ICVRAMZ2018), Florianopolis (Brazil), April 8-11.

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 2/70


http://icvramisuma2018.org/

UQ framework

Computational models in engineering

Complex engineering systems are designed and assessed using computational
models, a.k.a simulators

A computational model combines:

® A mathematical description of the physical v:D=s
phenomena (governing equations), e.g. mechanics, VxE=-28
electromagnetism, fluid dynamics, etc. VxH=J+3

® Discretization techniques which transform
continuous equations into linear algebra problems

® Algorithms to solve the discretized equations
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UQ framework

Computational models in engineering

Computational models are used:

® Together with experimental data for calibration purposes
® To explore the design space (“virtual prototypes”)

® To optimize the system (e.g. minimize the mass) under performance
constraints

® To assess its robustness w.r.t uncertainty and its reliability

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 4/70



UQ framework

Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes
quantities of interest (Qol) (a.k.a. model responses) as a function of input
parameters

Vector of input ,
Computatio Model response

arameters —)
P y = M(z) € R®

xz e RM

® Geometry © Amelidic e ® Displacements
® Finite element

® Strains, stresses
model

® Material properties

o .
Loading ® Comput. workflow
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UQ framework

Real world is uncertain

® Differences between the designed and the real
system:

® Dimensions (tolerances in manufacturing)

® Material properties (e.g. variability of the
stiffness or resistance)

® Unforecast exposures: exceptional service loads, natural hazards (earthquakes,
floods, landslides), climate loads (hurricanes, snow storms, etc.), accidental
human actions (explosions, fire, etc.)
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Uncertainty quantification: why surrogate models?

Outline

@ Introduction
@® Uncertainty quantification: why surrogate models?

® Polynomial chaos expansions
PCE basis
Computing the coefficients
Sparse PCE
Post-processing
Extensions

O Low-rank tensor approximations
Theory in a nutshell
Reliability of a truss structure

@ Kriging (a.k.a Gaussian process modelling)
Kriging equations
Use in structural reliability
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Uncertainty quantification: why surrogate models?

Global framework for uncertainty quantification

Step B Step A Step C
Quantification of Model(s) of the system Uncertainty propagation
sources of uncertainty Assessment criteria
Random variables Computational model Moments

Probability of failure
Response PDF

Step C’

Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models — contributions to structural reliability and stochastic spectral

methods (2007)
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Uncertainty quantification: why surrogate models?

Step B: Quantification of the sources of uncertainty

Goal: represent the uncertain parameters based on o
. . . Probabilistic model
the available data and information fx

Experimental data is available

® What is the distribution of each parameter ? Z
® What is the dependence structure ? .
Copula theory

No data is available: expert judgment icaatrigendata + expert infor-

® Engineering knowledge (e.g. reasonable

bounds and uniform distributions) /

® Statistical arguments and literature (e.g. [
extreme value distributions for climatic . al’?'gﬂ fa\t\:stlcs
events) ; MVARN

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ
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Uncertainty quantification: why surrogate models?

Step C: uncertainty propagation

Goal: estimate the uncertainty / variability of the quantities of interest (Qol)
Y = M(X) due to the input uncertainty fx

e Qutput statistics, i.e. mean, standard deviation,

etc.
Mean /std.
py = Ex [M(X)] deviation
0% =Ex [(M(X) — pv)?]
® Distribution of the Qol
Response
PDF
® Probability of exceeding an admissible threshold Probability e
Yadm of /I “ P
Py =P (Y = yadm) failure —;LL

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018
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Uncertainty quantification: why surrogate models?

Step C': sensitivity analysis

Goal: determine what are the input parameters (or combinations thereof) whose
uncertainty explains the variability of the quantities of interest

® Screening: detect input parameters
whose uncertainty has no impact on the . Sobol Tudiees Order 1
output variability o

® [eature setting: detect input parameters
which allow one to best decrease the O e S g T A A
output variability when set to a

deterministic value Variance decomposition (Sobol" indices)

® Exploration: detect interactions between
parameters, i.e. joint effects not
detected when varying parameters
one-at-a-time
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Uncertainty quantification: why surrogate models?

Uncertainty propagation using Monte Carlo simulation

Principle: Generate virtual prototypes of the system using random numbers

® A sample set X = {1, ... ,@y,} is drawn according to the input distribution
fx
® For each sample the quantity of interest (resp. performance criterion) is

evaluated, say Y = {M(xz1), ... ,M(zn)}

® The set of quantities of interest is used for moments-, distribution- or
reliability analysis
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Uncertainty quantification: why surrogate models?

Advantages/Drawbacks of Monte Carlo simulation

Advantages Drawbacks
® Universal method: only rely upon ® Statistical uncertainty: results are
sampling random numbers and not exactly reproducible when a
running repeatedly the new analysis is carried out
computational model (handled by computing confidence
intervals)

® Sound statistical foundations:

® | ow efficiency: convergence rate
convergence when Njycs — 00 Y g

= n-1/2
® Suited to High Performance Monte Carlo for reliability analysis
Computing: “embarrassingly To compute Py = 10~* with an accuracy
parallel” of £10% (coef. of variation of 5%),

41052 runs are required
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Uncertainty quantification: why surrogate models?

Surrogate models for uncertainty quantification

A surrogate model M is an approximation of the original computational model M
with the following features:

® It is built from a limited set of runs of the original model M called the
experimental design X = {cc(’)7 i=1,... 7N}

® |t assumes some regularity of the model M and some general functional shape

Name Shape Parameters
Polynomial chaos expansions M(z) = Z o Ya(x) [
acA
R M
Low-rank tensor approximations M(w) = Z by Hvl(l)(xz) by, z,(;,)l

=1 i=1
Kriging (a.k.a Gaussian processes) M(z) = 87 - f(x) + Z(z,w) B,0%,0

Support vector machines M(z) = Zai K(x;,x)+b a,b

=1
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Uncertainty quantification: why surrogate models?

Ingredients for building a surrogate model

® Select an experimental design X that covers at best o e,
the domain of input parameters: Latin hypercube e e,
sampling (LHS), low-discrepancy sequences o Lty o L

® Run the computational model M onto & exactly as L o o o co
in Monte Carlo simulation ° et

® Smartly post-process the data {X, M(X)} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares
Kriging maximum likelihood, Bayesian inference
Support vector machines quadratic programming
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Uncertainty quantification: why surrogate models?

Advantages of surrogate models

Usage
M(z) =~ M(x)
hours per run seconds for 10° runs
Advantages Challenges
® Non-intrusive methods: based on ® Need for rigorous validation

runs of the computational model,

exactly as in Monte Carlo ® Communication: advanced

simulation mathematical background

® Suited to high performance
computing: “embarrassingly
parallel”

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 16 / 70



Polynomial chaos expansions

Outline

® Polynomial chaos expansions
PCE basis
Computing the coefficients
Sparse PCE
Post-processing
Extensions
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Polynomial chaos expansions  PCE basis

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); Sudret & Der Kiureghian (2000); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

® Consider the input random vector X (dim X = M) with given probability
density function (PDF) fx(z) = [[i2, fx, (x:)

® Assuming that the random output Y = M (X)) has finite variance, it can be
cast as the following polynomial chaos expansion:
Y = Z Yo Vo (X)
aeNM
where :
® U, (X) : basis functions

® y, : coefficients to be computed (coordinates)

® The PCE basis {\I/a(X), a € NM} is made of multivariate orthonormal
polynomials

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 18 /70



Polynomial chaos expansions  PCE basis

Multivariate polynomial basis

Univariate polynomials

® For each input variable X;, univariate orthogonal polynomials {P,éi), k € N}
are built:

(P0r) = [P0 PO Fe 0 du= o 6
e.g. , Legendre polynomials if X; ~ U(—1, 1), Hermite polynomials if X; ~ A(0, 1)
® Normalization: \Pgi) = Pj(i)/\/’yj(.i) t1=1,...,M, j€eN

Tensor product construction

M
def i
Va(z) = [l @) E[Wa(X)Us(X)] = dap
=1
where & = (a1, ... ,anm) are multi-indices (partial degree in each dimension)
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Polynomial chaos expansions  PCE basis

Examp|e: ]\[ =2 Xiu & Karniadakis (2002)

o= [3, 3] \11(313) (m) = Pg(xl) . H63($2)
3
0 ° X, Nu(—l,l):
Legendre
polynomials
® Xy~ N(O, 1)2
3 Hermite
-3 -1 polynomials
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Polynomial chaos expansions  PCE basis

Isoprobabilistic transform

® Classical orthogonal polynomials are defined for reduced variables, e.g. :
® standard normal variables N(0,1)

® standard uniform variables 2/(—1,1)

® |n practical UQ problems the physical parameters are modelled by random
variables that are:

® not necessarily reduced, e.g. X1 ~ N (u,0), X2 ~U(a,b), etc.

® not necessarily from a classical family, e.g. lognormal variable

Need for isoprobabilistic transforms ]

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 21/70



Polynomial chaos expansions  PCE basis

Isoprobabilistic transform

Independent variables
® Given the marginal CDFs X; ~ Fk;, i=1,...,M

® A one-to-one mapping to reduced variables is used:

xo= ! (3 if €~ U-1, 1)
X; = Fx! (®(&)) if & ~N(0,1)

® The best choice is dictated by the least non linear transform

General case: addressing dependence Sklar's theorem (1950)

® The joint CDF is defined through its marginals and copula
Fx(x) =C(Fx,(21), ..., Fxy (zar))

® Rosenblatt or Nataf isoprobabilistic transform is used
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Polynomial chaos expansions Computing the coefficients

Outline

® Polynomial chaos expansions

Computing the coefficients
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Polynomial chaos expansions Computing the coefficients

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)
Principle

The exact (infinite) series expansion is considered as the sum of a truncated
series and a residual:

Y= MX) = Y gaVa(X) +ep = YE(X) +cp(X)
acA

where : Y = {ya, @ € A} ={yo, ... ,yp-1} (P unknown coef.)
¥(x) = {Vo(z), ..., Vp1(2)}

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square
residual error:

Y = argmin E {(YT‘I’(X) - M(X))Q} ‘
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Polynomial chaos expansions Computing the coefficients

Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

n
A~

_ . T (©) ()y)2
Y = argg}g}g . Eﬂ (Y U(z") — M(x ))
Procedure

® Select a truncation scheme, e.g. AM?P = {a e NM . laf: < p}

® Select an experimental design and evaluate the
model response

M= {M(m(l)), ,./\/l(:r("))}T

® Compute the experimental matrix
A= (z") i=1,...,n;j=0,...,P—1

® Solve the resulting linear system

Y=(ATA)'A™M [ Simple is beautiful ! ]
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Polynomial chaos expansions Computing the coefficients

Error estimators

® |n least-squares analysis, the generalization error is defined as:

Egen =E [(M(X) - MPC(X))Q} MPEX) =3 ya Wa(

acA

® The empirical error based on the experimental design X is a poor estimator in
case of overfitting

n

Eemp = %Z (M) — MP(29))°
=1

® The coefficient of determination R? is often used as an error estimator:
Eemp

2 _ —
=1 Var [V

Var[] = —(M(@) - 3)?

R? is a poor estimator of the accuracy of the PCE when there is
overfitting
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Polynomial chaos expansions Computing the coefficients

Leave-one-out cross validation

® o
o o
o . .
o o %0 ° ® An experimental design
o y . .
. o °© o o X = {ac(’), j=1,...,n} is selected
o ° ° °9
o ©° o
20 °° . % © ® Polynomial chaos expansions are built using
°o% o all points but one, i.e. based on
© ° o 1) __ J - . .
L° o L e X\ = {2, j=1,... ,n, j#i}

® |eave-one-out error (PRESS)

ef 1 - i N\ i 2
Broo ™ 3~ (M) - MV (@)

i=1

® Analytical derivation from a single PC analysis
n . : 2
1 M(xD) — MPC (2
Eroo = —
roo=23" (

1—hs
where h; is the i-th diagonal term of matrix A(ATA)~'AT

ICVRAM/ISUMA - April 9, 2018
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Polynomial chaos expansions Computing the coefficients

Least-squares analysis: Wrap-up

Algorithm 1: Ordinary least-squares

Input: Computational budget n
Initialization
Experimental design X = {m(l), ,m(”)}
Run model ¥ = {M(z™M), ..., M(z™)}
PCE construction
for p = pmin : Pmax do
Select candidate basis AP
Solve OLS problem
Compute eLoo(p)

© © N g K w N

end
p* = arg min e 00(p)
Return Best PCE of degree p*

=
[ =
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Polynomial chaos expansions ~ Sparse PCE

Outline

® Polynomial chaos expansions

Sparse PCE
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Polynomial chaos expansions ~ Sparse PCE

Curse of dimensionality

M !
® The cardinality of the truncation scheme AM? js P = %

® Typical computational requirements: n = OSR - P where the oversampling
rateis OSR=2-3

However ... most coefficients are close to zero !

Example
0y * Moan
SRR AP -
A'AA'A'A'A l 10” 8. e p=3
o | ] +p>3
4 %
—10" Iy
® Elastic truss structure s
with iﬁ 5
M = 10 independent 10
input variables .
10
® PCE of degree p=5
(P = 3,003 coeff.) 10

0 500 1000 1500 2000 2500 3000
B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018
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Polynomial chaos expansions ~ Sparse PCE

Hyperbolic truncation sets

Blatman & Sudret, Prob. Eng. Mech (2010); J. Comp. Phys (2011)

Sparsity-of-effects principle
In most engineering problems, only low-order interactions between the input

variables are relevant

® g—norm of a multi-index a: ® Hyperbolic truncation sets:

Va AYP = {aeNM : |lally < p}

llalq = Za , 0<g<1

-0 p=3
—e—pfiqfﬂ)

5,q=0.5

——p=T,q=05

Dim. input vector M

rrogate models for UQ ICVRAM/ISUMA - April 9, 2018
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Polynomial chaos expansions ~ Sparse PCE

Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); lan, Guo, Xiu (2012); Sargsyan et al. (2014); Jakeman et al. (2015)

® Sparsity in the solution can be induced by ¢ -regularization:

n

1 i D 2
Yo = argminﬁ Z (YT\P(:B( )) - M(a:( ))) + A [l ya [l2

i=1

e Different algorithms: LASSO, orthogonal matching pursuit, Bayesian
compressive sensing

H Efron et al. (2004)
Least Angle Regression e et (2011)

® |east Angle Regression (LAR) solves the LASSO problem for different values
of the penalty constant in a single run without matrix inversion

® | eave-one-out cross validation error allows one to select the best model

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 30/70



Polynomial chaos expansions ~ Sparse PCE

Sparse PCE: wrap up

—
=4

11:

© © N T H w N

Algorithm 2: LAR-based Polynomial chaos expansion

Input: Computational budget n
Initialization
Sample experimental design X = {w<1), ,w(”)}
Evaluate model response Y = {M ("), ..., M(z™})
PCE construction
for p = pmin : Pmax do
for ¢ € Q do
Select candidate basis Aé‘/f’p
Run LAR for extracting the optimal sparse basis A" (p, q)
Compute coefficients {y«, @ € A*(p,q)} by OLS
Compute eLoo(p; q)
end
end
(p*,q") = argmin eLoo(p, )
Return Optimal sparse basis A (p, q), PCE coefficients, eLoo(p*, ¢*)

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018
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Polynomial chaos expansions  Post-processing

Outline

® Polynomial chaos expansions

Post-processing
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Polynomial chaos expansions  Post-processing

Post-processing sparse PC expansions

Statistical moments

® Due to the orthogonality of the basis functions (E [¥o(X)Ug(X)] = dap) and
using E [T =0 = 0 the statistical moments read:

Mean: oy = yo
Variance: 6% = Z yi
acA\O
Distribution of the Qol
® The PCE can be used as a response surface for o =
sampling: - \\
. P
szzya‘l/a(wj) J=1, ... nbig . / \
acA .y \

® The PDF of the response is estimated by histograms
or kernel smoothing

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 33/70



Polynomial chaos expansions  Post-processing

Sensitivity analysis

Goal Sobol’ (1993); Saltelli et al. (2000)

Global sensitivity analysis aims at quantifying which input parameter(s) (or
combinations thereof) influence the most the response variability (variance
decomposition)

Hoeffding-Sobol’ decomposition (X ~U(0,1]))

M(w):M0+ZMi(mi)+ Z Mij(zi, z5) 4+ -+ Maa..m(x)

i=1 1<i<j<M

= Mo+ Z M(am (@ = {ai, ooy}

uC{1,.

® The summands satisfy the orthogonality condition:

Mu(zu) My(zy) de =0 Yu#v

[0,1]M
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Polynomial chaos expansions  Post-processing

Sobol’ indices

Total variance: D =Var[M(X)] = Z Var [Mu(Xu)]

uC{1,...,M}

e Sobol’ indices:
g & Var [Mu(Xu)]

‘T D
e First-order Sobol’ indices:

‘T D D

Quantify the additive effect of each input parameter separately

sTEN s,

udi

e Total Sobol’ indices:

Quantify the total effect of X;, including interactions with the other variables.

ICVRAM/ISUMA - April 9, 2018
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Polynomial chaos expansions  Post-processing

Link with PC expansions

Sobol decomposition of a PC expansion Sudret, CSM (2006); RESS (2008)

Obtained by reordering the terms of the (truncated) PC expansion
def

MPUX)E Y 4 va Val(X)
Interaction sets
Foragivenudéf{il,...,is}: Ai={ac A: keus a, #0}

M@y =Mo+ D M)  where  Mu() E Y ya Va(2)

uCc{1,...,M} ac A,
PC-based Sobol’ indices

Su=Du/D= i/ Y va

acAy acA\0

The Sobol" indices are obtained analytically, at any order from the
coefficients of the PC expansion

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 36 /70



Polynomial chaos expansions  Post-processing

Example: sensitivity analysis in hydrogeology

LABORATOIRE DE RECHERCHE SOUTERRAIN
DE WEUSE / HAUTE - WARNE

® When assessing a nuclear waste
) repository, the Mean Lifetime
= Expectancy MLE(x) is the time
““““““““““““““““ required for a molecule of water
at point x to get out of the
boundaries of the system

= s

® Computational models have
numerous input parameters (in
each geological layer) that are
difficult to measure, and that
show scattering

Source: http://lexpansion.lexpress.fr/
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Polynomial chaos expansions  Post-processing

GeOIOgi Cca | mOdel Joint work with! Universitylof INeuchatel

Deman, Konakli, Sudret, Kerrou, Perrochet & Benabderrahmane, Reliab. Eng. Sys. Safety (2016)

® Two-dimensional idealized model of the Paris Basin (25 km long / 1,040 m
depth) with 5 x 5 m mesh (10° elements)

® Steady-state flow simulation with Dirichlet boundary conditions:
V- (K-VH)=0

® 15 homogeneous layers with uncertainties in:

® Porosity (resp. hydraulic conductivity)

® Anisotropy of the layer properties (inc. [
dispersivity)

® Boundary conditions (hydraulic gradients)

78 input parameters j

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 38/70



Polynomial chaos expansions  Post-processing

Sensitivity analysis

o 5000 10000 15000 20000 25000 10" 10° 10" 3 3 3
X Kifm/s)

Geometry of the layers Conductivity of the layers

Question

What are the parameters (out of 78) whose uncertainty drives the
uncertainty of the prediction of the mean life-time expectancy?

B. Sudret (Chair of Risk, Safety & UQ) rrogate models for UQ ICVRAM/ISUMA - April 9, 2018 39/70



Polynomial chaos expansions  Post-processing

Sensitivity analysis: results

Technique: Sobol'indices computed from polynomial chaos expansions
Parameter Zj S;

08 ‘ ‘ ‘ ‘Tota‘l Sob?l’ Infiiccs‘ ‘ ‘ d) (resp_ Km) 0.8664

: Ag 0.0088

. . [% 0.0029
o)

i ag, 0.0076

0.01 ! - N ] A 0.0000

GV O gLl glla gCL P glan gbt 4bi AChab
VH 0.0057

Conclusions

® Only 200 model runs allow one to detect the 10 important parameters out of
78

® Uncertainty in the porosity/conductivity of 5 layers explain 86% of the
variability

® Small interactions between parameters detected
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Polynomial chaos expansions  Post-processing

Bonus: univariate effects

The univariate effects of each variable are obtained as a straightforward
post-processing of the PCE

x 10 x 10

008 01 o012 D14 o016 018
¢C3(lb (Z)le

x 10

_8.1 0.15 0.2 50.02 0.04 0.06
Pl #C1
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Polynomial chaos expansions  Extensions

Polynomial chaos expansions in structural dynamics

Spiridonakos et al. (2015); Mai, Spiridonakos, Chatzi & Sudret, 1JUQ (2016); Mai & Sudret, SIAM JUQ (2017)

25,

5 4 t,=10|
g —1,=15
%‘.57 '0:207
Premise 3
EO.S' | { B _
® For dynamical systems, the complexity of the pe Ll
map & — M(&,t) increases with time.
® Time-frozen PCE does not work beyond first o “
time instants - M‘ |t s s
g 9 v e AT L e
0.
V Timefogen poe
- 10 (:sﬁ) 20 25 30
PC-NARX

® Use of non linear autoregressive with exogenous input models (NARX) to
capture the dynamics:
yt) =F (@), ...zt —ne),yt —1), ... ,ylt —ny)) + e = F (2() + &
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Polynomial chaos expansions  Extensions

Earthquake engineering — Bouc-Wen oscillator

Governing equations Kafali & Grigoriu (2007), Spiridonakos & Chatzi (2015)

() +2Cwy(t) +w (py(t) + (1 — p) 2(8) = —=(t),
(1) = yy(t) — a [§O)] [2()]" " 2(8) = By(t) |2(D)]"

Excitation
x(t) is generated by a probabilistic ground motion model Rezaeian & Der Kiureghian (2010)
z(t) = q(t, @) E si (6, A(t:)) Us
i=1
4 4
3 3 |
3 3
., 1 . ]
4 K [
E 1 E 1
s 5
'g 0 @ 0 i
ko 3
§_1 5-1 It
-2 L -2 i
-3 -3 I
-4 -4
0 5 10 15 20 25 30 0 5 10 15 20 25 30

t(s) t(s)
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Polynomial chaos expansions

Bouc-Wen model

Extensions

Marginal distributions of the model parameters

Parameters Distribution Support Mean Std

w (rad/s) Uniform [5.373, 6.567] 5.97 0.3447

a (1/m) Uniform [45, 55] 50 2.887

1, (s.g) Lognormal (0, +00) 0.0468 0.164
Ds5_g5 (s) Beta [5, 45] 17.3 9.31
tmid (S) Beta [0.5, 40] 124 7.44
Wmid/2m (Hz) Gamma (0, +0) 5.87 3.11
w'/2m (Hz)  Two-sided exponential [-2, 0.5] -0.089  0.185
G0 Beta [0.02, 1] 0213  0.143

B. Sudret (Chair of Risk, Safety & UQ)

Surrogate models for UQ
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Polynomial chaos expansions  Extensions

-Wen model: prediction

4 0.04
3 0.03 [l\
N/\(n\ 2 n lI OG" ,
E 0.01f-] e
5 I WA
= 0 = 0 yvy
i s ’ ”\ Yyv
3 -1 ! -0.01 A
8 ]
<, 1 -0.02
-3 -0.03 —Reference
. —PC-NARX
o 5 10 15 20 25 30 0% 5 10 15 20 25 30
t(s) t(s)
4 0.04
3 |
3 0.03 b b
o [ 00s | IR AAARaa
g . , “ v L
E 1f
= 0.01 ¥
5 0 e = 0 W(
()
gJ— s -0.01
<2 1 1 I -0.02]
-3 | -0.03 —Reference
. —PC-NARX
o 5 10 15 20 25 30 0% 5 10 15 20 25 30
t(s) t(s)
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Polynomial chaos expansions  Extensions

Earthquake engineering — frame structure

L L L
" ® 2D steel frame with uncertain properties
Y submitted to synthetic ground motions
® Experimental design of size 300
H
1)1
-, e
0.03, 0.03
— Reference —Reference
-~ PG_NARX| 002 -=~PC-NARX
0.01
0
-0.01
-0.02
-0.03 5 10 15 20 25 o % 5 10 15 20 25 30
t(s) t(s)

Surrogate model of single trajectories
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Polynomial chaos expansions  Extensions

Frame structure — fragility curves

First-storey drift
® PC-NARX calibrated based on 300 simulations

® Reference results obtained from 10,000 Monte Carlo simulations

200 1
f — Reference — Lognormal (MLE) L
——PC-NARX -—-MCS-based KDE £
S -~ PCE-based KDE e
o 0.8 P
5 150 o s
g 508 3, =0.021 %
& 100 2z //,/
Z ] 04
= Qo
3 3 j
S 50 o / ,=0045
a \ 0.2 $ % O =
7 P S
/ [ L
. \\\ 0 iz omzEl —
0 0.01 0.02 0.03 0.04 0 02 04 06 08 1 1.2
max]y(t)| PGA (g)
PDF of max. drift Fragility curves for two drift thresholds
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Polynomial chaos expansions  Extensions

Other usage of polynomial chaos expansions

Bayesian inversion

[~ observations

— predictions

® PCE of the forward model used in conjunction
with Markov Chain Monte Carlo (MCMC)
simulation

uncertainty

Nagel & Sudret, PEM (2016)

300 100 500
time ¢ [120]

g

® Spectral likelihood expansions S

Nagel & Sudret, J. Comp. Phys. (2016)

Propagation of mixed epistemic/aleatory uncertain- .
ties

alytical response], ¢

® Input uncertainty modelled by free (resp.) 0s
parametric p-boxes -

® Uncertainty propagation using augmented spaces  oz----oe j
and optimization g

Schébi & Sudret, PEM (2017) ; J. Comp. Phys (2017) X
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Low-rank tensor approximations

Outline

O Low-rank tensor approximations
Theory in a nutshell
Reliability of a truss structure
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Low-rank tensor approximations  Theory in a nutshell

Introduction

® Polynomial chaos expansions (PCE) represent the model output on a fixed,
predetermined basis:

M
Y= yalalX) Ta(X) =[] P (X))
aeNM =1

® Sparse PCEs are built from a pre-selected set of candidate basis functions A

® High-dimensional problems (e.g. M > 50) may still be challenging for sparse
PCE in case of small experimental designs (n < 100)
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Low-rank tensor approximations  Theory in a nutshell

Low-rank tensor representations

Rank-1 function

A rank-1 function of @ € Dx is a product of univariate functions of each

component:
M
=11

Canonical low-rank approximation (LRA)

A canonical decomposition of M(m) is of the form Nouy, Arch. Comput. Meth. Eng. (2010)

LRA Z b H

where:
® R is the rank (# terms in the sum)
vl(i)(xi) are univariate function of x;

® }; are normalizing coefficients
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Low-rank tensor approximations  Theory in a nutshell

Low-rank tensor representations

Polynomial expansions Doostan et al., 2013

By expanding vl(i)(Xi) onto polynomial basis orthonormal w.r.t. fx, one gets:
R

Y=>"b H Z P (X)

=1 i=1 =
where:

° P,E”(Xi) is k-th degree univariate polynomial of X;
® p, is the maximum degree of P,éi)

° z,?)l are coefficients of P,gi) in the [-th rank-1 term

Complexity

Assuming an isotropic representation (p; = p), the number of unknown
coefficients is R(p - M + 1)

[ Linear increase with dimensionality M
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Low-rank tensor approximations  Theory in a nutshell

Greedy construction of the LRA

Chevreuil et al. (2015); Konakli & Sudret (2016)

® An greedy construction is carried out by iteratively addlng rank-1 terms. The

r-th approximation reads Y, = Me(X) =" i (X
® |n each iteration, alternate least-squares are used (correction and updating
steps)
Correction step: sequential updating of zgj), j=1,..., M, to build w,:
P 2
mfargmln M= M, s — HZZ,”P(Z) ZC!@PIE”
¢ERPI
i#j k=0 k=0 £

Updating step: evaluation of normalizing coefficients {b1, ... , b, }:

2

b= argt mm Z Brwy

£
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Low-rank tensor approximations

Elastic truss

Reliability of a truss structure

Structural model

P, P, P, P P, P,
l l l l l E"A ’ l
|
\
| EuA, E A, ‘
5,4, lv 8,
2m

Probabilistic model

Blatman & Sudret (2011)

® Response quantity: maximum
deflection U

® Reliability analysis:

Py = IP(U > unm)

Variable Distribution mean CoV
Hor. bars cross sectionA; [m] Lognormal 0.002 0.10
Oblique bars cross section A3 [m]  Lognormal 0.001 0.10
Young's moduli Eq, E2 [MPa] Lognormal 210,000 0.10
Loads Pi, ..., Ps [KN] Gumbel 50 0.15

Surrogate models for UQ

ICVRAM/ISUMA - April 9, 2018
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Low-rank tensor approximations  Reliability of a truss structure

Elastic truss

Konakli & Sudret, Prob. Eng. Mech (2016)

Surrogate modelling error

® Smaller validation error for
LRA when ED is small
(N < 100)

érr

® Faster error decrease for
PCE

® However ...

30 50 100 200 500
N
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Low-rank tensor approximations

Reliability of a truss structure

Elastic truss: validation plots

Konakli & Sudret, Prob. Eng. Mech (2016)

N=100 N=100

0.15

0.1

)’}LRA

0.05

0.05 0.1 0.15 0.05 0.1

0.15
Y

Low-rank approximation Polynomial chaos expansion

Polynomial chaos approximation is biased in the high values

B. Sudret (Chair of Risk, Safety & UQ)

Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 56 /70



Low-rank tensor approximations  Reliability of a truss structure

PDF of the truss deflection

Size of the experimental design: 50 (resp. 100) samples from Sobol’ sequence

Kernel density estimates of the PDF in the linear scale
N=50 N=100
40 40
. ence
30 301
220 220
10 10F
0 0
0.04 0.06 0.08 0.1 0.12 0.14 0.04 0.06 0.08 0.1 0.12 0.14
u [m] u [m]
50 samples 100 samples

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018



Low-rank tensor approximations  Reliability of a truss structure

PDF of the truss deflection

Size of the experimental design: 50 (resp. 100) samples from Sobol’ sequence

Kernel density estimates of the PDF in the log scale

N=50
10’ 10"
510° =10
107 107
1078 : ‘ : : 107 ‘ : : :
0.04 0.06 0.08 0.1 0.12 0.14 0.04 0.06 0.08 0.1 0.12 0.14
u [m] u [m]
50 samples 100 samples
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Low-rank tensor approximations  Reliability of a truss structure

Truss deflection - reliability analysis

Probability of failure
® LRA/PCE built from 50 samples

® Post-processing by crude Monte Carlo simulation: Py =P (U > wiim)

1 N=50
10 2 ‘ ‘ ‘ :&Sé)RM Number of model evaluations
ulim (m)  SORM IS

0.10 387 375
0.11 365 553
0.12 372 660
0.13 367 755
0.14 379 1,067

107 ‘ ‘ ‘ ‘ 0.15 391 1,179

10 11 12 13 14 15

Uy [cm]

Full curve at the cost of 50 finite element analyses
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Kriging (a.k.a Gaussian process modelling)

Outline

@ Kriging (a.k.a Gaussian process modelling)
Kriging equations
Use in structural reliability
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Kriging (a.k.a Gaussian process modelling)  Kriging equations

Gaussian process modelling (a.k.a Kriging)

Santner, Williams & Notz (2003)

Kriging assumes that M(x) is a trajectory of an underlying Gaussian process
M(@) ~ MW (@) = 87 f(2) + 0° Z(z,w)

where:
e 37 f(x): trend

® Z(x,w): zero mean, unit variance Gaussian process with autocorrelation

function, e.g. :
M op— 2\ 2
R (w, :c’) = exp E - <9kk)

k=1

® o2: variance

The Gaussian measure artificially introduced is different from the
aleatory uncertainty on the model parameters X
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Kriging (a.k.a Gaussian process modelling)  Kriging equations

Kriging prediction

Unknown parameters

® Parameters {0, 3, o°} are estimated from the experimental design
Y={yi=M(x:),i=1,...,n} by maximum likelihood estimation, cross
validation or Bayesian calibration

Mean predictor g —— -
i@ B (Yo FE) | e
/,Li;(w) = ‘f (w) ﬂ + r (w) R (y - F ’6) 8rle e Experimental design
6 95% confidence interval
where: 4
ri(@)=R(z—2®, 0 :
R =R (D — :E(j), 0) .
F;=f; (w(”) »

Kriging variance

T ]! T
(@) =0y |1-( f@T r<w>T>H 2} “&”
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Kriging (a.k.a Gaussian process modelling) ~ Use in structural reliability

Use of Kriging for structural reliability analysis

® From a given experimental design X = {wm, ,w(">}, Kriging yields a
mean predictor pg () and the Kriging variance o5 (x)

® The mean predictor is substituted for the “true” limit state function, defining
the surrogate failure domain

Dfo = {:c € Dx : /l;(:.’l}) < O}

® The probability of failure is approximated by: Kaymaz, Struc. Safety (2005)

Pl =P [1-(X) <0] = /h fx(z)dx =E [1D?(X)}

® Monte Carlo simulation can be used on the surrogate model:
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Kriging (a.k.a Gaussian process modelling) ~ Use in structural reliability

Confidence bounds on the probability of failure

Shifted failure domains Dubourg et al. , Struct. Mult. Opt. (2011)
® Let us define a confidence level (1 — ) and ki1—o = @71 (1 — /2), i.e. 1.96 if
1—a=95%, and:

D; = {ac € Dx : pp(x) +hki—aop(x) < 0}

D} = {@ €Dx : po(@) — k1o oo(2) < 0}

® Interpretation (1 — a = 95%):

° |fxe D? it belongs to the true failure domain with a 50% chance
° |fx e D;r it belongs to the true failure domain with 95% chance:
conservative estimation

Bounds on the probability of failure

— 0 + - 0 +
D; CD}CD; & P <P/<P
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Kriging (a.k.a Gaussian process modelling) ~ Use in structural reliability

Adaptive designs for reliability analysis

Premise

® When using high-fidelity computational models for assessing structural
reliability, the goal is to minimize the number of runs

® Adaptive experimental designs allow one to start from a small ED and enrich it
with new points in suitable regions (i.e. close to to the limit state surface)

Enrichment (Iﬂfl”) criterion Bichon et al. , (2008, 2011); Echard et al. (2011); Bect et al. (2012)

The following learning function is used:

L) - 1)

o ()

® Small if p () = 0 (x close to the limit state surface) and/or o o (x) >> 0
(poor local accuracy)

® The probability of misclassification is ®(—LF(x))

® At each iteration, the new point is: x* = argmin LF(x)
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Kriging (a.k.a Gaussian process modelling) ~ Use in structural reliability

PC-Kriging

Schobi & Sudret, 1JUQ (2015); Kersaudy et al. , J. Comp. Phys (2015); chébi & Sudret, ASME J. Risk (2016);
Heuristics: Combine polynomial chaos expansions (PCE) and Kriging
® PCE approximates the global behaviour of the computational model

® Kriging allows for local interpolation and provides a local error estimate

Universal Kriging model with a sparse PC expansion as a trend

M(@) ~ MED (@) = Y~ tatba(@) + 0 Z(@,w)

acA

PC-Kriging calibration

® Sequential PC-Kriging: least-angle regression (LAR) detects a sparse basis,
then PCE coefficients are calibrated together with the auto-correlation
parameters

® Optimized PC-Kriging: universal Kriging models are calibrated at each step of
LAR

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 65 /70



Kriging (a.k.a Gaussian process modelling) ~ Use in structural reliability

Conclusions

___________________________________________________________________________|]
® Surrogate models are unavoidable for solving uncertainty quantification
problems involving costly computational models (e.g. finite element models)

® Depending on the analysis, specific surrogates are most suitable: polynomial
chaos expansions for distribution- and sensitivity analysis, low-rank tensor
approximations and Kriging for reliability analysis

® Kriging and PC-Kriging are suitable for adaptive algorithms (enrichment of the
experimental design)

® All these techniques are non-intrusive: they rely on experimental designs, the
size of which is a user’s choice

® They are versatile, general-purpose and field-independent

® All the presented algorithms are available in the general-purpose uncertainty
quantification software UQLab

B. Sudret (Chair of Risk, Safety & UQ) Surrogate models for UQ ICVRAM/ISUMA - April 9, 2018 66 /70



B. Sudret (Chair of Risk, Safet

Kriging (a.k.a Gaussian process modelling)

WwWWw.uq

+ Common marginals

- Support for user-defined marginals

= Support for bounds on all distribu-
tions (including user-defined)

* Gaussian copula

Use in structural reliability

lab.com

MODELLING FACILITIES

« Simple text strings

* MATLAB m-files

* MATLAB handles

« Simple API to produce wrappers to
commercial/external solvers

- Sparse_degree-adaptive Polynomial
Chaos Expansions

- Gaussian process modelling
(Kriging)

« Polynomial-Chaos Kriging

= Low-rank tensor approximations

RELIABII ANALYSIS (RARE EVENT ESTIM.

+ FORM/SORM approximation
« Monte Carlo Simulation (MCS)
« Importance Sampling

* Subset Simulation

« Adaptive Kriging (AK-MCS)

« Correlation-based indices

« Standard Regression Coefficients
« Cotter measure

= Morris indices

« Sampling-based Sobol” indices

« PCE-based Sobol’ indices

'UPCOMING FEATURES

+ UQLINK: easily connect UQLAB to external modelling software
*Bayesian model calibration/inversion toolbox

+ Random fields discretization and sampling toolbox

* Support vector machines for regression and classification

« Reliability-based design optimization (RBDO)

+ Advanced dependence modelling and inference with vine copulas

rogate m

odels for U
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Kriging (a.k.a Gaussian process modelling) ~ Use in structural reliability

UQLab: The Uncertainty Quantification Laboratory

http://www.uqlab.com

Country # Users
m United States 237

UQLab France 150

Switzerland 126

China 101

* Release of V0.9 on July 1st, 2015; Germany "

V0.92 on March 1st, 2016 United Kingdom 71

) Italy 47

® Release of V1.0 on April 28th, 2017 Indi 36
UQLabCore + Modules ndia

Canada 32

® 1250 downloads, 700+ active users Belgium 30

from 59 countries
As of April 1st, 2018
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Kriging (a.k.a Gaussian process modelling)

UQLab users

Use in structural reliability
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Kriging (a.k.a Gaussian process modelling) ~ Use in structural reliability

Questions ?

The Uncertainty
Quantification
Laboratory

www.uqlab.com

AT

UQLab,

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

Thank you very much for your attention !
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