
Chapter 5

Probabilistic Design of Structures Submitted to
Fatigue

5.1. Introduction

The fatigue behavior of materials submitted to cyclic loading is a random
phenomenon at any scale of description. When considering materials without
microscopic defects, the fatigue initiation sites usually correspond to the creation of
slip bands within the superficial grains and are influenced by the size and the location
of the grains as well as the roughness of the material surface. When considering
materials with inclusions (e.g. carbides within nickel-based alloys) or defects (micro-
cavities in cast steels), the latter may become preferential sites for crack initiation.
The location and the size of these defects within an elementary material volume are
naturally random ([BAT 10], Chapter 3).

Once the crack has been initiated at the microscopic scale, its trans-granular
propagation in stage I is controlled by the crystalline orientation of the grain and its
neighbors: the fine description of this phenomenon can be deterministically modeled
at the grain scale. Nevertheless, when considering the crack propagation at the
macroscopic scale of the structure, the phenomenon is still random.

At the specimen scale, the different mechanisms that are presented above, cannot
be predicted: deterministically the lifetime of a specimen of a particular material
(i.e. whose composition is perfectly controlled) subjected to an identical loading,
varies from one specimen to another: this is the distribution observed by any
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experimenter, and which can be represented by a scatter plot within the (logN, S)
plane, where S is the loading amplitude and N the number of cycles to failure
measured according to the standards, e.g. [AFN 90].

If the fatigue phenomenon is considered through the propagation of a crack under
a cyclic loading at the macroscopic scale, it is usually observed that the parameters
controlling the propagation (e.g. Paris law’s parameters [PAR 63]) are random, as
shown, for instance in [VIR 78] for aluminum.

Thus the random aspect of the fatigue phenomenon seems to be occurring at all
scales of description. However, if we pay a close attention to the regulations in force
regarding the behavior of loaded structures under fatigue conditions, they are based on
deterministic rules (RCC-M code for the nuclear industry [AFC 00], AC25.571-1
rules of the Federal Aviation Administration for the space industry, etc.). Relying
on so-called conservative criteria (which means that the design performed according
to these criteria shall ensure safety by construction), they are based on simplified
engineering models. In addition, academic work on fatigue often tends to explain
deterministically how the fatigue phenomena occur.

From these initial observations, it seems important to develop a coherent
probabilistic fatigue phenomenon approach based on a fine description of the physics
at the desired scale and on a rigorous treatment of uncertainty. For the last ten
years, the uncertainty treatment in physical models has been studied in various
probabilistic engineering mechanics (reliability of the structures, domains, stochastic
finite elements). It is therefore suitable to apply the general uncertainty quantification
methods to the fatigue problems of materials and structures: this is what this chapter
focuses on.

A general framework dealing with the treatment of the uncertainties in mechanical
models is proposed in section 5.2. Different statistical treatment methods of fatigue
data are then described in section 5.3. A probabilistic design methodology is then
proposed in section 5.4. The uncertainty issue regarding the propagation of existing
cracks is addressed in section 5.5, by considering some non-destructive test data to
update the predictions.

5.2. Treatment of hazard in mechanical models

5.2.1. General scheme

The treatment of uncertainties in mechanical models has been studied for the
past 30 years and took different names such as random mechanics [KRE 83],
structural reliability [DIT 96, LEM 05, MEL 99], stochastic finite elements [GHA 91]
or sensitivity analysis [SAL 00, SAL 04] depending on the research area. Under these
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different names, we can find a common methodology which allow us to come up with
Figure 5.1 [SUD 07].

Figure 5.1. Uncertainty treatment in mechanical models

In the first step (called A), we usually define the model of the considered
mechanical system, and especially its input parameters and its response (also named
quantity of interest). We shall call x the vector of the input parameters, which
may describe the geometry of the system (length of the elements, shape of the
cross-sections, etc.), the behavior (elasticity moduli, parameters of the constitutive
laws) and the applied loading. The response y = M(x) is usually a vector
gathering displacements, stress and strain components, internal variables (strain
hardening, damage indicators), etc. It may also contain some post-processed
quantities (e.g. amplitudes of extracted cycles by the Rainflow method, cumulative
damage, etc.). Criteria related to these quantities of interest are also usually defined
(e.g. acceptable threshold for a specific response in the context of reliability analysis).

5.2.2. Probabilistic model of the input parameters

As the model and its input parameters have been defined, we shall now focus on
those parameters that are uncertain and define a probabilistic modeling. The sources
of uncertainty, which can be multiple, are usually split into two categories:

– The epistemic uncertainties, which are due to a lack of knowledge (e.g. lack of
precision of the measurements, lack of data which may lead to insufficient reliable
statistical sampling, etc.). They can usually be reduced in a sense since an acquisition
of additional data or more precise data allows us to decrease their number.

– The random uncertainties, which are intrinsic with respect to the observed
parameter, and cannot be reduced. This is typically the case for the quantity “number
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of cycles to failure of a material under cyclic loading with a given amplitude”: the
more specimens are tested in the same experimental conditions, the more likely it is
to find some extreme values of this number of cycles (low or high). This random
uncertainty can also show a spatial variability as is the case for the properties of
geomaterials.

Building a probabilistic model of the parameters (step B) consists of defining
the probability distribution function (PDF) of the random vector X of the input
parameters. When we do not have enough data to model the variability of a parameter,
we can rely on expert judgment: we assume a certain shape of the distribution of the
considered parameter (e.g. Gaussian distribution, uniform, lognormal, Weibull, etc.)
and then we set up the mean value and the standard deviation of the distribution. To
do so, guidelines are available in [JOI 02].

When data is available, we may use common statistical inference techniques
[SAP 06]. In general, we search for the best distribution among selected families
(for instance, using the maximum likelihood method) and then carry out goodness-
of-fit tests to validate or discard the different choices. For fatigue issues, this type
of statistical analysis is performed to process test data in order to establish the
probabilistic Wöhler curves, as we will see in section 5.3. When the available
sample set has a small size, we may combine the data with some prior information
on the distribution (that represents expert judgment) by using Bayesian statistics
[ROB 92, DRO 04].

Sometimes, the variability of the parameters of interest cannot be directly
measured (e.g. parameters of the model of crack initiation), but this variability can
be apprehended through the measurements of quantities of interest which depend
on it (e.g. number of cycles to failure). In these cases we have to rely on
probabilistic reverse methods. Broadly speaking these inverse problems are unsolved
yet. Some recent studies have recently been published in the field of fatigue though
[PER 08, SCH 07]. Whatever the selected approach, step B eventually yields a
probabilistic description of the input data as the probability density function fX(x)
of the random vector of the input parameters X (see Appendix A for the elementary
notions of probability).

5.2.3. Uncertainty propagation methods

Once both the mechanical model and the probabilistic model of its input
parameters have been established, we shall focus on the propagation of uncertainty
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(step C in Figure 5.1). We are now ready to characterize the random response of the
model, written as Y = M(X)1.

Figure 5.2. Classification of the methods of uncertainty propagation

Depending on what information we are looking for on Y (which is assumed to
be a scalar quantity in this chapter for the sake of simplicity), we usually distinguish
different types of analyses (Figure 5.2):

– Analysis of the central tendency, where we mainly focus on the mean value µY

and on the variance σ2
Y of the quantity of interest Y (higher order statistical moments

may also be computed). If the distribution of the response Y was Gaussian, these
two scalars would completely characterize it. However, this assumption is usually
wrong in practice: thus the statistical moments shall be used for what they are, without
deducing any information on the distribution of Y from their values.

– Reliability analysis, where we focus on the probability that the response is above
a certain threshold ȳ. We then have to estimate the tail of the distribution of Y in this
case. The associated probability (called failure probability) is usually low, with values
ranging from 10−2 to 10−8.

– Distribution analysis, where we are looking to characterize the probability
density function of Y completely.

Specific methods have been proposed for every type of problem, which are given
below. For more information, refer to [SUD 07]:

– The Monte Carlo method is the best known method of uncertainty propagation
[RUB 81]. It allows us to resolve the problems presented above at least theoretically.

1. If the variability of some parameters of the model is equal to zero or is negligible, we can
consider them as deterministic and gather them within a vector d, and we shall write Y =
M(X,d).
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It relies on the simulation of random numbers by specific algorithms which generate
a sample set of input parameters conforming to the probabilistic model built in step
B (i.e. according to the distribution fX ). In general, this method is quite efficient
for the calculation of the first statistical moments mean value and variance but gets
computationally expensive when considering reliability or distribution analysis.

– The perturbation method, which was developed in mechanics in the 1980s, relies
on a Taylor series expansion of model M around the nominal value of parameters x0

and allows the mean value and standard deviation of the quantities of interest to be
efficiently estimated. The gradients of model M with respect to the input parameters
need to be calculated. This method is nowadays used efficiently when these gradients
are directly implemented into the finite element codes used in industrial application
(e.g. Code_Aster [EDF 06]).

– The resolution of reliability problems, i.e. the estimation of the probability of
failure historically led to some specific methods back in the 1970s. The FORM/SORM
methods (respectively first and second order reliability method) were established in
the 1980s and have been used by some industries (offshore, nuclear industry) for about
15 years. They are approximation methods of the distribution tail of the response and
do not allow us to estimate the quality of the obtained result. They are usually coupled
to some advanced simulation methods (directional simulation, importance sampling,
subset simulation, etc.) [LEM 09].

– Initially introduced in the spectral stochastic finite elements method [GHA 91],
representations of response Y by polynominal chaos are nowadays a promising
approach for the treatment of uncertainties. The principle is to consider the
random response Y within a suitable functional space of random variables, in
which a foundation is built. Response Y is then completely represented through
its “coordinates” in this basis, which are the coefficients of the polynominal chaos
expansion. These coefficients may be calculated by some non-intrusive methods
from a limited number of model evaluations, namely Y = {y(i) = M(x(i)), i =
1, . . . , N}. The analytical post-processing of the coefficients provides the distribution
of Y at no additional calculation costs as well as its statistical moments, the
probabilities of exceeding a threshold, etc. [SUD 07].

– Most of the methods of uncertainty propagation give, as by-products (with
almost no additional calculation), some information on the relative significance of
the input parameters of the model: we call these by-products importance factor or
sensitivity indices depending on the methods. This hierarchization (or ranking) of the
parameters according to their importance is called “step C” in Figure 5.1.

5.2.4. Conclusion

In this introductory part, we tried to focus on defining a general framework
for dialing with uncertainties in mechanical models. We defined of the different
necessary ingredients and then presented the most commonly used calculation
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methods. The general scheme will now be applied to different problems related to
the fatigue of materials and structures.

5.3. Plotting probabilistic S–N curves

5.3.1. Introduction

The experimental points obtained from fatigue testing are usually plotted in the
“amplitude S/number of cycles to failure N” space in order to get the so-called Wöhler
curves ([BAT 10], Chapter 2). In France, the statistical treatment obeys a standard
[AFN 91] (mainly inspired by the work of Bastenaire [BAS 60]), which provides
methods to obtain the endurance limit using the staircase method (Section 5 of the
standard), the median Wöhler curve (Section 6), or some probabilistic S −N curves
(ESOPE method, Section 9).

The latter is summarized below in Section 5.3.2. A global approach for
establishing probabilistic S − N curves is proposed. This approach is based on the
studies performed independently by Guédé [GUÉ 05], Perrin [PER 08], and Pascual
and Meeker [PAS 97, PAS 99]. It has recently been used in industry by EDF and
EADS [SCH 06, SCH 07].

Regardless of the approach, we consider a sample set of measurements:

E = {(Si, Ni), i = 1, . . . , Q} [5.1]

where Ni is the number of cycles to failure measured under alternate stress of
amplitude Si and Q is the size of the sample set. We consider that the sample set
contains test results carried out in the same experimental conditions, allowing one to
treat all the experimental points as a whole. We will also consider the data obtained
in the case when the fatigue test has been stopped before failure has occurred. This
so-called censored data is denoted by N∗

i .

5.3.2. ESOPE method

The ESOPE method, recommended by the AFNOR standard (A 03-405, Section 8)
[AFN 91] is based on the following assumption: within a sample E as presented above,
we suppose that the fraction F (S,N) of the specimens, which failed before N cycles
of amplitude S, has the following particular form:

F (S,N) = Φ

(
S − µ(N)

σ

)
[5.2]

where σ is a distribution parameter, Φ is the standard normal (Gaussian) cumulative
distribution function (see equation [5.31]) and µ(N) is a curve whose shape is
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prescribed by the analyst and whose parameters are estimated from E . We should
note that the curve representing the median life time N50% (corresponding to points
such that F (S,N) = 0.5) corresponds to S = µ(N), according to equation [5.2],
since Φ−1(0.5) = 0. The median curve gives, for each stress level S, the value N50%

such that there is as much chance for a specimen under loading S to fail before or after
N50% cycles.

On the other hand, the quantity F (S,N) is an estimation of the cumulative
distribution function FNS

(N ;S) of the random variable NS(ω) defined2 as the
number of cycles to failure of the considered material, under loading amplitude S. As
a consequence, according to [5.2], the isoprobabilistic failure curves Np(S) defined as

P (NS(ω) ≤ Np(S)) = p [5.3]

are also defined within the plane (N,S) by the following equation:

S = µ(N) + σΦ−1(p) [5.4]

It is clear they may be obtained by vertically switching the median curve by a
quantity σΦ−1(p). In practice, we usually take a parametric form for this median
lifetime, e.g. as proposed by the AFNORA 03-405 norm:

µ(N) = a+ bN c [5.5]

We then estimate parameters a, b, c using the maximum likelihood method 5 (see
section 5.7.3) by combining equations [5.2] and [5.5] to get:

FNS
(N ;S) = Φ

(
S − [a+ bN c]

σ

)
[5.6]

From which the probability density function fNS (N ;S) can be derived. We can then
write the likelihood of parameters a, b, c and estimate these parameters by maximizing
the likelihood function.

NOTE: Equation [5.6] is often given in the following interpretation: “the
variability of stress S, for a fixed life time N is normally distributed with a standard
value σ.” Actually, this assertion does not make any sense since, from an experimental
point of view, the loading amplitude S is fixed (and not at all random!). Conversely,
lifetime N under loading S is a random variable since it is related to the occurrence
of cracking mechanisms at the microscopic scale that cannot be deterministically
described at the macroscopic scale, as explained in the introduction.

2. Throughout the whole chapter, notation ω highlights the random property of the considered
quantity. When there is no ambiguity, ω can be omitted for the sake of simplicity.
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5.3.3. Guédé-Perrin-Pascual-Meeker method (GPPM)

The ESOPE method, which was described above, does not explicitly provide the
probability density function of the random variables NS(ω) modeling the lifetime
of the specimens. Thus it is not suitable for a complete probabilistic assessment
of a structure under fatigue loading, as we will see later on. The problem is better
addressed by the direct modeling of the physically uncertain quantities, namely the
number of cycles to failure of the specimens under loading amplitude S, i.e. by the
inference of the random variables NS(ω).

Several formulations were proposed in [SUD 03a, GUÉ 05] and were further
elaborated by Perrin [PER 05]. The final formalism is actually rather close to the one
proposed independently by Pascual and Meeker [PAS 97, PAS 99], which explains the
GPPM acronym.

5.3.3.1. Guédé’s assumptions

The approach by Guédé is split into different steps:
– The choice of the distribution for the variables NS(ω): a lognormal distribution

is usually selected (the logarithm of the number of cycles to failure is supposed to
follow a Gaussian distribution). We should mention that other choices are possible
(including the Weibull law). The hypothesis has to be validated a posteriori by
performing some statistical tests.

– The description of the parameters of the distribution of NS(ω) as a function of
S. The initial work carried out by Sudret et al. [SUD 03a] assumes that the mean
value λ(S) of lnNS can be written as follows (Stromeyer’s formula):

λ(S) = A ln(S − SD) +B [5.7]

We may then consider either a constant standard deviation [LOR 05] (which is
reasonable if the sample set contains mainly points in the low cycle domain), or a
variable standard deviation which is a function of the amplitude of the loading S:

σ(S) = δ λ(S) [5.8]

This last equation allows us to represent the large scattering of the data usually
observed in the high cycle fatigue domain

– Regarding the type of dependency between the random variables NS(ω) for
different values of S, the hypothesis of perfect dependency has been adopted: it
corresponds to the intuitive idea that if we could test the same specimen at different
loading levels (which cannot actually be performed since fatigue tests are destructive),
the fatigue strength would be uniformly good or bad, meaning that the number of
cycles to failure would be, regardless of S, away from the median value with more or
less the same proportions.
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5.3.3.2. Model identification

The previous assumptions allow us to write the random variable NS(ω) as follows:

lnNS(ω) = λ(S) + σ(S) ξ(ω) = (A ln(S − SD) +B)(1 + δ ξ(ω)) [5.9]

where ξ(ω) is a standard Gaussian variable (i.e. with a mean value equal to zero and
a unit standard deviation). At this stage, the probabilistic model depends on the 4
parameters A,B (shape of the median curve), SD (asymptote, which is considered as
an infinite endurance limit) and δ (coefficient of varicetion of ln(Ns)). Having a single
variable ξ(ω) in [5.9] (and not one variable ξS(ω) for each amplitude) corresponds to
the perfect dependency assumption described previously. From equations [5.7]–[5.7],
we can get the probability density function of variable NS(ω):

fNS (n, S;A,B, SD, δ) =
1

δ [A ln(S − SD) +B]n
φ

×
(
lnn− [A ln(S − SD) +B]

δ [A ln(S − SD) +B]

)
[5.10]

where φ(x) = e−x2/2/
√
2π is the standard normal probability density function.

For a given sample set E (see equation [5.1]), the likelihood of parameters A,B,
SD and δ reads:

L(A,B, SD, δ; E) =
Q∏
i=1

fNS
(Ni, Si;A,B, SD, δ) [5.11]

The maximum likelihood method consists of estimating the unknown parameters
A,B, SD, δ by maximizing the previous quantity (or by minimizing the log-likelihood
−2 lnL). The intuitive interpretation of the method is simple: it leads to the choice
of the parameters which maximize the probability of having observed the available
sample set E . It is worth noting that the censored data N∗

i (no failure observed before
Ni cycles with an amplitude Si) can be used within equation [5.11] by replacing the
probability density fNS (Ni, Si;A,B, SD, δ) by 1−FNS (N

∗
i , Si;A,B, SD, δ), where

the cumulative distribution function FNS
is given by:

FNS (n, S;A,B, SD, δ) = Φ

(
lnn− [A ln(S − SD) +B]

δ [A ln(S − SD) +B]

)
[5.12]

and Φ(x) is the standard normal cumulative distribution function.
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Once the parameters have been estimated from the sample set (they are denoted
with a hat from now on), the S − N curves can be naturally obtained from equation
[5.9]. The equation of the iso-probability failure curve p is

Np(S) = (Â ln(S − ŜD) + B̂)(1 + δ̂ ξp) [5.13]

where ξp = Φ−1(p) is the quantile of level p of the standard normal distribution. The
median curve (ξp = 0) and, for instance, the quantiles at 5% and 95% (ξp = ±1.645)
can then be easily plotted.

5.3.3.3. GPPM method

In the previous section parameter SD was introduced as a fitting parameter in
order to characterize an asymptotic behavior in the high cycle domain. However,
this parameter could be considered from two different perspectives:

– It may be viewed as a deterministic fitting parameter, i.e. a stress amplitude such
that a fatigue test carried out below this level would never lead to failure. This is what
was assumed in the previous paragraph. Then the iso-probability curves have the same
horizontal asymptote at SD in this case.

– The fatigue limit may also be considered as a “true” material parameter, whose
value differs from one specimen to the other: it would be the critical amplitude
such as, for the considered specimen, failure never occurs for any cyclic loading
with an amplitude lower than this value. In that case, SD should be considered a
random variable whose realization is different (and obviously unknown) for every
tested specimen. In this context it is meaningful to try to infer the distribution of
SD from data together with the other parameters describing the probabilistic Wöhler
curves: this is the goal of the GPPM model.

The same assumptions as in Section 5.3.3.1 are taken into account except for
parameter SD which is now modeled as a random variable, with a probability
density function fSD

(sD;θ), where θ is the vector of the distribution parameters
(e.g. θ = (λSD , ζSD ) for a lognormal law). The probability density function
given in equation [5.10] becomes conditional to these parameters, and is written
fNS |SD

(n, sD, S;A,B, δ). In order to calculate the likelihood (equation [5.11]), the
unconditional distribution fNS

has to be used; it can be obtained by performing the
following integration:

fNS
(n, S;A,B, δ,θ) =

∫
fNS |SD

(n, sD, S;A,B, δ) fSD
(sD;θ) dsD [5.14]

In the end, the solution of the maximum likelihood problem provides both the
estimators of the parameters controlling the failure iso-probability curves Â, B̂, δ̂ and
those of the distribution of the endurance limit SD (see details in [PER 08]).
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5.3.4. Validation of the assumptions

In both the ESOPE method and the GPPM approach, some hypotheses are
made regarding the shape of the distributions. The theory of the goodness of
fit tests [SAP 06, Chapter 14] allows these hypotheses to be validated
or rejected. These hypotheses (usually called “null hypothesis H0”) are as
follows:

ESOPE H0: variable S− [a+ bN c] follows a normal distribution with a standard
value σ (see equations [5.2] and [5.5]). For every point of the sample {(Ni, Si), i =
1, . . . , Q}, the previous quantity is calculated and a sample is then obtained {ξi, i =
1, . . . , Q} where H0 is tested.

Guédé H0: variable ξ(ω) ≡ ((lnNS(ω)/[A ln(S − SD) +B])− 1) /δ follows a
standard normal distribution. For every point of the sample {(Ni, Si), i = 1, . . . , Q},
the previous quantity is calculated and a sample is then obtained {ξi, i = 1, . . . , Q}
whose normality is tested.

GPPM H0: for each amplitude S, the random variable NS(ω) follows the
distribution given by equation [5.14].

It is then possible to quantitatively compare the different methods of the various
assumptions and to validate a posteriori.

5.3.5. Application example

To illustrate the different methods presented above, the results from Perrin
[PER 08] are reported in this section. A sample set of 153 test results on austenite steel
specimens at 20°C was presented. As presented in Figure 5.3, the different approaches
give close results in terms of median curve.

The curves of the quantiles at 2.5% and 97.5% are given in Figure 5.4. A
significant difference can be observed regarding the general shape of the associated
confidence intervals. Indeed the ESOPE method seems to underestimate the variability
in the low cycle domain.

For different amplitudes S, the probability density function of the lifetime NS(ω)
can be plotted using different methods [PER 08]. In particular the goodness-of-fit
tests lead to the rejection of the ESOPE model, which is not the case with the two
other models. The median and quantile curves obtained using both the Guédé and the
GPPM methods are very similar, which is the same regarding the probability densities
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Figure 5.3. Statistical treatment of fatigue tests on austenitic steel samples – median curves
obtained with the ESOPE method and the Guédé and GPPM methods

functions of the lifetime for some high amplitude levels. The difference between these
approaches appears for the amplitudes close to the endurance limit. The latter one is
estimated to be 236.9 MPa by the Guédé method and by a lognormal variable of mean
value 257.8 MPa and standard value of 28.4 MPa by the GPPM method.

5.3.6. Conclusion

The statistical treatment of test data is a step that cannot be ignored in the design
of sttuctures with respect to fatigue. In this section, the principles of the ESOPE
method, which is the most commonly used in the industrial domain, were presented.
An alternative formulation (named GPPM), based on the direct inference of the
distributions of the lifetimes NS(ω) was proposed and allows a random endurance
limit to be considered, whose parameters are estimated jointly with the ones describing
the median Wöhler curve. This approach leads to the treatment of an experimental
scatter plot (including censored data) without having to rely on a specific amplitude
levels and many points for each level. This is not the case for the ESOPE method
which is based on the estimation of the fraction of broken specimens before N cycles,
for each amplitude level S and thus requires a large amount of data at each level.
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Figure 5.4. Statistical treatment of fatigue tests on austenitic steel samples –
quantile curves at 2.5% and 97.5% for the different methods
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5.4. Probabilistic design with respect to crack initation: case of a loaded
pipe/under thermal fatigue conditions

5.4.1. Introduction

Defining Wöhler curves from the fatigue test data is usually the first step towards
the design of structures subjected to fatigue. Broadly speaking, in order to design
a structure, the applied loading (periodic or random loading) and its effects (stress
analysis, extraction of the stress cycles) have to be characterized, and then the damage
due to these stress cycles has to be calculated. In the case of a probabilistic analysis,
the same procedure will be carried out including the sources of uncertainty at each
step.

To do so, the deterministic design of fatigue of a component of a nuclear plant
(RCC-M code [AFC 00]) and its transposition to a probabilistic equivalent (Guédé’s
work [GUÉ 05, SUD 05]) is taken as an example. According to the general scheme
for managing uncertainty presented in section 5.2.1, the deterministic model (step A)
will be described first, then the different sources of uncertainties will be characterized
(step B) and then the uncertainties will be propagated through the model to evaluate
the reliability of the structure subjected to fatigue.

It is important to note that the whole methodology does not depend on the models
used at each step of the deterministic calculation, which are much simplified here
for the sake of clarity. The same general framework has been recently applied by
Schwob [SCH 06, SCH 07] using some multiaxial fatigue criteria in collaboration
with EADS and by Perrin [PER 06] in collaboration with Renault. It is also worth
noting that the method called stress – resistance [THO 99], which was developed for
the automotive industry by PSA Peugeot Citroën, applies the same concepts, just in a
simplified manner.

5.4.2. Deterministic model

The main steps regarding the official standards for designing pipes subjected to
fatigue are listed below [AFC 00]:

Description of the loading: The main issue here is the thermal fatigue induced by
temperature fluctuations within the pipes. It is necessary to determine the temperature
history at the inner walls of the pipes for each particular operating sequence. This
temperature history can be obtained by computational fluid dynamics (CFD) or using
some measurements on extrapolated scale models, etc.

Mechanical model: From the description of the structure’s geometry (e.g. internal
radius, thickness), of some material properties (Young’s modulus, Poisson ratio,
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parameters of the elasto-plastic constitutive laws), of the boundary conditions
(fluid/structure heat transfer coefficient) and of the loading, the strain and stress fields
are calculated as a function of time.

Extraction of fatigue cycles: From the stress tensor the equivalent stress history
is obtained by means of the Tresca criterion. Then the cycles are extracted using the
rainflow method [AMZ 94], yielding a sequence of amplitudes Si, i = 1, . . . , Nc.
The values obtained are then corrected in order to consider the effect of the mean
stress (Goodman line within Haigh diagram).

Choice of the design curve: In the RCC-M standard the design curve Nd(S) can be
obtained by modifying the median Wöhler curve Nbf (S) obtained from some tests on
specimens using coefficients so passage called factors, which empirically consider all
the factors leading to a reduced lifetime for the structure compared to the specimens,
and aiming to be conservative. The RCC-M code then defines the design curve with
the following equation:

Nd(S) = min(Nbf (S)/γN , Nbf (γ
S S)) [5.15]

The value of the reserve factors are respectively γN = 20 (reduction of the number
of cycles in the low cycle domain) and γS = 2 (increase of the applied stresses in the
high cycle domain).

Cumulative damage rule: Miner’s linear cumulative damage rule is applied
[MIN 45]: each cycle with an amplitude Si is supposed to generate the elementary
damage di = 1/Nd(Si), and this damage is supposed to accumulate at every cycle
extracted using the rainflow method:

D =

Nc∑
i=1

di =

Nc∑
i=1

1/Nd(Si) [5.16]

In order to apply the design criterion, the cumulated damage has to remain lower
than 1. When the loading applied to the structure is made of some sequences which
are supposed to be identical, the cumulative damage Dseq can then be calculated for
each single sequence. Then the lifetime of the structure can be cast as Td = 1/Dseq,
corresponding to a acceptable number of sequences.

The different steps of the calculation are presented in Figure 5.5.
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Figure 5.5. Simplified deterministic scheme for the design of a pipe submitted
to thermal fatigue

5.4.3. Probabilistic modeling of uncertainties

The computational flowchart presented in the above section involves many
parameters which are not well known in practice (e.g. the fluid/structure heat transfer
coefficient) or are intrinsically random (e.g. the lifetime of the fatigue test specimens).
It is then necessary to classify all the sources of uncertainty, and then to model them
within a consistent probabilistic frame depending on the available data (Step B of the
general scheme, Figure 5.1). By analyzing, the calculation process, step by step, the
following parameters will be successively presented:

Thermal loading: To design some part of a circuit for a specific operating range,
a thermal dimensioning signal has to be defined, either from some measurements
on real structures or scale models, or from some operating scenarios or related
thermohydraulic simulations. The uncertainty can be introduced by modeling the
fluid temperature by a random process. To do so, the properties of the process can
be identified from some long enough measurements (either within the time domain
or within the frequency domain through the power spectral density). The problem
can also be simplified if a sufficiently long deterministic temperature trajectory
representing properly the thermal fluctuations can be determined.

Mechanical model: The parameters which are usually involved in the definition
of the mechanical model (geometric dimensions, elastic or elasto-plastic properties of
the materials) present a variability which can be modeled using random variables.
The uncertainty in the geometry is related to the pipe manufacturing tolerances.



252 Fatigue of Materials and Structures

The uncertainties of the material properties can be characterized by some tests on
the considered materials or, in the absence of available data found in the literature
[JOI 02].

Design curve: The design curve was defined earlier from the specimen median
Wöhler curve from the passage factors. In section 5.3, a meticulous statistical analysis
methodology yielding the probabilistic Wöhler curves was presented. The passage
factors shall now be studied.

Passage factors γN = 20 and γS = 2, defined above, have been introduced
to the deterministic design in order to conservatively cover two effects of a very
different nature: the natural variability of the lifetime under fatigue between laboratory
specimens on the one hand and the structure within its real environment on the other
hand. These factors can then be split as follows:

γN = γN
disp · γN

passage

γS = γS
disp · γS

passage

[5.17]

In these equations, γ.
disp and γ.

passage correspond to the part connected to each
effect. Some empirical decompositions can be found in the literature, for instance
γN
disp = 2 when γN = 20 and γS

disp = 1.19 when γS = 2 [COL 98]. However,
there is no real agreement regarding this topic as the data are mostly empirical and
much connected to the type of material tested. The additional variables γS

passage and
γN
passage are called specimen-to-structure passage factors and allow us to consider the

effects of the size of the structure, its surface finish and the environmental conditions
(especially regarding temperature and chemistry in nuclear engineering, etc.).

It is obvious that these passage factors that connect the crack initiation time of
a specimen to that of a structure made of the same material (microstructure) cannot
be physically measured. In order to get a rigorous probabilistic representation, it is
then necessary to rely on some probabilistic inverse methods, which allow the factors
and their distributions to be estimated from both data on specimens and structures
(e.g. some pipe scale models that are typical of the considered real system, like the
INTHERPOL tests described in [CUR 04, CUR 05])). Details about this identification
technique are not reported in this chapter, see [PER 07a] for a detailed presentation.

5.4.4. Random cumulative damage

The cumulated damage D can be considered as the result of the computational
chain, as shown in Figure 5.5. If we now consider the input parameters of each sub-
model of this chain to be random (thermomechanical model, extraction of the cycles,
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design curve, etc.), the cumulated damage becomes random. The natural definition of
the random elementary damage related to a single cycle with a fixed amplitude S is:

d(S, ω) ≡ 1/Nstruc(S, ω) = 1/min
[
NS(ω)/γ

N
passage , NγS

passage
(ω)

]
[5.18]

In this equation, Nstruc(S, ω) is the lifetime of the structure under a loading with a
constant amplitude S, which is connected to the probabilistic Wöhler curve NS(ω)
by the passage factors. If the thermomechanical calculation followed by the rainflow
counting leads to a number of cycles Nc (possibly random), the cumulated random
damage D(ω) is then written:

D(ω) =

Nc∑
i=1

d(Si(ω), ω) [5.19]

In this equation, the random property of the damage comes from both:
– the randomness of the loading, which is propagated through the mechanical

model for evaluating the amplitude of the cycles {Sk(ω), k = 1, . . . , Nc};
– the randomness of the material fatigue strength, through the Wöhler curve.

In the case of a stationary random loading, for some loading sequences which
are long enough, the number of extracted cycles Nc becomes high and can then be
considered in a first approximation as being deterministic [TOV 01]. The amplitudes
of the extracted cycles can then be continuously represented by their probability
density function fS(s). This leads to the “continuous” definition of the random
cumulated damage:

D(ω) =

∞∫
0

Nc fS(s) dS

Nstruc(S, ω)
= Nc ES

[
1

Nstruc(S, ω)

]
[5.20]

where ES [.] stands for the mathematical expectation with respect to the probability
density function of amplitudes fS(s). Assuming Miner’s linear cumulative damage
assumption and a significant number of independent extracted cycles, the cumulative
damage defined by equation [5.19] has been proven to converge towards the one
defined by equation [5.20] [SUD 03b].

The previous continuous formulation can be successfully applied to a fatigue
assessment in the frequency domain. From the power spectral density (PSD) of the
loading, and if the mechanical model is linear, the PSD of the resulting equivalent
stress can be obtained. Some empirical formulae, such as those proposed by Dirlik
[BEN 06, DIR 85], allow the probabilistic density of the extracted cycles using the
rainflow method to be constructed, which can then be substitued into equation [5.20].
Readers are referred to the work by Guédé [GUÉ05, chapter 6, GUÉ07].
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5.4.5. Application: probabilistic design of a pipe under thermal
fatigue conditions

5.4.5.1. Problem statement and deterministic model (step A)

To illustrate the different concepts presented in this section, a piece of pipe, that is
of a circuit of a pressurized water reactor, will be considered. The results obtained
by [GUÉ 05], Chapter 7, are reported. The reader can check this reference for a
comprehensive parametric analysis of the problem under different loadings, as well
as for a comparison of the probabilistic approaches within both time and frequency
domains.

Let us consider a section of a pipe with a radius Rint and a thickness t, subjected
to a fluid temperature at the inner wall modeled by a random Gaussian process θ(t, ω),
whose average temperature is equal to 130°C and standard deviation is equal to 20°C.
This process is a pseudo-white noise whose power spectral density is constant within
the [0 ; 5 Hz] interval. From these data, a realization θ(t) is simulated on a long enough
time interval ([0 ; 360 s] here) and this signal is then considered as being periodically
reproduced. The first 10 seconds of the signal are represented in Figure 5.6. The
component service duration is considered to be equal to Nseq = 10, 000 sequences of
360 seconds.

Figure 5.6. Probabilistic design of a pipe submitted to thermal fatigue
temperature history

The stress state within the pipe can be calculated using a 1D axi-symmetrical
model with generalized plane strains (the strain component εzz is assumed to be
constant within the thickness). According to the RCC-M code, an elastic calculation is
carried out. The fluid temperature is transferred to the inner wall of the pipe through
a fluid/structure heat transfer coefficient. The external wall of the pipe is insulated
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(preventing the loss of heat). Due to the simplified form of the model, the obtained
stress tensor is diagonal and its components are varying synchronously in time. The
orthoradial stress time history σθθ(t) may be considered to perform the rainflow
counting. The amplitudes of the extracted cycles are corrected by the Goodman line
within the Haigh diagram in order to consider the average stress.

5.4.5.2. Probabilistic model (step B)

The different random variables modeling the uncertainties on the parameters of the
model are presented in Table 5.1. The choice of the probability distribution functions
and their parameters (step B) was performed as follows3:

– The properties of the materials are modeled by some lognormal laws which are
usually well adapted to this type of parameter (being positive). The coefficients of
variation have to be fixed by experts. The geometry parameters are also modeled by
lognormal distributions, with a variation coefficient made high on purpose.

– The variables physically bounded (Poisson ratio, passage factors) are modeled
by Bêta distributions.

– The probabilized Wöhler curve (equation [5.9]) was established by the Guédé
method (section 5.3.3.1) and is written as follows:

N(S, ω) = exp [(−2.28 log(S − 185.9) + 24.06 ) (1 + 0.09 ξ (ω))] [5.21]

where N(S, ω) is the crack initiation time of the specimens.

5.4.5.3. Reliability and sensitivity analysis (step C&C’)

The probability of crack initiation is studied for a prescribed number of operating
sequences Nseq. To do so, the following limit state function g is defined (the negative
values of g correspond to the values of the parameters leading to failure):

g (Nseq,X) = 1−Nseq dseq(X) [5.22]

where dseq(X) stands for the random cumulative damage related to a sequence of
360 seconds of operation, and X stands for the vector of the random variables listed
in Table 5.1.

By using the FORM method (Appendix A, section 5.7), a probability of crack
initiation is obtained: Pf = 8.59.10−2 for a service life of 10,000 sequences. This
result is confirmed by some importance sampling, which finally give Pf = 7.65.10−2.

The form method used for the calculation of the initiation probability also provides
the importance factors of the different random variables, which allows the input

3. The data used for the calculation (especially the distribution parameters) does not represent
any real structure.
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Parameter Distribution Mean value V.C †

Internal radius Rint lognormal 127.28 mm 5%
Thickness t lognormal 9.27 mm 5%
Heat capacity ρCp lognormal 4,024,000 J/kg 10%
Thermal conductivity λ lognormal 16.345 W.m−1.K−1 10%
Heat transfer coefficient H lognormal 20,000 W.K−1.m−2 30%
Young module E lognormal 189,080 MPa 10%
Poisson rotio ν Bêta [0.2; 0.4] 0.3 10%
Thermal dilatation coefficient α lognormal 16.95 10−6 10%
Yield stress Sy lognormal 190 MPa 10%
Ultimate strength Su lognormal 496 Mpa 10%
Passage factor γN

passage Bêta [7; 11] 9.39 10%
Passage factor γS

passage Bêta [1; 2] 1.68 10%
Scattering of the fatigue data Gaussian 0 Standard value: 1
ξ (equation [5.9])
† coefficient of variation, equal to the ratio of the standard deviation and the mean value.

Table 5.1. Probabilistic design of a pipe submitted to thermal fatigue:
probabilistic model of the parameters

Parameter Importance factor (%)
Scattering of fatigue data ξ 40.3
Heat transfer coefficient H 20.8
Passage factor γS

passage 13.7
Young’s module E 8.9
Thermal dilatation coefficient α 8.9
Other variables 7.4

Table 5.2. Probabilistic design of a pipe submitted to thermal fatigue:
importance factors

parameters of the model to be ranked according to their respective contribution to
the fatigue. These normalized factors (given in percentages) are listed by decreasing
order in Table 5.2.

Beyond the strict numerical values of these importance factors (which depend on
the probability density functions chosen for modeling the input parameters), the orders
of magnitude as well as the obtained classification lead to some observations. It clearly
appears that the main parameters that mainly explain the variability of the structure
crack initiation time is the scattering of the endurance of the specimens (modeled in
the probabilistic Wöhler curves). Then there are the fluid/structure transfer coefficient,
the passage factor γS

passage increasing the stress amplitudes in the high cycle domain,
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and finally the Young’s modulus and the thermal dilatation coefficient. The other
parameters have a negligible importance, which means that their variability does
not contribute to the variability of the cumulative damage (and thus to the initiation
probability). As a consequence, they can be considered to be deterministic in this type
of analysis.

5.4.6. Conclusion

In this section, we propose a general frame to address the issue of uncertainties in
the design of loaded the structure submitted to fatigue, stressing on every uncertainty
source observed in the computational chain. As an illustrative example, the probability
of crack initiation within a pipe submitted to thermal fatigue was estimated. A
quantification of the influence of every uncertain parameter on this probability was
obtained. Even if caution is required for the values, some usefully qualitative
conclusions can still be drawn for the comprehension of the problem.

5.5. Probabilistic propagation models

5.5.1. Introduction

As observed for crack initiation, the propagation of pre-existing cracks under
cyclic loading shows some randomness. An extensive experimental study performed
by Virkler et al. [VIR 78] on some alumina 2024-T3 specimens clearly shows the
scattering of crack propagation among identical specimens (Figure 5.7): 68 pre-
cracked (initial size a0 = 9 mm) rectangular sheets with a length of L = 558.8 mm,
a width of w =152.4 mm and a thickness of t =2.54 mm) are loaded under
tension-compression (∆σ = 48.28 MPa, R = 0.2). The tests are stopped when
the length of the crack reaches 49.8 mm. It can be observed that this final length
is reached between 223,000 and 321,000 cycles depending on the specimens with a
almost continuous distribution in between.

By observing Figure 5.7, two types of randomness can be noticed regarding crack
propagation:

– a global scattering of the curves, whose shapes are similar although the number
of cycles varies;

– for each curve, a local irregularity, which shows that the successive increments
of the crack size along a given trajectory are also random.
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Figure 5.7. Crack propagation – experimental propagation curves according
to Virkler et al. [VIR 78]

5.5.2. Deterministic model

Crack propagation under cyclic loading is usually modeled using the Paris-
Erdogan law [PAR 63] ([BAT 10], Chapter 6):

da

dN
= C (∆K)

m [5.23]

In this equation, a is the length of the crack, ∆K is the amplitude of the stress
intensity factor for a cycle with an amplitude equal to ∆σ and (C,m) are the typical
parameters of the studied material. In the case of a sheet with a width of w bearing a
crack in its core, the amplitude of the stress intensity factor is given by:

∆K = ∆σ F
( a

w

)√
πa F

( a

w

)
=

1√
cos

(
π a

w

) for
a

w
< 0.7 [5.24]

where F
(
a
w

)
is the Feddersen correction factor.

To reproduce the global scattering of the experimental curves using simulation,
the parameters of Paris’ law [5.23] can be made random: this is the approach used
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from now on in this chapter. For each sample of parameters (C, m), a propagation
curve is obtained and this curve can reproduce the general shape of the experimental
curves. However, the modeling of the irregularities of the curves needs the Paris-
Erdogan law to be modified by introducing a random process for modulating the size
increments during the propagation itself. This type of approach has been studied by
Ditlevsen and Olesen [DIT 86], Yang and Manning [YAN 96]. A detailed review can
be obtained from [ZHE 98].

5.5.3. Probabilistic model of the data

For each crack propagation curve, the best-fit couple of parameters (C,m) may be
estimated using an optimization procedure, which leads to a sample set. A statistical
treatment of this sample set can then be carried out to infer the best probability density
functions. Kotulski [KOT 98] shows that parameters m and logC may be reasonably
represented by truncated normal distributions (Table 5.3).

Parameter Distribution Boundaries Average Variation coefficient
m normal truncated [−∞; 3.2] 2.874 5.7%
logC normal truncated [−28; +∞] -26.155 3.7%

Correlation coefficient: ρ = −0.997

Table 5.3. Crack propagation – probability distribution functions of
(logC , m) of Paris law for the Virkler tests [KOT 98]

(da/dN given in mm/cycle)

A strong correlation between both m and logC parameters can be observed
(Figure 5.8), which leads us to think that a single and unique underlying parameter
might exist whose variability from one specimen to another explains the dispersion of
the propagation curves.

5.5.4. Propagation prediction

From the Paris model and the probabilistic description of the propagation
parameters given in Table 5.3, a cluster of propagation curves can be obtained using
the Monte Carlo simulation. This leads to a confidence interval (e.g. at a confidence
level of 95%) regarding the crack length as a function of the number of applied loading
cycles. Figure 5.9 shows the obtained median propagation curve as well as the 2.5%
and 97.5% quantiles.

It appears that the scattering observed from the simulated curves has the same
order of magnitude as that observed on the experimental curves, which validates the
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Figure 5.8. Crack propagation – sample of the parameters of the
Paris-Erdogan law for the Virkler tests (da/dN given in mm/cycle)

Figure 5.9. Crack propagation – prediction of the median propagation curve
and of the 95% confidence interval

statistical treatment of the (logC , m) data previously carried out (see [BOU 08] for
a detailed investigation of the influence of the correlation between logC and m on the
predictions).

Nevertheless, the results presented in Figure 5.9 do not give much information in
an industrial context where the best prediction of the length of the crack, as a function
of the number of applied cycles, is required. The graph only leads to the conclusion
that a crack with an initial size of 9 mm will reach a size ranging from 23.5 and
35.8 mm after 200,000 cycles with a probability of 95%. It is then obvious that a better
estimation is required to assess, for instance, an inspection planning. The following
section will focus on how to combine the previous results with the measurements
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performed on a structure of interest during the initial phase of propagation, in order to
reduce the confidence interval of the prediction.

5.5.5. Bayesian updating crack propagation models

5.5.5.1. Introduction

Bayesian statistics allows us to combine some prior information on the parameters
of a probabilistic model with some measurement data. The reader who is unfamiliar
with these concepts can get more information from Appendix A in section 5.7. In
the context of probabilistic mechanics, the Bayesian framework can be applied to
consistently combine, on the one hand, the predictions of a model whose uncertain
input parameters are modeled by random variables, and on the other hand, the
measurements of the response of the real mechanical system which was modeled.
For the precise example of crack propagation, some measurements of the crack length
obtained for different numbers of cycles at the early stage of propagation may be
introduced in order to update the prior prediction which revealed inaccurate (as seen
from the previous section).

5.5.5.2. Ingredients for a Bayesian approach to crack propagation

The probabilistic propagation model developed in section 5.5.4 is made of the
crack propagation model (Paris-Erdogan law) and the probabilistic model of the
parameters. The truncated normal distributions (Table 5.3) are considered as prior
information (regarding the Bayesian vocabulary) on the propagation parameters in the
case of 2024-T3 aluminum.

A particular specimen is now studied and the test trajectory corresponding to
the slowest propagation is for the sake of illustration chosen. Figure 5.10 clearly
shows that this test is singular since the propagation curve is largely outside the 95%
confidence interval on the prior prediction.

To compare the observations and the predictions, a measurement/model error is
usually defined, which considers the measurement of a physical quantity never to be
perfectly accurate and the entire mathematical model of the real world to always be
more or less imperfect. Thus the following link between observations and prediction
is used:

yobs = M(x̃) + e [5.25]

where yobs is the measured value and M(x̃) is the prediction of the model for the
“true value” x̃ of the vector of the input parameters. This true value is usually
unknown, but it is assumed that it corresponds to a specific realization of vector X .
The measurement/model error e is supposed to be a realization of a random variable
of prescribed distribution (usually Gaussian, with mean value equal to zero and with
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Figure 5.10. Crack propagation – a priori prediction of the propagation (median curve and
95% confidence interval) and slowest experimental propagation curve

standard deviation σe). These assumptions lead us to think that yobs is a realization of
a random variable Yobs whose conditional distribution with repect to X = x̃ reads:

Yobs|X = x̃ ∼ N
(
M(x̃);σ2

e

)
[5.26]

The previous equation then allows the formulation of a likelihood function for
the observations and calculation of an a posteriori for vector X within the Bayesian
framework.

5.5.5.3. Bayesian updating methods

The theoretical aspects of the Bayesian updating of mechanical models from
observations go beyond this chapter’s main topic. The interested reader can get more
information from [PER 08]. To summarize, two main types of resolution methods can
be distinguished regarding this issue:

– The methods which will update the prior probabilistic model of the input
parameters of the model (here, the prior probability density functions of logC and m)
from the measurements of the system response, and which then allow an a posteriori
distribution to be estimated [PER 07b]. The propagation of this new a posteriori
probabilistic model will allow an updated confidence interval to be calculated on the
propagation curve. From an algorithmic point of view, the Markov chain Monte Carlo
methods (MCMC) [ROB 96] are well adapted to the simulation of the a posteriori
distributions.

– The methods which directly deal with the updating of the model response by
defining a confidence interval, conditionally to the observations. These methods rely
on the FORM approximation method that is used in structural reliability analysis
[PER 07c, SUD 06].
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5.5.5.4. Application

The evolution of the crack length during the first part of the propagation is
supposed to be measured for a few values of the number of cycles (lower than
100,000). The Bayesian approach will allow the prediction to be updated, which
means that a 95% confidence interval on the propagation curve will be re-estimated
considering the measurement data. In this case, five measured values reported in
Table 5.4 are considered.

Crack length (mm) Number of cycles
9.4 16,345
10.0 36,673
10.4 53,883
11.0 72,556
12.0 101,080

Table 5.4. Crack propagation measurements of the crack length on a
particular sample at an early stage of propagation

The updated median curve and the 95% confidence interval are plotted in
Figure 5.11. It clearly appears that the updated prediction agrees with the observations,
and that the confidence interval is significantly reduced compared to the prior
prediction. The length of the crack at 200,000 cycles, predicted once updating has
been performed, ranges from 17.4 to 19.8 mm, with a 95% probability, the measured
value corresponding to the highest value.

Figure 5.11. Crack propagation – a priori and posteriori prediction of the crack propagation
curve (median curve and 95% confidence interval). The squares correspond to the

measurements used for the updating; the black and white squares correspond to the rest of the
considered experimental curve
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It is important to note that the probabilistic formalism previously presented allows
us to represent the model error: indeed, the experimental measurements of the crack
length are very accurate and the measurement error can thus be considered as equal
to zero. In contrast, the simplified Paris law model does not clearly allow the
irregularities from the propagation curve to be reproduced. However, the model
error introduced within the method (standard value σe = 0.2 mm for the numerical
application) allows a satisfying confidence interval to be obtained. Such a result would
not be obtained using the least squares fitting method, of a Paris curve on the five
measurements gathered from Table 5.4.

5.5.6. Conclusion

In this section, the general scheme of the uncertainty modeling was applied to
crack propagation using the classical Paris-Erdogan model. The observed scattering
on the crack propagation rate for identical specimens was well reproduced by
propagating the uncertainties identified on parameters (logC, m) through the Paris
law. The 95% confidence interval tends to become very wide when the number of
cycles increases. Nevertheless, considering the auscultation data (in this case, crack
lengths measured at an early stage of propagation) within a Bayesian framework
allows the predictions to be significantly improved as it gives an updated median
curve in accordance with the observations and strongly reduces the 95% confidence
interval.

The probabilistic approaches present the advantage to be used for any type of
underlying physical model. Thus, the use of the extended finite element method (X-
FEM) applied to crack propagation can be coupled with the methods of uncertainty
modeling as presented in section 5.2, see [NES 06, NES 07].

5.6. Conclusion

The random nature of the fatigue phenomenon within materials and structures
has been well-known for many years. Nevertheless, the consistent and rigorous
integration of all the uncertainty sources regarding the design of realistic structures
is an interesting topic. In this chapter, a general methodology of the uncertainty
treatment was described. This methodology can be applied to mechanics and also
to any domain where the numerical simulation of physical phenomena is necessary
(computational fluid, dynamics, thermal problems, neutronics, electromagnetism,
chemical engineering, etc.). This general scheme can be applied to the design of
the fatigue of mechanical parts; either at the crack initiation phase (S −N ) approach)
or at the propagation step of existing cracks (Paris-Erdogan approach).

From a general point of view, a certain French cultural reluctance to use the
probabilistic methods in industry can be observed, especially regarding the behavior of
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structures. Most of the design codes (nuclear, aerospace, civil engineering industries)
are mainly deterministic (based on conservative design ensured by safety factors),
even if some parts of the codified rules (especially the choice of characteristic
values for the calculation parameters) do have some probabilistic interpretation. As
fatigue analysis is a field where randomness is observed at various levels (material
strength, loading, etc.) and cannot be reduced, it seems important that the uncertainty
quantification methods are used as a routine in this field in the future.

5.7. Appendix A: probability theory reminder

The aim of this appendix is to recall the basics of probability theory required to
understand this chapter. It is not a mathematical course on this topic. For further
information on the statistical methods used in this chapter, readers should refer to the
books by Saporta [SAP 06] and O’Hagan and Forster [OHA 04].

5.7.1. Random variables

The classical axiomatic approach of the probability theory consists of building an
abstract probability space triplet (Ω, F , P), where Ω stands for random experiment,
F stands for which means set of sub-ensembles of steady Ω by switching to the
complementary and the finite union, and P () stands for probability measurement.
This last allows each event A ∈ F to be connected to its probability P (A) which is a
real number ranging from 0 to 1.

In probabilistic engineering mechanics random variables (and therfore the random
vectors) are used to model the uncertainty of the parameters of the mathematical model
which describes the mechanical system. A random (real) variable X(ω) is defined as
an application X : Ω 7−→ DX ⊂ R. A realization of a random variable x0 ≡
X(ω0) ∈ DX is one of the possible values that the parameter, modeled by X , can
take. The term of discrete or continuous variable is used depending on the support
DX (meaning the set of all the possible realizations of the variable) which can be
discrete or be continuous.

A random variable X(ω) is entirely defined by its cumulative distribution function,
written as FX(x) : DX 7−→ [0 , 1]:

FX(x) = P (X(ω) ≤ x) [5.27]

The cumulative distribution function evaluated at point x is then the probability
random variable4 X takes values lower than or equal to x. For a continuous random

4. From now on, the dependency on ω is omited for the sake of simplicity. The random variables
are denoted by capital letters while lowercase letters are used for realizations.
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variable, the probability density function is defined by:

fX(x) =
dFX(x)

dx
[5.28]

Therefore, quantity fX(x) dx stands for the probability that X takes a value
ranging from x to x+ dx. By definition, the integral of fX on its definition domain is
equal to 1. This is also the limit of FX(x) when x tends towards the upper boundary
of DX . The classical axiomatic approach of the probability theory consists of building
an abstract probability space defined by the triplet (Ω,F,P), where Ω stands for the
outcome space of the random experiment, F stands for the σ-algebra of events (which
means the set of all subsets of Ω that is stable by union and complementary operations)
and P() stands for the probability measure, which allows us to assign a probability
P(A) to each event A ∈ F. For instance, the uniform distribution of an interval [a , b]
has a probability density function fU (x) = 1/(b − a) if x ∈ [a , b], and 0 otherwise.
A Gaussian distribution (also called normal distribution) N (µ σ) is defined by the
following probability density for any x ∈ R:

fN (x) =
1

σ
φ

(
x− µ

σ

)
[5.29]

where φ(x) is the standard normal probability density function which can be written
as:

φ(x) =
1√
2π

e−x2/2 [5.30]

The normal cumulative distribution function, usually written as Φ, is defined by:

Φ(x) =

∫ x

−∞

1√
2π

e−t2/2 dt [5.31]

It has no analytical expression, however it is tabulated in such as Excel, Matlab, Scilab,
etc.

In this chapter, the lognormal distributions are used. By definition, a random
variable follows a lognormal distribution if its logarithm follows a Gaussian
distribution. The following equation is then used:

X ∼ LN (λ, ζ) : X = eλ+ζ ξ with ξ ∼ N (0, 1) [5.32]

The probability density of a variable LN (λ, ζ) is written as:

fLN (x) =
1

ζx
φ

(
lnx− λ

ζ

)
[5.33]
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The most likely value of a random variable corresponds to the realization x0 which
maximizes the probability density fX(x): this is what is called the mode. The usual
distributions present a single maximum (they are called uni-modal) but some multi-
modal distribution can also be built.

5.7.2. Expected value, moments, and quantiles

The expected value of a random variable is defined as:

E [X] ≡
∫
DX

x fX(x) dx [5.34]

This is what is usually called the average of X , which is also written as µX . As
long as the integral is defined, the expected value of a function g(X) can usually be
defined by:

E [g(X)] ≡
∫
DX

g(x) fX(x) dx [5.35]

The statistical moments mk (respectively centered moments µk) correspond to the
particular case where g(X) = Xk (respectively g(X) = (X − µX)k, k ∈ N):

mk =

∫
DX

xk fX(x) dx [5.36]

µk =

∫
DX

(x− µX)k fX(x) dx [5.37]

Variance σ2
X ≡ µ2 = E(X−µX)2 is the centered moment of the second order.

The standard value of X , written as σX , is the square root of the variance, and the
coefficient of variation (given as a percentage) is the ratio CVX = σX/µX

.

The quantiles of a random variable are defined from the inverse cumulative
distribution function. The quantile xq with an order of q is defined by:

xq : P (X ≤ xq) = q [5.38]

which can also be written as:

xq = F−1
X (q) [5.39]

if the cumulative distribution function FX is stricly increasing.
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5.7.3. Maximum likelihood

Step B of the general scheme of the treatment of the uncertainties consists of
proposing a probabilistic model of the input parameters of the mechanical model;
that is to say, to prescribe a probability density function fX(x) for the vector X of
these parameters.

In this chapter, only the case where the input variables can be considered as
independent is studied : fX(x) is then the product of the marginal probability density
functions fXi . If we can rely on experimental data E = {x(1), . . . , x(Q)} for the
parameters, the statistical inference techniques can be used in order to determine
a probability distribution that is consistent with the available data. The parametric
inference consists of assuming a specific form for the probability density fX (e.g.
Gaussian, lognormal, etc.) and then in estimating the parameters of this density so
that it better reproduces the sample. Let f(X;θ) be this density where f() is a known
function (e.g. equation [5.29]) and θ is the vector of parameters that shall be estimated
(e.g. θ = (µ , σ)). The likelihood function of the sample set is defined as:

L(θ ; E) =
Q∏
i=1

f(x(i);θ) [5.40]

Once the sample is known, this likelihood function only depends on θ. The
maximum likelihood principle indicates that the best choice of the parameters (called
θ̂) is then the one which maximizes the previous function, or equivalently minimizes
the log-likelihood:

θ̂ = argmin
θ

[− log L(θ ; E)] = argmin
θ

[
−

Q∑
i=1

log f(x(i);θ)

]
[5.41]

Usually, from the observation of sample set E using the tools of descriptive
statistics (e.g. histograms [SAP 06, Chapter 5]), different choices are possible
for f(X;θ). The best parameters are then estimated for each choice and the
hypotheses are validated a posteriori using goodness-of-fit tests (e.g. the Kolmogorov-
Smirnov test, the Anderson-Darling test, χ2, etc. [SAP 06, Chapter 14]). The most
relevant distribution can eventually be selected using likelihood criteria such as AIC
(Akaike Information Criterion) or BIC (Bayesian Information Criterion) [SAP 06,
Chapter 19]).
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5.7.4. Bayesian inference

Bayesian statistics is a branch of statistics coming from Bayes’ theorem which is
an elementary result of the probability theory, which states that for two random events
A and B:

P (A|B) =
P (B|A) P (A)

P (B)
[5.42]

where P (A|B) is the conditional probability of A knowing B and is equal by
definition to P (A ∩B) /P (B). The previous result can easily be applied to the
probability density functions (respectively conditional probability density functions)
of random variables.

The Bayesian approach consists in integrating some prior information on the
parameters θ to be estimated. Not only a family of distribution f(X;θ) is chosen
but also a probability density function pΘ(θ) (called prior distribution) is defined
for the so-called hyper-parameters θ. For instance the Gaussian distribution f(X;θ)
with a mean value µ and a standard value σ is selected and in addition, the mean value
µ is assumed to a priori vary between a lower and an upper bound, which comes to
modeling the hyper-parameter µ by a uniform variable between these two bounds. The
a posterior distribution fΘ can then be deduced by combining the prior distribution
and the likelihood function:

f ′′
Θ(θ) = cL(θ ; E) pΘ(θ) [5.43]

where L is the likelihood function defined in equation [5.40] and c is a normalization
factor which ensures that f ′′

Θ is a probability distribution function. This equation is
similar in principle to equation [5.42] and can be read as follows: the distribution of
Θ conditionally to the observations E is equal to the prior distribution multiplied by
the likelihood function.

Focusing on the initial problem, which is to propose the best possible probabilistic
model for parameter X , the mean value or the a posteriori mode of f ′′

Θ can be chosen
as the best parameter.

In the case of updating the predictions of a model Y = M(X) by some
observations Yobs = {y(1), . . . , y(Q)} (see section 5.5.5), the prior probabilistic
model is defined for X (which acts as hyper-parameters Θ in the above description)
and the a posteriori distribution f ′′

X is eventually propagated through the physical
model M.
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5.7.5. Reliability analysis and FORM method

A structural reliability problem is set up from the following ingredients:
a mechanical model M, a probabilistic model for its input parameters X
(i.e. a probability density function fX(x), and a failure criterion5 (see [LEM 08]
for a pedagogical introduction to structural reliability). It can be mathematically
formulated using a limit state function (also called performance function) g(X) which
shall take negative (respectively positive) values for the realizations of X such that
the mechanical system fails (respectively does not fail). The set of points x such that
g(x)= 0 defines the limit state surface. A common situation corresponds to the case
when a quantity of interest Y (obtained as the response of a mechanical model) shall
not be greater than a prescribed threshold ȳ. The associated limit state function then
reads:

g(X) = ȳ −M(X) [5.44]

The failure probability is then given by:

Pf ≡ P (g(X) ≤ 0) = P (M(X) ≥ ȳ) =

∫
Df

fX(x) dx [5.45]

where Df = {x : g(x) ≤ 0} stands for the failure domain. The Monte Carlo
simulation method allows us to evaluate the above failure probability quite easily:
the input random vector is sampled, which means that an artificial sample set of input
vectors is created according to fX , say X = {x(1), . . . ,x(N)}. For each random
vector x(i) the response M(x(i)) and then the criterion g(x(i)) are evaluated. The
failure probability is estimated by the number of times Nf the calculation leads to a
negative value of g(x(i)), divided by the total number of samples N :

P̂f =
Nf

N
[5.46]

This method is not applicable in practice for problems where the failure probability
to be evaluated is low (say from 10−2 to 10−6): indeed, about N = 400 × 10k

realizations of X are needed to get a 5% accurate estimation of a failure probability
with an order of magnitude 10−k. The Monte Carlo simulation is therefore not
possible, due to its cost, when each evaluation of M corresponds to a calculation
relying on finite elements that may take several minutes or hours.

The FORM method is an approximation method which provides an estimation of
Pf at low computational cost. The vector of parameters X is first transformed into a

5. Failure corresponds here to the “non-fulfilling of a performance assigned to the system” and
not necessarily to the collapse of the considered mechanical system.
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vector of standard normal random variables X = T (ξ), which allows equation [5.45]
to be recast as:

Pf ≡ P (g(T (ξ)) ≤ 0) =

∫
Df={ξ:g(T (ξ))≤0}

(2π)−n/2 e−∥ξ∥2/2 dξ [5.47]

where n is the dimension of ξ. In this equation, the integrands exponentially decrease
with |ξ|2. Therefore, the points of the integration domain (failure domain) that
contribute the most to the integral are those points that are close to the origin of this
standard normal space. Thus the design point ξ∗ is first computed, which is the point
of the failure domain that is the closest to the origin of the space. The limit state
surface is then linearized around ξ∗. The failure probability is then proven to be
equal to:

Pf,FORM = Φ(−β) [5.48]

where β = |ξ∗| is the Hasofer-Lind reliability index.

For a reliability problem in which the dimension of the input vector X is lower
than 10, the FORM method usually yields good results for a number of evaluations of
g (which are necessary to find the designing point ξ∗) lower than 100. This number
is independent of the order of magnitude of Pf in contrast to Monte Carlo simulation.
However FORM only provides an approximation of Pf and it is not possible to prove
that this FORM result is close to the true value of Pf or not, and/or that the result
is conservative or not. Some additional techniques like importance sampling shall be
used to validate the FORM results [LEM 05].
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