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Chapter 7

Stochastic finite element
methods in geotechnical
engineering

Bruno Sudret and Marc Berveiller

7.1 Introduction

Soil and rock masses naturally present heterogeneity at various scales of
description. This heterogeneity may be of two kinds:

• the soil properties can be considered piecewise homogeneous once
regions (e.g. layers) have been identified;

• no specific regions can be identified, meaning that the spatial variability
of the properties is smooth.

In both cases, the use of deterministic values for representing the soil char-
acteristics is poor, since it ignores the natural randomness of the medium.
Alternatively, this randomness may be modeled properly using probability
theory.

In the first of the two cases identified above, the material properties may be
modeled in each region as random variables whose distribution (and possibly
mutual correlation) have to be specified. In the second case, the introduction
of random fields is necessary. Probabilistic soil modelling is a long-term story,
see for example Vanmarcke (1977); DeGroot and Baecher (1993); Fenton
(1999a,b); Rackwitz (2000); Popescu et al. (2005).

Usually soil characteristics are investigated in order to feed models of
geotechnical structures that are in project. Examples of such structures are
dams, embankments, pile or raft foundations, tunnels, etc. The design then
consists in choosing characterictics of the structure (dimensions, material
properties) so that it fulfills some requirements (e.g. retain water, support a
building, etc.) under a given set of environmental actions that we will call
“loading.” The design is carried out practically by satisfying some design
criteria which usually apply onto model response quantities (e.g. displace-
ments, settlements, strains, stresses, etc.). The conservatism of the design
according to codes of practise is ensured first by introducing safety coef-
ficients, and second by using penalized values of the model parameters.
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In this approach, the natural spatial variability of the soil is completely
hidden.

From another point of view, when the uncertainties and variability of
the soil properties have been identified, methods that allow propagation
of these uncertainties throughout the model have to be used. Classically,
the methods can be classified according to the type of information on the
(random) response quantities they provide.

• The perturbation method allows computation of the mean value and
variance of the mechanical response of the system (Baecher and Ingra,
1981; Phoon et al., 1990). This gives a feeling on the central part of the
response probability density function (PDF).

• Structural reliability methods allow investigation of the tails of the
response PDF by computing the probability of exceedance of a pre-
scribed threshold (Ditlevsen and Madsen, 1996). Among these methods,
FOSM (first-order second-moment methods) have been used in geotech-
nical engineering (Phoon et al., 1990; Mellah et al., 2000; Eloseily et al.,
2002). FORM/SORM and importance sampling are applied less in this
context, and have proven successful in engineering mechanics, both in
academia and more recently in industry.

• Stochastic finite element (SFE) methods, named after the pioneering
work by Ghanem and Spanos (1991), aim at representing way the com-
plete response PDF in an intrinsic way. This is done by expanding the
response (which, after proper discretization of the problem, is a random
vector of unknown joint PDF) onto a particular basis of the probabil-
ity space called the polynomial chaos (PC). Applications to geotechnical
problems can be found in Ghanem and Brzkala (1996); Sudret and Der
Kiureghian (2000); Ghiocel and Ghanem (2002); Clouteau and Lafargue
(2003); Sudret et al. (2004, 2006); Berveiller et al. (2006)

In the following, we will concentrate on this last class of methods. Indeed,
once the coefficients of the expansion have been computed, a straightfor-
ward post-processing of these quantities gives the statistical moments of the
response under consideration, the probability of exceeding a threshold or
the full PDF.

The chapter is organized as follows. Section 7.2 presents methods for
representing random fields that are applicable for describing the spatial vari-
ability of soils. Section 7.3 presents the principles of polynomial chaos expan-
sions for representing both the (random) model response and possibly the
non-Gaussian input. Section 7.4 and (respectively, 7.5) reviews the so-called
intrusive (respectively, non-intrusive) solving scheme in stochastic finite ele-
ment problems. Section 7.6 is devoted to the practical post-processing of
polynomial chaos expansions. Finally, Section 7.7 presents some application
examples.
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7.2 Representation of spatial variability

7.2.1 Basics of probability theory and notation

Probability theory gives a sound mathematical framework to the repre-
sention of uncertainty and randomness. When a random phenomenon is
observed, the set of all possible outcomes defines the sample space denoted
by �. An event E is defined as a subset of � containing outcomes θ ∈ �.
The set of events defines the σ -algebra F associated with �. A probability
measure allows to associate numbers to events, i.e. their probability of occur-
rence. Finally the probability space constructed by means of these notions is
denoted by (�, F, P).

A real random variable X is a mapping X: (�, F, P)−→R. For continuous
random variables, the PDF and cumulative distribution function (CDF) are
denoted by fX(x) and FX(x), respectively:

FX(x) = P(X ≤ x) fX(x) = dFX(x)
dx

(7.1)

The mathematical expectation will be denoted by E[·]. The mean, variance
and nth moment of X are:

µ ≡ E[X] =
∫ ∞

−∞
xfX(x)dx (7.2)

σ 2 = E
[
(X −µ)2

]
=
∫ ∞

−∞
(x −µ)2 fX(x)dx (7.3)

µ′
n = E

[
Xn]=

∫ ∞

−∞
xn fX(x)dx (7.4)

A random vector X is a collection of random variables whose probabilistic
description is contained in its joint PDF denoted by fX(x). The covari-
ance of two random variables X and Y (e.g. two components of a random
vector) is:

Cov[X , Y] = E
[
(X −µX)(Y −µY )

]
(7.5)

Introducing the joint distribution fX,Y (x , y) of these variables, Equation (7.5)
can be rewritten as:

Cov[X , Y] =
∫ ∞

−∞

∫ ∞

−∞
(x −µX)(y −µY ) fX,Y (x , y)dxdy (7.6)

The vectorial space of real random variables with finite second moment
(E
[
X2

]
< ∞) is denoted by L2 (�, F, P). The expectation operator defines
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an inner product on this space:

〈X , Y〉 = E[XY] (7.7)

This allows in particuler definition of orthogonal random variables (when
their inner product is zero).

7.2.2 Random fields

A unidimensional random field H(x , θ ) is a collection of random variables
associated with a continuous index x ∈ Ω ⊂ Rn, where θ ∈ � is the coordi-
nate in the outcome space. Using this notation, H(x , θo) denotes a particular
realization of the field (i.e. a usual function mapping Ω into R) whereas
H(xo , θ ) is the random variable associated with point xo. Gaussian ran-
dom fields are of practical interest because they are completely described
by a mean function µ(x), a variance function σ 2(x) and an autocovariance
function CHH(x , x′):

CHH(x , x′) = Cov
[
H(x) , H(x′)

]
(7.8)

Alternatively, the correlation structure of the field may be prescribed through
the autocorrelation coefficient function ρ(x , x′) defined as:

ρ(x , x′) = CHH(x , x′)
σ (x)σ (x′)

(7.9)

Random fields are non-numerable infinite sets of correlated random vari-
ables, which is computationally intractable. Discretizing the random field
H(x) consists in approximating it by Ĥ(x), which is defined by means of a
finite set of random variables {χi , i = 1, ...n}, gathered in a random vector
denoted by χ :

H(x , θ )
Discretization−→ Ĥ(x , θ ) = G[x , χ (θ )] (7.10)

Several methods have been developed since the 1980s to carry out this task,
such as the spatial average method (Vanmarcke and Grigoriu, 1983), the
midpoint method (Der Kiureghian and Ke, 1988) and the shape function
method (W. Liu et al., 1986a,b). A comprehensive review and compari-
son of these methods is presented in Li and Der Kiureghian (1993). These
early methods are relatively inefficient, in the sense that a large number
of random variables is required to achieve a good approximation of the
field.

More efficient approaches for discretization of random fields using series
expansion methods have been introduced in the past 15 years, includ-
ing the Karhunen–Loève Expansion (KL) (Ghanem and Spanos, 1991),
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the Expansion Optimal Linear Estimation (EOLE) method (Li and Der
Kiureghian, 1993) and the Orthogonal Series Expansion (OSE) (Zhang and
Ellingwood, 1994). Reviews of these methods have been presented in Sudret
and Der Kiureghian (2000), see also Grigoriu (2006). The KL and EOLE
methods are now briefly presented.

7.2.3 Karhunen–Loève expansion

Let us consider a Gaussian random field H(x) defined by its mean value
µ(x) and autocovariance function CHH(x , x′) = σ (x)σ (x′)ρ(x , x′). The
Karhunen–Loève expansion of H(x) reads:

H(x , θ ) = µ(x) +
∞∑

i=1

√
λi ξi(θ )ϕi(x) (7.11)

where {ξi(θ ), i = 1, ... } are zero-mean orthogonal variables and
{
λi , ϕi(x)

}
are solutions of the eigenvalue problem:∫

Ω

CHH(x , x′)ϕi(x
′)dΩx′ = λi ϕi(x) (7.12)

Equation (7.12) is a Fredholm integral equation. Since kernel CHH(· , ·) is
an autocovariance function, it is bounded, symmetric and positive definite.
Thus the set of {ϕi} forms a complete orthogonal basis. The set of eigenvalues
(spectrum) is moreover real, positive and numerable. In a sense, Equation
(7.11) corresponds to a separation of the space and randomness variables in
H(x , θ ).

The Karhunen–Loève expansion possesses other interesting properties
(Ghanem and Spanos, 1991).

• It is possible to order the eigenvalues λi in a descending series converging
to zero. Truncating the ordered series (7.11) after the Mth term gives
the KL approximated field:

Ĥ(x , θ ) = µ(x) +
M∑

i=1

√
λi ξi(θ )ϕi(x) (7.13)

• The covariance eigenfunction basis {ϕi(x)} is optimal in the sense that
the mean square error (integrated over Ω) resulting from a truncation
after the Mth term is minimized (with respect to the value it would take
when any other complete basis {hi(x)} is chosen).

• The set of random variables appearing in (7.11) is orthonormal if and
only if the basis functions {hi(x)} and the constants λi are solutions of
the eigenvalue problem (7.12).
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• As the random field is Gaussian, the set of {ξi} are independent standard
normal variables. Furthermore, it can be shown (Loève, 1977) that the
Karhunen–Loève expansion of Gaussian fields is almost surely conver-
gent. For non-Gaussian fields, the KL expansion also exists; however,
the random variables appearing in the series are of unknown law and
may be correlated (Phoon et al., 2002b, 2005; Li et al., 2007).

• From Equation (7.13), the error variance obtained when truncating the
expansion after M terms turns out to be, after basic algebra:

Var
[
H(x) − Ĥ(x)

]
= σ 2(x) −

M∑
i=1

λi ϕ
2
i (x)

= Var[H(x)] − Var
[
Ĥ(x)

]
≥ 0 (7.14)

The right-hand side of the above equation is always positive because it
is the variance of some quantity. This means that the Karhunen–Loève
expansion always underrepresents the true variance of the field. The
accuracy of the truncated expansion has been investigated in details in
Huang et al. (2001).

Equation (7.12) can be solved analytically only for few autocovari-
ance functions and geometries of Ω. Detailed closed form solutions for
triangular and exponential covariance functions for one-dimensional
homogeneous fields can be found in Ghanem and Spanos (1991).
Otherwise, a numerical solution to the eigenvalue problem (7.12) can
be obtained (same reference, chapter 2). Wavelet techniques have been
recently applied for this purpose in Phoon et al. (2002a), leading to a
fairly efficient approximation scheme.

7.2.4 The EOLE method

The expansion optimal linear estimation method (EOLE) was proposed by
Li and Der Kiureghian (1993). It is based on the pointwise regression of
the original random field with respect to selected values of the field, and a
compaction of the data by spectral analysis.

Let us consider a Gaussian random field as defined above and a grid of
points {x1, ...xN} in the domain Ω. Let us denote by χ the random vector
{H(x1), ...H(xN)}. By construction, χ is a Gaussian vector whose mean value
µχ and covariance matrix �χ χ read:

µi
χ = µ(xi) (7.15)(

�χ χ

)
i,j

= Cov
[
H(xi) , H(xj)

]
= σ (xi)σ (xj)ρ(xi , xj) (7.16)
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The optimal linear estimation (OLE) of random variable H(x) onto the
random vector χ reads:

H(x) ≈ µ(x) +�′
Hχ (x) · �−1

χ χ ·
(
χ −µχ

)
(7.17)

where (.)′ denotes the transposed matrix and �Hχ (x) is a vector whose
components are given by:

�
j
Hχ

(x) = Cov
[
H(x),χj

]
= Cov

[
H(x) , H(xj)

]
(7.18)

Let us now consider the spectral decomposition of the covariance
matrix 
χχ :


χχ φi = λi φi i = 1, . . . ,N (7.19)

This allows to linearly transform the original vector χ :

χ (θ ) = µχ +
N∑

i=1

√
λi ξi(θ )φi (7.20)

where {ξi , i = 1, ...N} are independent standard normal variables. Substitut-
ing for (7.20) in (7.17) and using (7.19) yields the EOLE representation of
the field :

Ĥ(x , θ ) = µ(x) +
N∑

i=1

ξi(θ )√
λi

φi
T�H(x)χ (7.21)

As in the Karhunen–Loève expansion, the series can be truncated after r ≤ N
terms, the eigenvalues λi being sorted first in descending order. The variance
of the error for EOLE is:

Var
[
H(x) − Ĥ(x)

]
= σ 2(x) −

r∑
i=1

1
λi

(
φT

i 
H(x)χ

)2
(7.22)

As in KL, the second term in the above equation is identical to the variance
of Ĥ(x). Thus EOLE also always underrepresents the true variance. Due to
the form of (7.22), the error decreases monotonically with r, the minimal
error being obtained when no truncation is made (r = N). This allows one to
define automatically the cut-off value r for a given tolerance in the variance
error.
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7.3 Polynomial chaos expansions

7.3.1 Expansion of the model response

Having recognized that the input parameters such as the soil properties
can be modeled as random fields (which are discretized using standard
normal random variables), it is clear that the response of the system is
a nonlinear function of these variables. After a discretization procedure
(e.g. finite element or finite difference scheme), the response may be con-
sidered as a random vector S, whose probabilistic properties are yet to be
determined.

Due to the above representation of the input, it is possible to expand the
response S onto the so-called polynomial chaos basis, which is a basis of the
space of random variables with finite variance (Malliavin, 1997):

S =
∞∑

j=0

Sj Ψj

({
ξn

}∞
n=1

)
(7.23)

In this expression, the Ψj’s are the multivariate Hermite polynomials defined
by means of the ξn’s. This basis is orthogonal with respect to the Gaussian
measure, i.e. the expectation of products of two different such polynomials
is zero (see details in Appendix A).

Computationnally speaking, the input parameters are represented using
M independent standard normal variables, see Equations (7.13) and (7.21).
Considering all M-dimensional Hermite polynomials of degree not exceeding
p, the response may be approximated as follows:

S ≈
P−1∑
j=0

Sj Ψj (ξ ) , ξ = {ξ1, . . . , ξM} (7.24)

The number of unknown (vector) coefficients in this summation is:

P =
(

M + p
p

)
= (M + p)!

M! p! (7.25)

The practical construction of a polynomial chaos of order M and degree p
is described in Appendix A. The problem is now recast as computing the
expansion coefficients {Sj , j = 0, . . . ,P − 1}. Two classes of methods are
presented below in Sections 7.4 and 7.5.

7.3.2 Representation of non-Gaussian input

In Section 7.2, the representation of the spatial variability through Gaussian
random fields has been shown. It is important to note that many soil
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properties should not be modeled as Gaussian random variables or fields.
For instance, the Poisson ratio is a bounded quantity, whereas Gaussian
variables are defined on R. Parameters such as the Young’s modulus or
the cohesion are positive in nature: modeling them as Gaussian intro-
duces an approximation that should be monitored carefully. Indeed, when
a large dispersion of the parameter is considered, choosing a Gaussian
representation can easily lead to negative realizations of the parameter,
which have no physical meaning (lognormal variables or fields are often
appropriate).

As a consequence, if the parameter under consideration is modeled by
a non-Gaussian random field, it is not possible to expand it as a linear
expression in standard normal variables as in Equations (7.13) and (7.21).
Easy-to-define non-Gaussian random fields H(x) are obtained by translation
of a Gaussian field N(x) using a nonlinear transform h(.):

H(x) = h(N(x)) (7.26)

The discretization of this kind of field is straightforward: the nonlinear trans-
form h(.) is directly applied to the discretized underlying Gaussian field N̂(x)
(see e.g. Ghanem, 1999, for lognormal fields).

Ĥ(x) = h(N̂(x)) (7.27)

From another point of view, the description of the spatial variability of
parameters is in some cases beyond the scope of the analysis. For instance,
soil properties may be considered homogeneous in some domain. These
parameters are not well known though, and it may be relevant to model
them as (usually non-Gaussian) random variables.

It is possible to transform any continuous random variable with finite
variance in a standard normal variable using the iso-probabilistic transform:
denoting by FX(x) (respectively, �(x)) the CDF of X (respectively, a standard
normal variable ξ ), the direct and inverse transform read:

ξ = �−1 ◦ FX(x) X = F−1
X ◦�(ξ ) (7.28)

If the input parameters are modeled by a random vector with independent
components, it is possible to represent it using a standard normal random
vector of the same size by applying the above transform each component.
If the input random vector has a prescribed joint PDF, it is generally not pos-
sible to transform it exactly in a standard normal random vector. However,
when only marginal PDF and correlations are known, an approximate repre-
sentation may be obtained by the Nataf transform (Liu and Der Kiureghian,
1986).

As a conclusion, the input parameters of the model, which do or
do not exhibit spatial variability, may always be represented after some



[17:46 1/2/2008 5108-Phoon-Ch07.tex] Job No: 5108 PHOON: RB Design in Geo. Eng. Page: 269 260–297

Stochastic finite element methods 269

discretization process, mapping, or combination thereof, as functionals of
standard normal random variables:

• for non-Gaussian independent random variables, see Equation (7.28);
• for Gaussian random fields, see Equations(7.13),(7.21);
• for non-Gaussian random fields obtained by translation, see

Equation (7.27).

Note that Equation (7.28) is an exact representation, whereas the field
discretization techniques provide only approximations (which converge to
the original field if the number of standard normal variables tends to
infinity).

In the sequel, we consider that the discretized input fields and non Gaussian
random variables are represented through a set of independent standard
normal variables ξ of size M and we denote by X(ξ ) the functional that
yields the original variables and fields.

7.4 Intrusive SFE method for static problems

The historical SFE approach consists in computing the response coefficients
of the vector of nodal displacements U(θ ) (Equation (7.24)). It is based on
the minimization of the residual in the balance equation in the Galerkin
sense (Ghanem and Spanos, 1991). To illustrate this method, let us consider
a linear mechanical problem, whose finite element discretization leads to the
following linear system (in the deterministic case):

K · U = F (7.29)

Let us denote by Nddl the number of degrees of freedom of the structure, i.e.
the size of the above linear system. If the material parameters are described
by random variables and fields, the stiffness matrix K in the above equa-
tion becomes random. Similarly, the load vector F may be random. These
quantities can be expanded onto the polynomial chaos basis:

K =
∞∑

j=0

KjΨj (7.30)

F =
∞∑

j=0

FjΨj (7.31)

In these equations, Kj are deterministic matrices whose complete description
can be found elsewhere (e.g. Ghanem and Spanos (1991) in the case when
the input Young’s modulus is a random field, and Sudret et al. (2004) when
the Young’s modulus and the Poisson ratio non-Gaussian random variables).
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In the same manner, Fj are deterministic load vectors obtained from the data
(Sudret et al., 2004; Sudret et al., 2006).

As a consequence, the vector of nodal displacements U is random and may
be represented on the same basis:

U =
∞∑

j=0

UjΨj (7.32)

When the three expansions (7.30)–(7.32) are truncated after P terms and
substituted for in Equation (7.29), the residual εP in the stochastic balance
equation reads:

εP =
(

P−1∑
i=0

KiΨi

)
·

P−1∑

j=0

UjΨj


−

P−1∑
j=0

FjΨj (7.33)

Coefficients {U0, . . . ,UP−1} are obtained by minimizing the residual using a
Galerkin technique. This minimization is equivalent to requiring the residual
be orthogonal to the subspace of L2(�,F,P) spanned by {Ψj}P−1

j=0 :

E
[
εP Ψk

]= 0 , k = {0, . . . ,P − 1} (7.34)

After some algebra, this leads to the following linear system, whose size is
equal to Nddl × P:




K0,0 · · · K0,P−1
K1,0 · · · K1,P−1

...
...

KP−1,0 · · · KP−1,P−1


 ·




U0
U1
...

UP−1


=




F0
F1
...

FP−1


 (7.35)

where Kj,k =
P−1∑
i=0

dijk Ki and dijk = E[ΨiΨjΨk].
Once the system has been solved, the coefficients Uj may be post-processed

in order to represent the response PDF (e.g. by Monte Carlo simulation),
to compute the mean value, standard deviation and higher moments or to
evaluate the probability of exceeding a given threshold. The post-processing
techniques are detailed in Section 7.6. It is important to note already that
the set of Uj’s contains all the probabilistic information on the response,
meaning that post-processing is carried out without additional computation
on the mechanical model.
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The above approach is easy to apply when the mechanical model is linear.
Although nonlinear problems have been recently addressed (Ghiocel and
Ghanem, 2002; Matthies and Keese, 2005), their treatment is still not com-
pletely mature. Moreover, this approach naturally yields the expansion of
the basic response quantities (such as the nodal displacements in mechanics).
When derived quantities such as strains or stresses are of interest, additional
work (and approximations) is needed. Note that in the case of non-Gaussian
input random variables, expansion of these variables onto the PC basis is
needed in order to apply the method, which introduces an approximation of
the input. Finally, the implementation of the historical method as described
in this section has to be carried out for each class of problem: this is why it
has been qualified as intrusive in the literature. All these reasons have lead
to the development of so-called non-intrusive methods that in some sense
provide an answer to the above drawbacks.

7.5 Non-intrusive SFE methods

7.5.1 Introduction

Let us consider a scalar response quantity S of the model under consideration,
e.g. a nodal displacement, strain or stress component in a finite element
model:

S = h(X) (7.36)

Contrary to Section 7.4, each response quantity of interest is directly
expanded onto the polynomial chaos as follows:

S =
∞∑

j=0

Sj Ψj (7.37)

The P-term approximation reads:

S̃ =
P−1∑
j=0

Sj Ψj (7.38)

Two methods are now proposed to compute the coefficients in this expansion
from a series of deterministic finite element analysis.

7.5.2 Projection method

The projection method is based on the orthogonality of the polynomial
chaos. By pre-multiplying Equation (7.38) by Ψi and taking the expectation
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of both members, it comes:

E
[
SΨj

]
= E

[ ∞∑
i=0

Sj Ψi Ψj

]
(7.39)

Due to the orthogonality of the basis, E
[
Ψi Ψj

]
= 0 for any i = j. Thus:

Sj =
E
[
SΨj

]
E
[
Ψ 2

j

] (7.40)

In this expression, the denominator is known analytically (see Appendix A)
and the numerator may be cast as a multidimensional integral:

E
[
SΨj

]
=
∫

RM
h(X(ξ ))Ψj(ξ )ϕM(ξ )dξ (7.41)

where ϕM is the M-dimensional multinormal PDF, and where the dependency
of S in ξ through the iso-probabilistic transform of the input parameters X(ξ )
has been given for the sake of clarity.

This integral may be computed by crude Monte Carlo simulation (Field,
2002) or Latin Hypercube Sampling (Choi et al., 2004). However the number
of samples required in this case should be large enough, say 10,000–100,000,
to obtain a sufficient accuracy. In cases when the response S is obtained
by a computationally demanding finite element model, this approach is
practically not applicable. Alternatively, the use of quasi-random numbers
instead of Monte Carlo (Niederreiter, 1992) simulation has been recently
investigated in Sudret et al. (2007), and appears promising.

An alternative approach presented in Berveiller et al. (2004) and Matthies
and Keese (2005) is the use of a Gaussian quadrature scheme to evaluate
the integral. Equation (7.41) is computed as a weighted summation of the
integrands evaluated at selected points (the so-called integration points):

E
[
SΨj

]
≈

K∑
i1=1

· · ·
K∑

iM=1

ωi1
. . .ωiM

h
(
X
(
ξi1

, . . . , ξiM

))
Ψj

(
ξi1

, . . . , ξiM

)
(7.42)

In this expression, the integration points {ξij
, 1 ≤ i1 ≤ ·· · ≤ iM ≤ K} and

weights {ωij
, 1 ≤ i1 ≤ ·· · ≤ iM ≤ K} in each dimension are computed using

the theory of orthogonal polynomials with respect to the Gaussian measure.
For a Kth order scheme, the integration points are the roots of the Kth order
Hermite polynomial (Abramowitz and Stegun, 1970).
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The proper order of the integration scheme K is selected as follows: if
the response S in Equation (7.37) was polynomial of order p (i.e. Sj = 0 for
j ≥ P), the terms in the integral (7.41) would be of degree less than or equal
to 2p. Thus an integration scheme of order K = p + 1 would give the exact
value of the expansion coefficients. We take this as a rule in the general case,
where the result now is only an approximation of the true value of Sj.

As seen from Equations (7.40),(7.42), the projection method allows com-
putation of the expansion coefficients from selected evaluations of the model.
Thus the method is qualified as non-intrusive since the deterministic com-
putation scheme (i.e. a finite element code) is used without any additional
implementation or modification.

Note that in finite element analysis, the response is usually a vector (e.g. of
nodal displacements, nodal stresses, etc.). The above derivations are strictly
valid for a vector response S, the expectation in Equation (7.42) being
computed component by component.

7.5.3 Regression method

The regression method is another approach for computing the response
expansion coefficients. It is nothing but the regression of the exact solu-
tion S with respect to the polynomial chaos basis {Ψj(ξ ), j = 1, . . . , P − 1}.
Let us assume the following expression for a scalar response quantity S:

S = h(X) = S̃(ξ ) + ε S̃(ξ ) =
P−1∑
j=0

Sj Ψj(ξ ) (7.43)

where the residual ε is supposed to be a zero-mean random variable, and
S = {Sj , j = 0, . . . , P − 1} are the unknown coefficients. The minimization
of the variance of the residual with respect to the unknown coefficients
leads to:

S = ArgminE
[
(h(X (ξ )) − S̃(ξ ))2

]
(7.44)

In order to solve Equation (7.44), we choose a set of Q regression points in
the standard normal space, say {ξ1 , . . .ξQ}. From these points, the isoprob-
abilistic transform (7.28) gives a set of Q realizations of the input vector X,
say {x1, . . .xQ}. The mean-square minimization (7.44) leads to solve the
following problem:

S = Argmin
1
Q

Q∑
i=1


h(xi) −

P−1∑
j=0

Sj Ψj(ξ
i)




2

(7.45)
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Denoting by Ψ the matrix whose coefficients are given by Ψ ij = Ψj(ξ
i), i =

1, . . . ,Q; j = 0, . . . , P−1, and by Sex the vector containing the exact response
values computed by the model Sex = {h(xi), i = 1, . . . ,Q}, the solution to
Equation (7.45) reads:

S = (Ψ T ·Ψ )−1 ·Ψ T ·Sex (7.46)

The regression approach detailed above is comparable with the so-called
response surface method used in many domains of science and engineering.
In this context, the set of {x1 , . . .xQ} is the so-called experimental design. In
Equation (7.46), Ψ T ·Ψ is the information matrix. Computationally speak-
ing, it may be ill-conditioned. Thus a particular solver such as the Singular
Value Decomposition method should be employed (Press et al., 2001).

It is now necessary to specify the choice of the experimental design. In the
context of PC-based methods, it has been shown in Berveiller (2005) and
Sudret (2005) that an efficient design can be built from the roots of the
Hermite polynomials as follows.

• If p denotes the maximal degree of the polynomials in the truncated PC
expansion, then the p + 1 roots of the Hermite polynomial of degree
p + 1 (denoted by Hep+1) are computed, say {r1, . . . , rp+1}.

• From this set, M-uplets are built using all possible combinations of the
roots: rk = (ri1

, . . . , riM
), 1 ≤ i1 ≤ ·· · ≤ iM ≤ p + 1, k = 1, . . . (p + 1)M.

• The Q points in the experimental design {ξ1 , . . . ,ξQ} are selected among
the r j’s by retaining those which are closest to the origin of the space,
i.e. those with the smallest norm, or equivalently those leading to the
largest values of the PDF ϕM(ξ j).

To choose the size Q of the experimental design, the following empirical
rule was proposed by Berveiller (2005) based on a large number of numerical
experiments:

Q = (M − 1)P (7.47)

A slightly more efficient rule leading to a smaller value of Q has been
recently proposed by Sudret (2006), based on the invertibility of the
information matrix.

7.6 Post-processing of the SFE results

7.6.1 Representation of response PDF

Once the coefficients Sj of the expansion of a response quantity are
known, the polynomial approximation can be simulated using Monte
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Carlo simulation. A sample of standard normal random vector is generated,
say {ξ (1), . . . , ξ (n)}. Then the PDF can be plotted using a histogram represen-
tation, or better, kernel smoothing (Wand and Jones, 1995).

7.6.2 Computation of the statistical moments

From Equation (7.38), due to the orthogonality of the polynomial chaos
basis, it is easy to see that the mean and variance of S is given by:

E[S] = S0 (7.48)

Var[S] = σ 2
S =

P−1∑
j=1

S2
j E

[
Ψ 2

j

]
(7.49)

where the expectation of Ψ 2
j is given in Appendix A. Moments of higher

order are obtained in a similar manner. Namely the skewness and kurtosis
coefficients of response variable S (denoted by δS and κS, respectively) are
obtained as follows:

δS ≡ 1

σ 3
S

E
[
(S − E[S])3

]
= 1

σ 3
S

P−1∑
i=1

P−1∑
j=1

P−1∑
k=1

E[ΨiΨjΨk]Si Sj Sk (7.50)

κS ≡ 1

σ 4
S

E
[
(S − E[S])4

]
= 1

σ 4
S

P−1∑
i=1

P−1∑
j=1

P−1∑
k=1

P−1∑
l=1

E[ΨiΨjΨkΨl]Si Sj Sk Sl (7.51)

Here again, expectation of products of three (respectively four) Ψj’s are
known analytically; see for example Sudret et al. (2006).

7.6.3 Sensitivity analysis: selection of important variables

The problem of selecting the most “important” input variables of a
model is usually known as sensitivity analysis. In a probabilistic con-
text, methods of global sensitivity analysis aim at quantifying which
input variable (or combination of input variables) influences the most
the response variability. A state-of-the-art of such techniques is avail-
able in Saltelli et al. (2000). They include regression-based methods such
as the computation of standardized regression coefficients (SRC) or par-
tial correlation coefficients (PCC) and variance-based methods, also called
ANOVA techniques for “ANalysis Of VAriance.” In this respect, the
Sobol’ indices (Sobol’, 1993; Sobol’ and Kucherenko, 2005) are known
as the most efficient tool to find out the important variables of a
model.

The computation of Sobol’ indices is traditionnally carried out by Monte
Carlo simulation (Saltelli et al., 2000), which may be computationally
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unaffordable in case of time-consuming models. In the context of stochastic
finite element methods, it has been recently shown in Sudret (2006) that the
Sobol’ indices can be derived analytically from the coefficients of the poly-
nomial chaos expansion of the response, once the latter have been computed
by one of the techniques detailed in Sections 7.4 and 7.5. For instance, the
first order Sobol’ indices {δi, i = 1, ... ,M}, which quantify what fraction of
the response variance is due to each input variable i = 1, ... ,M:

δi = VarXi

[
E
[
S|Xi

]]
Var[S]

(7.52)

can be evaluated from the coefficients of the PC expansion (Equation (7.38))
as follows:

δPC
i =

∑
α∈Ii

S2
α E

[
Ψ 2

α

]
/σ 2

S (7.53)

In this equation, σ 2
S is the variance of the model response computed from

the PC coefficients (Equation (7.49)) and the summation set (defined using
the multi-index notation detailed in Appendix) reads:

Ii =
{
α : αi > 0,αj =i = 0

}
(7.54)

Higher-order Sobol’ indices, which correspond to interactions of the
input parameters, can also be computed using this approach; see Sudret
(2006) for a detailed presentation and an application to geotechnical
engineering.

7.6.4 Reliability analysis

Structural reliability analysis aims at computing the probability of failure of a
mechanical system with respect to a prescribed failure criterion by account-
ing for uncertainties arising in the model description (geometry, material
properties) or the environment (loading). It is a general theory whose devel-
opment began in the mid 1970s. The research on this field is still active – see
Rackwitz (2001) for a review.

Surprisingly, the link between structural reliability and the stochastic finite
element methods based on polynomial chaos expansions is relatively new
(Sudret and Der Kiureghian, 2000, 2002; Berveiller, 2005). For the sake of
completeness, three essential techniques for solving reliability problems are
reviewed in this section. Then their application together with (a) a deter-
minitic finite element model and (b) a PC expansion of the model response
is detailed.
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Problem statement

Let us denote by X = {
X1,X2, . . .,XM

}
the set of random variables describing

the randomness in the geometry, material properties and loading. This set
also includes the variables used in the discretization of random fields, if any.
The failure criterion under consideration is mathematically represented by a
limit state function g(X) defined in the space of parameters as follows:

• g(X) > 0 defines the safe state of the structure.
• g(X) ≤ 0 defines the failure state.
• g(X) = 0 defines the limit state surface.

Denoting by fX(x) the joint PDF of random vector X, the probability of
failure of the structure is :

Pf =
∫

g(x)≤0

fX(x) dx (7.55)

In all but academic cases, this integral cannot be computed analytically.
Indeed, the failure domain is often defined by means of response quantities
(e.g. displacements, strains, stresses, etc.), which are computed by means of
computer codes (e.g. finite element code) in industrial applications, mean-
ing that the failure domain is implicitly defined as a function of X. Thus
numerical methods have to be employed.

Monte Carlo simulation

Monte Carlo simulation (MCS) is a universal method for evaluating integrals
such as Equation (7.55). Denoting by 1[g(x)≤0](x) the characteristic function
of the failure domain (i.e. the function that takes the value 0 in the safe
domain and 1 in the failure domain), Equation (7.55) rewrites:

Pf =
∫

RM

1[g(x)≤0](x) fX(x) dx = E
[
1[g(x)≤0](x)

]
(7.56)

where E[.] denotes the mathematical expectation. Practically, Equation
(7.56) can be evaluated by simulating Nsim realizations of the random

vector X, say
{
X (1), . . . ,X(Nsim)

}
. For each sample, g

(
X(i)

)
is evaluated.

An estimation of Pf is given by the empirical mean:

P̂f = 1
Nsim

Nsim∑
i=1

1[g(x)≤0](X
(i)) = Nfail

Nsim
(7.57)
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where Nfail denotes the number of samples that are in the failure domain.
As mentioned above, MCS is applicable whatever the complexity of the
deterministic model. However, the number of samples Nsim required to get an
accurate estimation of Pf may be dissuasive, especially when the value of Pf is
small. Indeed, if the order of magnitude of Pf is about 10−k, a total number
Nsim ≈ 4.10k+2 is necessary to get accurate results when using Equation
(7.57). This number corresponds approximately to a coefficient of variation
CV equal to 5% for the estimator P̂f . Thus crude MCS is not applicable
when small values of Pf are sought and/or when the CPU cost of each run
of the model is non-negligible.

FORM method

The first-order reliability method (Form) has been introduced to get an
approximation of the probability of failure at a low cost (in terms of number
of evaluations of the limit state function).

The first step consists of recasting the problem in the standard nor-
mal space by using a iso-probabilistic transformation X → ξ = T (X). The
Rosenblatt or Nataf transformations may be used for this purpose. Thus
Equation (7.56) rewrites:

Pf =
∫

g(x)≤0

fX(x) dx =
∫

g(T−1(ξ ))≤0

ϕM(ξ ) dξ (7.58)

where ϕM (ξ ) stands for the standard multinormal PDF:

ϕM(ξ ) = 1(√
2π

)n exp
(

−1
2

(
ξ2

1 +·· ·+ ξ2
M

))
(7.59)

This PDF is maximal at the origin and decreases exponentially with ‖ξ‖2.
Thus the points that contribute at most to the integral in Equation (7.58)
are those of the failure domain that are closest to the origin of the space.

The second step in FORM thus consists in determining the so-called design
point, i.e. the point of the failure domain closest to the origin in the stan-
dard normal space. This point P∗ is obtained by solving an optimisation
problem:

P∗ = ξ∗ = Argmin
{
‖ξ‖2 /g

(
T−1(ξ )

)
≤ 0

}
(7.60)

Several algorithms are available to solve the above optimisation problem,
e.g. the Abdo–Rackwitz (Abdo and Rackwitz, 1990) or the SQP (sequential
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quadratic programming) algorithm. The corresponding reliability index is
defined as:

β = sign
[
g(T−1(0))

]
·∥∥ξ∗∥∥ (7.61)

It corresponds to the algebraic distance of the design point to the origin,
counted as positive if the origin is in the safe domain, or negative in the
other case.

The third step of FORM consists of replacing the failure domain by the
half space HS(P∗) defined by means of the hyperplane which is tangent to
the limit state surface at the design point (see Figure 7.1). This leads to:

Pf =
∫

g(T−1(ξ ))≤0

ϕM(ξ ) dξ ≈
∫

HS(P∗)

ϕM(ξ ) dξ (7.62)

The latter integral can be evaluated in a closed form and gives the first
order approximation of the probability of failure:

Pf ≈ Pf ,FORM = � (−β) (7.63)

where �(x) denotes the standard normal CDF. The unit normal vector
α = ξ∗/β allows definition of the sensitivity of the reliability index with
respect to each variable. Precisely the squared components α2

i of α (which
sum to one) are a measure of the importance of each variable in the computed
reliability index.

g(ξ)=0

Failure Domain

x2

x2
* P*

x1
* x1

HS(P*)

β

α

Figure 7.1 Principle of the first-order reliability method (FORM).
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Importance sampling

FORM as described above gives an approximation of the probability of
failure without any measure of its accuracy, in contrary to Monte Carlo
simulation which provides an estimator of Pf together with the coefficient
of variation thereof. Importance sampling (IS) is a technique that allows to
combine both approaches. First the expression of the probability of failure
is modified as follows:

Pf =
∫

RM
IDf

(X(ξ ))ϕM (ξ )dξ (7.64)

where IDf
(X(ξ )) is the characteristic function of the failure domain. Let us

introduce the sampling density �(ξ ) in the above equation, which may be
any valid M-dimensional PDF:

Pf =
∫

RM
IDf

(X(ξ ))
ϕM (ξ )
� (ξ )

� (ξ )dξ = E�

[
IDf

(X(ξ ))
ϕM (ξ )
� (ξ )

]
(7.65)

where E� [.] denotes the expectation with respect to the sampling density �(ξ ).
To smartly apply IS after a FORM analysis, the following sampling density
is chosen:

� (ξ ) = (2π )−M/2 exp
(

−1
2

∥∥ξ − ξ∗∥∥2
)

(7.66)

This allows concentration of the samples around the design point. Then the
following estimator of the probability of failure is computed:

P̂f ,IS = 1
Nsim

Nsim∑
i=1

1Df

(
X(ξ (i))

)ϕM

(
ξ (i)

)
�
(
ξ (i)

) (7.67)

which may be rewritten as:

P̂f ,IS = exp[−β2/2]
Nsim

Nsim∑
i=1

1Df

(
ξ (i)

)
exp

[
−ξ (i) · ξ∗] (7.68)

As in any simulation method, the coefficient of variation CV of this estimator
can be monitored all along the simulation. Thus the process can be stopped
as soon as a small value of CV , say less than 5%, is obtained. As the samples
are concentrated around the design point, a limited number of samples, say
100–1000, is necessary to obtain this accuracy.
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7.6.5 Reliability methods coupled with FE/SFE models

The reliability methods (MCS, FORM and IS) described in the section above
are general, i.e. not limited to stochastic finite element methods. They can
actually be applied whatever the nature of the model, may it be analytical
or algorithmic.

• When the model is a finite element model, a coupling between the reli-
ability algorithm and the finite element code is necessary. Each time the
algorithm requires the evaluation of the limit state function, the finite
element code is called with the current set of input parameters. Then the
limit state function is evaluated. This technique is called direct coupling
in the next section dealing with application examples.

• When an SFE model has been computed first, the response is approxi-
mately represented as a polynomial series in standard normal random
variables (Equation (7.37)). This is an analytical function that can now
be used together with any of the reliability methods mentioned above.

In the next section, several examples are presented. In each case when a
reliability problem is addressed, the direct coupling and the post-processing
of a PC expansion are compared.

7.7 Application examples

The application examples presented in the sequel have been originally pub-
lished elsewhere, namely in Sudret and Der Kiureghian (2000, 2002) for the
first example, Berveiller et al. (2006) for the second example and Berveiller
et al. (2004) for the third example.

7.7.1 Example #1: Foundation problem – spatial
variability

Description of the deterministic problem

Consider an elastic soil layer of thickness t lying on a rigid substratum.
A superstructure to be founded on this soil mass is idealized as a uniform
pressure P applied over a length 2B of the free surface (see Figure 7.2). The
soil is modeled as an elastic linear isotropic material. A plane strain analysis
is carried out.

Due to the symmetry, half of the structure is modeled by finite elements.
Strictly speaking, there is no symmetry in the system when random fields of
material properties are introduced. However, it is believed that this simpli-
fication does not significantly influence the results. The parameters selected
for the deterministic model are listed in Table 7.1.
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Table 7.1 Example #1 – Parameters of the deterministic model.

Parameter Symbol Value

Soil layer thickness t 30 m
Foundation width 2B 10 m
Applied pressure P 0.2 MPa
Soil Young’s modulus E 50 MPa
Soil Poisson’s ratio ν 0.3
Mesh width L 60 m

A

2B

t
E, n

Figure 7.2 Settlement of a foundation – problem definition.

(a) Mesh (b) Deformed Shape

Figure 7.3 Finite element mesh and deformed shape for mean values of the parameters by
a deterministic analysis.

A refined mesh was first used to obtain the “exact” maximum displacement
under the foundation (point A in Figure 7.2). Less-refined meshes were then
tried in order to design a mesh with as few elements as possible that yielded
no more than 1% error in the computed maximum settlement. The mesh
displayed in Figure 7.3(a) was eventually chosen. It contains 99 nodes and
80 elements. The maximum settlement computed with this mesh is equal
to 5.42 cm.
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Description of the probabilistic data

The assessment of the serviceability of the foundation described in the
above paragraph is now investigated under the assumption that the Young’s
modulus of the soil mass is spatially varying.

The Young’s modulus of the soil is considered to vary only in the vertical
direction, so that it is modeled as a one-dimensional random field along the
depth. This is a reasonable model for a layered soil medium. The field is
assumed to be lognormal and homogeneous. Its second-moment properties
are considered to be the mean µE = 50 MPa, the coefficient of variation
δE = σE/µE = 0.2. The autocorrelation coefficient function of the underlying
Gaussian field (see Equation (7.26)) is ρEE(z , z′) = exp(−|z − z′|/�), where z
is the depth coordinate and � = 30 m is the correlation length.

The accuracy of the discretization of the underlying Gaussian field N(x)
depends on the number of terms M retained in the expansion. For each
value of M, a global indicator of the accuracy of the discretization, ε̄, is
computed from

ε̄ = 1
|Ω|

∫
Ω

Var
[
N(x) − N̂(x)

]
Var[N(x)]

dΩ (7.69)

A relative accuracy in the variance of 12% (respectively, 8%, 6%) is obtained
when using M = 2 (respectively, 3, 4) terms in the KL expansion of N(x).
Of course, these values are closely related to the parameters defining the ran-
dom field, particularly the correlation length �. As � is comparable here to the
size of the domain Ω, an accurate discretization is obtained using few terms.

Reliability analysis

The limit state function is defined in terms of the maximum settlement uA at
the center of the foundation:

g(ξ ) = u0 − uA(ξ ) (7.70)

where u0 is an admissible threshold initially set equal to 10 cm and ξ is the
vector used for the random field discretization.

Table 7.2 reports the results of the reliability analysis carried out either by
direct coupling between the finite element model and the FORM algorithm
(column #2), or by the application of FORM after solving the SFE problem
(column #6, for various values of p). Both results have been validated using
importance sampling (columns #3 and #7, respectively). In the direct cou-
pling approach, 1000 samples (corresponding to 1000 deterministic FE runs)
were used, leading to a coefficient of variation of the simulation less than 6%.
In the SFE approach, the polynomial chaos expansion of the response is used
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Table 7.2 Example #1 – Reliability index β – Influence of the orders of expansion M and p
(u0 = 10cm).

M βFORM
direct β IS

direct p P βFORM
SFE β IS

SFE

2 3.452 3.433 2 6 3.617 3.613
3 10 3.474 3.467

3 3.447 3.421 2 10 3.606 3.597
3 20 3.461 3.461

4 3.447 3.449 2 15 3.603 3.592
3 35 3.458 3.459

for importance sampling around the design point obtained by FORM (i.e. no
additional finite element run is required), and thus 50,000 samples can be
used, leading to a coefficient of variation of the simulation less than 1%.

It appears that the solution is not that sensitive to the order of expansion
of the input field (when comparing the results for M = 2 with respect to those
obtained for M = 4). This can be understood easily by the fact that the maxi-
mum settlement of the foundation is related to the global (i.e. homogenized)
behavior of the soil mass. Modeling in a refined manner the spatial variabil-
ity of the stiffness of the soil mass by adding terms in the KL expansion does
not significantly influence the results.

In contrary, it appears that a PC expansion of third degree (p = 3) is
required in order to get a satisfactory accuracy on the reliability index.

Parametric study

A comprehensive comparison of the two approaches is presented in Sudret
and Der Kiureghian (2000), where the influences of various parameters are
investigated. Selected results are reported in this section. More precisely, the
accuracy of the SFE method combined with FORM is investigated when
varying the value of the admissible settlement from 6 to 20 cm, which
leads to an increasing reliability index. A two-term (M = 2) KL expan-
sion of the underlying Gaussian field is used. The results are reported in
Table 7.3. Column #2 shows the values obtained by direct coupling between
FORM and the deterministic finite element model. Column #4 shows the val-
ues obtained using FORM after the SFE solution of the problem using an
intrusive approach.

The results in Table 7.3 show that the “SFE+FORM” procedure obviously
converges to the direct coupling results when p is increased. It appears that a
third-order expansion is accurate enough to predict reliability indices up to 5.
For larger values of β, a fourth-order expansion should be used.

Note that a single SFE analysis is carried out to get the reliability indices
associated with the various values of the threshold u0 (once p is chosen).
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Table 7.3 Example #1 – Influence of the threshold
in the limit state function.

u0 (cm) βdirect p βSFE

2 0.477
6 0.473 3 0.488

4 0.488
2 2.195

8 2.152 3 2.165
4 2.166
2 3.617

10 3.452 3 3.474
4 3.467
2 4.858

12 4.514 3 4.559
4 4.534
2 6.494

15 5.810 3 5.918
4 5.846
2 8.830

20 7.480 3 7.737
4 7.561

In contrary, a FORM analysis has to be restarted for each value of u0
when direct coupling is used. As a conclusion, if a single value of β (and
related Pf ≈ �(−β)) is of interest, direct coupling using FORM is proba-
bly the most efficient method. When the evolution of β with respect to a
threshold is investigated, the “SFE+FORM” approach may become more
efficient.

7.7.2 Example #2 : Foundation problem – non Gaussian
variables

Deterministic problem statement

Let us consider now an elastic soil mass made of two layers of different
isotropic linear elastic materials lying on a rigid substratum. A foundation
on this soil mass is modeled by a uniform pressure P1 applied over a length
2B1 = 10 m of the free surface. An additional load P2 is applied over a length
2B2 = 5 m (Figure 7.4).

Due to the symmetry, half of the structure is modeled by finite element
(Figure 7.4). The mesh comprises 80 QUAD4 elements as in the previous
section. The finite element code used in this analysis is the open source code
Code_Aster.1 The geometry is considered as deterministic. The elastic mate-
rial properties of both layers and the applied loads are modeled by random
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A

2B1 = 10m

t1 =  7,75m

t2 =  22,25m E2, n2

E1, n1

P1

P2

2B2 =  5m

Figure 7.4 Example #2: Foundation on a two-layer soil mass.

Table 7.4 Example #2: Two-layer soil layer mass – Parameters of the model.

Parameter Notation Type of PDF Mean value Coef. of
variation

Upper layer soil thickness t1 Deterministic 7.75 m –
Lower layer soil thickness t2 Deterministic 22.25 m –
Upper layer Young’s modulus E1 Lognormal 50 MPa 20%
Lower layer Young’s modulus E2 Lognormal 100 MPa 20%
Upper layer Poisson ratio ν1 Uniform 0.3 15%
Lower layer Poisson ratio ν2 Uniform 0.3 15%
Load #1 P1 Gamma 0.2 MPa 20 %
Load #2 P2 Weibull 0.4 MPa 20 %

variables, whose PDF are specified in Table 7.4. All six random variables are
supposed to be independent.

Again the model response under consideration is the maximum verti-
cal displacement at point A (Figure 7.4). The finite element model is thus
considered as an algorithmic function h(.) that computes the vertical nodal
displacement uA as a function of the six input parameters:

uA = h(E1,E2,ν1,ν2,P1,P2) (7.71)

Reliability analysis

The serviceability of this foundation on a layered soil mass vis-à-vis an
admissible settlement is studied. Again, two stategies are compared.

• A direct coupling between the finite element model and the probabilistic
code PROBAN (Det Norske Veritas, 2000). The limit state function
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given in Equation (7.70) is rewritten is this case as:

g(X ) = u0 −h(E1, E2, ν1, ν2, P1, P2) (7.72)

where u0 is the admissible settlement. The failure probability is com-
puted using FORM analysis followed by importance sampling. One
thousand samples are used in IS allowing a coefficient of variation of
the simulation less than 5%.

• An SFE analysis using the regression method is carried out, leading to
an approximation of the maximal vertical settlement:

ũA =
P∑

j=0

ujΨj({ξk}6
k=1) (7.73)

For this purpose, the six input variables {E1, E2, ν1, ν2, P1, P2} are first
transformed into a six-dimensional standard normal gaussian vector
ξ ≡ {ξk}6

k=1 . Then a third-order (p = 3) PC expansion of the response

is performed which requires the computation of P =
(

6 + 3
3

)
= 84

coefficients. An approximate limit state function is then considered:

g̃(X) = u0 −
P∑

j=0

ujΨj({ξk}6
k=1) (7.74)

Then FORM analysis followed by importance sampling is applied (one
thousand samples, coefficient of variation less than 1% for the simula-
tion). Note that in this case, FORM as well as IS are performed using
the analytical limit state function Equation (7.74). This computation
is almost costless compared to the computation of the PC expansion
coefficients {uj}P−1

j=0 in Equation (7.73).

Table 7.5 shows the probability of failure obtained by direct coupling
and by SFE/regression using various numbers of points in the experimental
design (see Section 7.5.3). Figure 7.5 shows the evolution of the ratio between
the logarithm of the probability of failure (divided by the logarithm of the
converged probability of failure) versus the number of regression points for
several values of the maximum admissible settlement u0. Accurate results are
obtained when using 420 regression points or more for different values of the
failure probability (from 10−1 to 10−4). When taking less than 420 points,
results are inaccurate. When taking more than 420 points, the accuracy is
not improved. Thus this number seems to be the best compromise between
accuracy and efficiency. Note that it corresponds to 5×84 points, as pointed
out in Equation (7.47).
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Table 7.5 Example #2: Foundation on a two-layered soil – probability of failure Pf .

Threshold
u0 (cm)

Direct
coupling

Non-intrusive SFE/regression approach

84 pts 168 pts 336 pts 420 pts 4096 pts

12 3.09.10−1 1.62.10−1 2.71.10−1 3.31.10−1 3.23.10−1 3.32.10−1

15 6.83.10−2 6.77.10−2 6.90.10−2 8.43.10−2 6.73.10−2 6.93.10−2

20 2.13.10−3 – 9.95.10−5 8.22.10−4 2.01.10−3 1.98.10−3

22 4.61.10−4 – 7.47.10−7 1.31.10−4 3.80.10−4 4.24.10−4

Number of FE runs
required

84 168 336 420 4096

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 200 400 600 800 1000
Number of points

12 cm
15 cm
20 cm
22 cm

Figure 7.5 Example #2: Evolution of the logarithm of the failure probability divided by the
converged value vs. the number of regression points.

7.7.3 Example #3: Deep tunnel problem

Deterministic problem statement and probabilistic model

Let us consider a deep tunnel in an elastic, isotropic homogeneous soil mass.
Let us consider a homogeneous initial stress field. The coefficient of earth

pressure at rest is defined as K0 = σ0
xx

σ0
yy

. Parameters describing geometry,
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material properties and loads are given in Table 7.6. The analysis is carried
out under plane strain conditions. Due to the symmetry of the problem,
only a quarter of the problem is modeled by finite element using appropri-
ate boundary conditions (Figure 7.6). The mesh contains 462 nodes and
420 4-node linear elements, which allow a 1.4%-accuracy evaluation of the
radial displacement of the tunnel wall compared to a reference solution.

Moment analysis

One is interested in the radial displacement (convergence) of the tunnel
wall, i.e. the vertical displacement of point E denoted by uE. The value
um

E obtained for the mean values of the random parameters (see Table 7.6)
is 6.24 mm. A third-order (p = 3) PC expansion of this nodal displace-

ment is computed. This requires P =
(

4 + 3
3

)
= 35 coefficients. Various SFE

Table 7.6 Example #3 – Parameters of the model.

Parameter Notation Type Mean Coef. of Var.

Tunnel depth L Deterministic 20 m –
Tunnel radius R Deterministic 1 m –
Vertical initial stress −σ 0

yy Lognormal 0.2 MPa 30%
Coefficient of earth

pressure at rest
K0 Lognormal 0.5 10%

Young’s modulus E Lognormal 50 MPa 20%
Poisson ratio ν Uniform [0.1–0.3] 0.2 29%

E, n

o

L

L

BA

CD

E

x

y
R

dy = 0

dx = 0

dx = 0
dy = 0

dx = 0
dy= 0

sYY
0

sXX
0

Figure 7.6 Scheme of the tunnel. Mesh of the tunnel.
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methods are applied to solve the SFE problem, namely the intrusive method
(Section 7.4) and the non intrusive regression method (Section 7.5) using
various experimental designs. The statistical moments of uE (reduced mean
value E[uE]/um

E , coefficient of variation, skewness and kurtosis coefficients)
are reported in Table 7.7.

The reference solution is obtained by Monte Carlo simulation using
30,000 samples (column #2) with the deterministic finite element model. The
coefficient of variation of this simulation is 0.25%. The regression method
gives good results when there are at least 105 regression points (note that
this corresponds again to Equation (7.47)). These results are slightly better
than those obtained by the intrusive approach (column #3), especially for the
skewness and kurtosis coefficients. This is due to the fact that input variables
are expanded (i.e. approximated) onto the PC basis when applying the intru-
sive approach while they are exactly represented through the isoprobabilistic
transform in the non intrusive approaches.

Reliability analysis

Let us now consider the reliability of the tunnel with respect to an admissible
radial displacement u0. The deterministic finite element model is considered
as an algorithmic function h(.) that computes the radial nodal displacement
uE as a function of the four input parameters:

uE = h
(
E,ν,σ 0

yy,K0

)
(7.75)

Two solving stategies are compared.

• A direct coupling between the finite element model PROBAN. The limit
state function reads in this case:

g(X) = u0 −h
(
E,ν,σ 0

yy,K0

)
(7.76)

Table 7.7 Example #3 – Moments of the radial displacement at point E.

Reference
Monte Carlo

Intrusive
SFE (p = 3)

Non-intrusive SFE/Regression

35 pts 70 pts 105 pts 256 pts

uE/um
E 1.017 1.031 1.311 1.021 1.019 1.018

Coeff. of var. 0.426 0.427 1.157 0.431 0.431 0.433
Skewness −1.182 −0.807 −0.919 −1.133 −1.134 −1.179
Kurtosis 5.670 4.209 13.410 5.312 5.334 5.460
Number of FE runs required − 35 70 105 256
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where u0 is the admissible radial displacement. The failure probability
is computed using FORM analysis followed by importance sampling.
One thousand samples are used in IS allowing a coefficient of variation
of the simulation less than 5%.

• A SFE analysis using the regression method is carried out, leading to an
approximation of the radial displacement:

ũE =
P∑

j=0

ujΨj({ξk}4
k=1) (7.77)

and the associated limit state function reads:

g() = u0 −
P∑

j=0

ujΨj({ξk}4
k=1) (7.78)

The generalized reliability indices β = −�−1(Pf ,IS) associated to limit
state functions (7.76) and (7.78) for various values of u0 are reported in
Table 7.8.

The above results show that at least 105 points of regression should be used
when a third-order PC expansion is used. Additional points do not improve
the accuracy of the results. The intrusive and non-intrusive approaches give
very similar results. They are close to the direct coupling results when the
obtained reliability index is not too large. For larger values, the third-order
PC expansion may not be accurate enough to solve the reliability problem.
Anyway, the non-intrusive approach (which does not introduce any approxi-
mation of the input variables) is slightly more accurate than the non intrusive
method, as explained in Example #2.

Table 7.8 Example #3: Generalized reliability indices β = −�−1(Pf ,IS) vs. admissible
radial displacement.

Threshold
u0 (cm)

Direct coupling Intrusive SFE
(p = 3,P = 35)

Non-intrusive SFE/regression

35 pts 70 pts 105 pts 256 pts

7 0.427 0.251 −0.072 0.227 0.413 0.405
8 0.759 0.571 0.038 0.631 0.734 0.752
9 1.046 1.006 0.215 1.034 0.994 1.034

10 1.309 1.309 0.215 1.350 1.327 1.286
12 1.766 1.920 0.538 1.977 1.769 1.747
15 2.328 2.907 0.857 2.766 2.346 2.322
17 2.627 3.425 1.004 3.222 2.663 2.653
20 3.342 4.213 1.244 3.823 3.114 3.192
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7.8 Conclusion

Modelling soil material properties properly is of crucial importance in
geotechnical engineering. The natural heterogeneity of soil can be fruitfully
modeled using probability theory.

• If an accurate description of the spatial variability is required, random
fields may be employed. Their use in engineering problems requires their
discretization. Two efficient methods have been presented for this pur-
pose, namely the Karhunen–Loève expansion and the EOLE method.
These methods should be better known both by researchers and engi-
neers since they provide a much better accuracy than older methods such
as point discretization or local averaging techniques.

• If an homogenized behavior of the soil is sufficient with respect to the
geotechnical problem under consideration, the soil characteristics may
be modeled as random variables that are usually non Gaussian.

In both cases, identification of the parameters of the probabilistic model is
necessary. This is beyond the scope of this chapter.

Various methods have been reviewed that predict the impact of input ran-
dom parameters onto the response of the geotechnical model. Attention has
been focused on a class of stochastic finite element methods based on poly-
nomial chaos expansion. It has been shown how the input variables/fields
should be first represented using functions of standard normal variables.

Two classes of methods for computing the expansion coefficients have
been presented, namely the intrusive and non-intrusive methods. The histor-
ical intrusive approach is well-suited to solve linear problems. It has been
extended to some particular non linear problems, but proves delicate to apply
in these cases. In contrary, the projection and regression methods are easy
to apply whatever the physics since they make use only of the deterministic
model as available in the finite element code. Several runs of the model for
selected values of the input parameters are required. The computed responses
are processed in order to get the PC expansion coefficients of the response.
Note that the implementation of these non-intrusive methods is done once
and for all, and can be applied thereafter with any finite element software at
hand, and more generally with any model (possibly analytical). However, the
non-intrusive methods may become computationnally expensive when the
number of input variables is large, which may be the case when discretized
random fields are considered.

Based on a large number of application examples, the authors suggest the
use of second-order (p = 2) PC expansions for estimating mean and standard
deviation of response quantities. When reliability problems are considered,
at least a third-order expansion is necessary to catch the true shape of the
response PDF tail.
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Appendix A

A.1 Hermite polynomials

The Hermite polynomials Hen(x) are solutions of the following differential
equation:

y′′ − xy′ + ny = 0 n ∈ N (7.79)

They may be generated in practise by the following recurrence relationship:

He0(x) = 1 (7.80)

Hen+1(x) = xHen(x) − nHen−1(x) (7.81)

They are orthogonal with respect to the Gaussian probability measure:

∫ ∞

−∞
Hem(x)Hen(x)ϕ(x)dx = n!δmn (7.82)

where ϕ(x) = 1/
√

2π e−x2/2 is the standard normal PDF. If ξ is a standard
normal random variable, the following relationship holds:

E
[
Hem(ξ )Hen(ξ )

]= n!δmn (7.83)

The first three Hermite polynomials are:

He1(x) = x He2(x) = x2 − 1 He3(x) = x3 − 3x (7.84)

A.2 Construction of the polynomial chaos

The Hermite polynomial chaos of order M and degree p is the set of multi-
variate polynomials obtained by products of univariate polynomials so that
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the maximal degree is less than or equal to p. Let us define the following
integer sequence α:

α = {αi, i = 1, . . . , M}, αi ≥ 0,

M∑
i=1

αi ≤ p (7.85)

The multivariate polynomial Ψα is defined by:

Ψα(x1, . . . , xM) =
M∏

i=1

Heαi
(xi) (7.86)

The number of such polynomials of degree not exceeding p is:

P = (M + p)!
M!p! (7.87)

An original algorithm to determine the set of α’s is detailed in Sudret and Der
Kiureghian (2000). Let Z be a standard normal random vector of size M. It
is clear that:

E
[
Ψα(Z)Ψβ (Z)

]
=

M∏
i=1

E
[
Heαi

(Zi)Heβi
(Zi)

]
= δαβ

M∏
i=1

E
[
He2

αi
(Zi)

]
(7.88)

The latter equation shows that the polynomial chaos basis is orthogonal.

Notes

1 This is an open source finite element code developed by Electricité de France, R&D
Division, see http://www.code-aster.org.
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