
Chapter 8 

Response surfaces based on polynomial chaos 

expansions 

8.1. Introduction 

8.1.1. Statement of the reliability problem 

Let us recall the problem stated in the introduction of Chapter 1. Of interest is a 

building or a part of a building reduced to a mechanical structure, whose behaviour 

may be represented by a mechanical model. The latter is described by a transfer 

function  (often known implicitly, e.g. under the form of a finite element code) 

that allows one to evaluate the effects of the loading (e.g. displacements, strains, 

stresses)  depending on input parameters which describe the structure and its 

environment, that is the geometrical properties (e.g. dimensions, cross-section areas 

and moments of inertia of the beam elements), the material properties (e.g. Young’s 

modulus, Poisson’s coefficient) and the loading (e.g. applied loads, thermal 

loading). All these input parameters are gathered in a vector x . The model response 

is denoted by ( )y x .  

Then, a probabilistic model is defined for the input parameters. In this context, 

the latter are described by a random vector X (of size M ) with prescribed joint 

probability density function (PDF) ( )f
X

x . 

Lastly, a limit state function is defined that mathematically represents the failure 

criterion with respect to which the structure has to be justified. This function writes 

( ( ) )g X X  and accounts for the effects of the loading (e.g. displacements, 
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stresses) to which (probabilistic or deterministic) limits – gathered in a vector X – 

are assigned. It is conventionally defined in such a way that its negative values 

correspond to realizations x  of the input parameters which lead to failure. 

Denoting by fX,X’ the joint PDF of  X and X’, the reliability analysis is aimed at 

evaluating the probablity of failure 
fP of the structure under consideration that 

reads: 

( ( ) ) 0
( )f

{ g }
P f d  

  X X
x x x

x x x  [8.1] 

Many methods many used to solve this problem, such as Monte Carlo 

simulation, FORM/SORM methods, directional simulation, subset simulation, see 

e.g. the references Ditlevsen and Madsen [DIT 96], and Lemaire [LEM 05].  

8.1.2. From Monte-Carlo simulation to polynomial chaos expansions  

The Monte Carlo method is well known in structural reliability and more 

generally in probabilistic mechanics. It relies upon the generation of a random 

sample of the input variables, denoted by  1i i … N    x . Then the number of 

simulated failures fN (i.e. the number of realizations 
ix  that lead to a negative 

value of the limit state function, the evaluation of which requiring a mechanical 

calculation ( )i iy x ). Then the probability of failure is estimated by 

ˆ
ff

N NP   . The Monte Carlo method is simple to carry out and also robust since 

it provides confidence intervals for the estimate ˆ
fP . However it is computationally 

very expensive, especially when low probabilities of failure are sought (with orders 

of magnitude ranging from 310  to 610  in practice). Indeed, it is shown that an 

accurate estimation (say with a relative accuracy of 5%) of a probability of 

magnitude 10 k  requires about 24 10kN    points in the sample. 

 From another point of view, the Monte Carlo method consists in characterizing 

the random response of the structure ( )Y  X  pointwise in its domain of 

variation. Thus a large number of simulations is expected in order to accurately 

estimate the probabilistic feature of Y , e.g. through its PDF ( )Yf y  that is estimated 

by the histogram of the sample  ( ) 1i i … N    x . In the industrial context, 

most of models are of finite element type and necessitate a significant CPU time 

(say from a few minutes to a few hours), hence this approach cannot be applied. 

As an alternative, Y  can be considered intrinsically as a random variable 

belonging to a specific space (such as the space of random variables with a finite 
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variance), and can be represented in a suitable basis of this space. Thus the response 

will be cast as a converging series as follows: 

0

j j

j

Y a




   [8.2] 

where  j j    is a set of random variables that form the basis and where 

 ja j   is the set of the “coordinates” of Y in this basis. In particular, a special 

focus is given to bases made of orthonormal polynomials of random variables. The 

series in [8.2] is then referred to as polynomial chaos (PC) expansion.  

In the remainder of this chapter, one successively describes the building of the 

PC basis (section 8.2), then the computation of the PC coefficients and their post-

processing dedicated to reliability analysis (section 8.3). Lastly, two application 

examples are addressed in section 8.4. 

8.2. Building of the polynomial chaos basis 

8.2.1. Orthogonal polynomials 

For the sake of simplicity, the input random variables are assumed to be 

independent. Their marginal PDF is denoted by ( )i if x , thus their joint PDF 

reads
1

( ) ( )
M

i ii
f f x


X

x . For each input random variable
iX , a family of 

orthonormal polynomials  i

jP j   can be defined, such that 
0 1iP   and the 

degree of each polynomial i

jP  is j , 0j  . The orthonormality property is defined 

by: 

( ) ( ) ( )
i

i i i i

j k j k i j k
D

P P P x P x f x dx       [8.3] 

where 1j k    if j k  and 0 otherwise, and iD  is the support of the random 

variable iX . In practice, classical families of orthonormal polynomials can be 

associated with usual continous random variables. If iX  is Gaussian (resp. uniform), 

the corresponding family is the one made of the Hermite (resp. Legendre) 

polynomials [ABR 70, SCH 00]. 



18     Construction reliability 

Then a basis made of multivariate polynomials  j j    can be easily built 

up by tensorization, that is by multiplying the univariate polynomials as follows: 

1 1

1

1( ) ( ) ( ) ( )
M M

M

… MP x P x          x x  [8.4] 

It is shown by Soize et Ghanem [SOI 04] that the family 

 ( ) M

     X form an appropriate countable basis to represent the random 

response ( )Y  X  of a mechanical model. In addition, this basis is orthonormal 

with respect to the inner product in the space of random variables with a finite 

variance defined by the mathematical expectation 1 2 1 2Y Y YY 
  

   . Indeed, due 

to Eqs.[8.3],[8.4], one gets::  

( ) ( )            X X  [8.5] 

The elements of the basis (indexed by their multi-index  ) are classically ordered 

according to their increasing total degree 
1

M

ii
p  


  , and are enumerated 

from 0j   to infinity as in Eq.[8.2] (an algorithm allowing a systematical building 

of the basis may be found in [SUD 06]).  

 

In practice, it is necessary to only retain a finite number of terms in the PC basis. 

Then the series is generally truncated in such a way that only those basis 

polynomials  j with total degree not greater than a given p  are retained. Hence a 

truncated series containing P  terms: 

1

0

( ) ( )
P

PC

j j

j

Y a 




 X X  [8.6] 

where it is shown that M p

p
P

 
 

 
 

 .  

8.2.2. Example 

Let us consider the random response Y  of a mechanical model 

1 2( )Y X X  depending on two Gaussian random variables 
1X  and 

2X , with 

mean i  (resp. standard deviation i ), 1 2i   . Upon applying the linear mapping 

i i i iX     , the response can be recast in terms of standard Gaussian random 

variables, that is 1 2( )Y    . 



Response Surfaces based on Polynomial Chaos Expansions    19 

The family of orthogonal polynomials with respect to the standard Gaussian PDF 
2 2( ) 1 2 xx e      is the family of Hermite polynomials   jHe x j  . They 

are defined by the following recurrence relationship: 

1 0

1 1

( ) ( ) 1

( ) ( ) ( )n n n

He x He x

He x x He x n He x



 

 

 
 [8.7] 

The resulting polynomials are orthogonal but not orthonormal. They have various 

specific properties as shown in [BAR 05]. In particular, it is shown that 

n nHe He n    . Therefore the family   !jHe x n j   is orthonormal. The 

four first normalized Hermite polynomials are thus 2 31 ( 1) 2 ( 3 ) 6x x x x
  
 
  
       . 

Assume that the expansion of the random response Y  onto a PC basis of 

maximal degree 3p   is of interest. The retained polynomials are built from 

products of Hermite polynomials in 
1  and 

2  (table 8.1). Hence an approximation 

of the model response (stochastic response surface) is sought under the form: 

2

1 2 0 1 1 2 2 3 1 4 1 2

2 3 2
5 2 6 1 1 7 1 2

2 3
8 2 1 9 2 2

( ) ( 1) 2

( 1) 2 ( 3 ) 6 ( 1) 2

( 1) 2 ( 3 ) 6

PCY a a a a a

a a a

a a

      

    

   

        

        

     

 [8.8] 

where the coefficients 0 9j{a j … }     must be determined.  

 

j  α  
j  

α
 

0 [0,0] 
0 1   

1 [1,0] 1 1   

2 [0,1] 
2 2   

3 [2,0]  2

3 1 1 2    

4 [1,1] 4 1 2    

5 [0,2]  2

5 2 1 2    

6 [3,0]  3

6 1 13 6     

7 [2,1]  2

7 1 21 2     

8 [1,2]  2

8 2 11 2     

9 [0,3]  3

9 2 23 6     

Table 8.1. Example of building of a polynomial chaos of degree 3 with 2 variables  
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8.3. Computation of the coefficients of the expansion 

8.3.1. Introduction 

Polynomial chaos expansions have been originally introduced to represent 

random fields [WIE 38]. They have been used more recently for solving stochastic 

partial differential equations (SPDE) [GHA 91]. In this setup, investigations have 

been conducted in many fields such as biology, mechanics, fluid mechanics and 

thermal physics [WIN 85, ISU 98, SUD 04, GHA 98, XIU 03, KNI 06]. The weak 

formulation of these SPDE’s is discretized both in the physical space (e.g. by finite 

elements) and in the probabilistic space (e.g. onto the PC basis). The coefficients 

arising from Eq.[8.6] are obtained by a Galerkin method [GHA 91], and are obtained 

by solving a large system of coupled linear equations, which may reveal time and 

memory consuming [PEL 00]. This method is referred to as intrusive due to the 

coupled nature of the system. The application of intrusive spectral methods have 

been initially proposed in [SUD 00, SUD 02]. 

On the other hand, non intrusive methods have received an increasing interest for 

a few years. They allow one to compute the coefficients in Eq.[8.6] by means of a 

set of deterministic calculations, i.e. a set  ( ) 1i i … N    x  of evaluations of 

the model response at suitably chosen values of the input variables. The label non 

intrusive indicates that these methods can be applied using the deterministic code 

associated with the model  without modification. 

Two classes of approaches may be distinguished among the non intrusive 

methods, namely the projection approach [LEM 01, BAR 05, BAR 06, BLA 07] and 

the regression approach [BER 05, BER 06]. They are detailed in the sequel. 

8.3.2. Projection methods 

The so-called projection methods take benefit of the orthonormality of the PC 

basis. Indeed, by multiplying the expansion [8.2] by ( )j X  and by integrating with 

respect to the joint PDF  ( )f
X

x  of  X , one gets:  

( ) ( ) ( ) ( ) ( )j j j
D

a f d     
X

X
X X x x x x  [8.9] 

In practice, the above expression is estimated using classical methods for numerical 

integration, which consist in approximating the multi-dimensional integral by a 

weighted sum as follows: 

( ) ( )

1

( ) ( )ˆ
N

i i
j i j

i

wa 


 x x  [8.10] 
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Several techniques can be considered which differ from the choice of the integration  

points ( )i
x  and weights 

iw .  

 

The so-called simulation method relies upon the choice of N  random 

integration points and integration weights equal to 1 N , which leads to:  

( ) ( )

1

1
( ) ( )ˆ

N
i i

j j

i

a
N




  x x  [8.11] 

This corresponds to the application of Monte Carlo simulation to the estimation of 

the expectation in [8.9]. The accuracy of the coefficients estimators depends on the 

adopted sampling strategy. In case of a standard random sample (classical Monte 

Carlo simulation), a relatively low convergence rate in 1 2N    is obtained. The 

convergence speed may be increased using stratified sampling techniques, such as 

latin hypercube sampling [MCK 79]. Moreover, it is shown that the use of quasi-

random numbers [NIE 92], which are generated from deterministic low discrepancy 

sequences, guarantees a better filling of the domain of variation of the parameters 

and lead to faster convergences [BLA 07].   

 

As an alternative, the integral in Eq.[8.9] can be approximated by a Gauss 

quadrature scheme. Its principle is well known in the unidimensional case: the 

integral of a function ( )h x  (weighted by a function ( )w x ) is estimated by a sum of 

evaluations of h  in a set of quadrature points: 

1

( ) ( ) ( )
n

i i
D

k

I h x w x dx w h x


   [8.12] 

 

The Gauss method allows one to integrate exactly any polynomial function of 

degree not greater than 2 1n  with n  suitable integration points, namely the roots 

of the orthogonal polynomials with respect to the weight function ( )w x  in the sense 

of Eq.[8.3]. The extension to the multi-dimensional case (integral [8.9]) is obtained 

by tensorizing the univariate quadrate rules: 

1

1 1 1

1

1 1 1

1 1

M

M M M

M

n n
M M M

j i i j i i i i

i i

a w w x … x x … x    
   
   

 

       [8.13] 

 

 

Isotropic formulae are commonly used, that is formulae which satisfy 

1 Mn … n n   . It is shown that this scheme allows one to integrate exactly any 

multivariate polynomial of partial degree not greater than 2 1n . Now, if the model 



22     Construction reliability 

response is approximated by a PC expansion of degree p , then the integrand in 

[8.9] is a polynomial of total degree 2 p . Therefore a tensorized quadrature rule 

with 1n p   points is used in order to estimate the coefficients. Such a strategy 

leads to perform ( 1)MN p   model evaluations, which may reveal cumbersome in 

presence of a large number of input parameters (say 5M  ). 

 

The computational effort may be dramatically reduced by replacing the full 

tensor-product [8.13] with the so-called Smolyak scheme [SMO 63], also known as 

sparse quadrature. This technique has been applied in relation to PC expansions in 

[KEE 03, SUD 07].   

8.3.3. Regression methods 

8.3.3.1. Direct approach 

An alternative method to projection consists in computing the coefficients which 

provide the best approximation of ( )Y  X  in the least squares sense by a 

truncated PC expansion containing a fixed number P  of terms. Using the following 

vector notation: 

 
T

0 1Pa … a   a  [8.14] 

 
T

0 1( ) ( ) ( )P…    ψ X X X  [8.15] 

equation [8.6] rewrites:  

T

( )PC  a ψ X  [8.16] 

Let us consider a set 
T(1) ( )N{ … }  x x  of realizations of the input random vector, 

that is an experimental design. Let us denote by  the set of corresponding model 

evaluations. The experimental design may be built either from a random or a quasi-

random sample (see Section 8.3.2), or from the roots of the orthogonal polynomials 

that are used to build the basis [BER 05].  

 

 

The problem consists in finding the vector of coefficients â  that minimize the 

sum of squared errors (cf. chapter 1, [1.6-7]), that is: 
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 
T 2

( ) ( )

1

ˆ arg min ( ) ( )
N

i i

i




 
a

a a x x  [8.17] 

It is shown that the solution can be obtained in closed form as follows:  

 
T T1

ˆ


a Ψ Ψ Ψ  [8.18] 

where the generic entry of matrix Ψ  is given by: 

( )( ) 1 0 1i

ij j i … N j … P       Ψ x  [8.19] 

It is necessary that the number N of model evaluations be greater than the number P 

of unknown coefficients in order to make the problem well-posed. In the case of a 

random or a latin hypercube [MCK 79] experimental design, the rule-of-thumb 

2N P  generally leads to satisfactory results. As shown in [BER 05, BER 06], the 

regression methods reveals particularly efficient to compute the PC coefficients. It 

also allows one to define a posteriori error estimates as well as an adaptive strategy 

for building the PC basis, which is outlined in the sequel [BLA 09]. 

8.3.3.2. Error estimation  

The approximation error of a PC expansion can be quantified by the coefficient 

of determination R
2
, which is currently used in regression analysis. This coefficient 

depends on the sum of squared deviations between the “true” model response and 

the PC representation: 

 
2

( ) ( )

2 1
1 ( ) ( )

1
ˆ[ ]

N i PC i

i
N

R
V Y


 

 
 x x

 [8.20] 

where ˆ[ ]V Y  is the empirical variance of the model evaluations:  

 
2

( )( )

1 1

1 1ˆ[ ]
1

N N
ii

i i

V Y y yy y
N N 

 

   [8.21] 

Thus, ² 1R  corresponds to a perfect adequation whereas ² 0R   indicates a very 

poor approximation. However, the R
2
 coefficient should be used with caution, as it 

tends to underpredict the genuine approximation error. In the extreme case N P , 

the PC approximation interpolates the model realizations, which leads to ² 1R   

even if the error may reveal significant for points that do not belong to the 

experimental design. This phenomenon is known as overfitting. 
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As a consequence, a more robust error estimate is used, which is based on cross 

validation technique named leave-one-out [ALL 71, SAP 06]. In this setup, for any 

point in the experimental design ( )i
x , one computes the deviation ( )i  between the 

observation ( ) ( )( )i iy  x  and the evaluation in ( )i
x  of a PC expansion denoted by 

( )i

PC

X\x
, whose coefficients are computed from the experimental design ( )i{ }x  

obtained by removing the point ( )i
x  from . By analogy with the 2R  coefficient, 

one defines the 2Q  coefficient as follows: 

( )

2( )
2 ( ) ( ) ( )1

1
1 ( ) ( )

ˆ[ ]
i

N
i

i i PC ii

X\

N
Q

V Y


 

    


x
x x  [8.22] 

8.3.3.3. Adaptative approach 

It has been shown in paragraph 8.3.3.1 that the size N  of the experimental 

design has to be greater than the number P  of terms in the truncated PC series in 

order to solve the regression problem. Now, P  strongly increases with both the 

maximal degree p  of the PC expansion and the number M  of input random 

variables, according to the formula M p

p
P

 
 

 
 

 =
!!

)!(

pM

pM 
. Thus the regression 

method may lead to intractable calculations in high dimension (say 10M  ). In 

order to reduce the number of model evaluations, a sparse PC approximation of the 

response Y is sought, that is a PC representation which only contains a small number 

of nonzero coefficients. Of course it is not possible to determine a priori the 

significant terms. Hence an iterative procedure has been proposed in [BLA 08, BLA 

09, BLA 10b] to build up step-by-step a sparse PC expansion. The algorithm is 

sketched in Figure 8.1. 

First, an initial experimental design  is considered and the associated model 

evaluations are gathered in . The model response is approximated by a PC 

expansion of degree 0p   (i.e. the current basis is a constant term). Then, terms 

corresponding to polynomials with increasing degree p  and interaction order j  are 

proposed. Two steps can be distinguished: 

– a forward step: all the candidate terms are added in turn to the current basis. 

The changes in 2R  due to the addition of each term are evaluated. 

Eventually all those terms which lead to a significant increase of 2R  are 

retained; 
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Figure 8.1. Schéma de l’algorithme pour la construction pas-à-pas d’un chaos polynomial 

creux 

– a backward step: all the terms in the current basis are removed in turn, and 

the associated changes in 2R  are computed. Eventually all those terms 

which lead to an insignificant decrease of are 2R  discarded. 

Besides this adaptivity of the PC basis, the experimental design is systematically 

enriched in such a way that the various regression problems be always well-posed. 

In this purpose, sequential sampling strategies are adopted, which are based either 

on quasi-random numbers or nested LHS [WAN 03, BLA 10b]. The algorithm stops 

when the 2Q  coefficient related to the current PC approximation has reached a 

target accuracy 2

tgtQ .  

8.3.4. Post-processing of the coefficients 

As mentioned previously, the random variable ( )Y  X  is thoroughly defined 

by its coefficients ja  which can be estimated by means of several non intrusive 

methods. In particular, the mean and the variance Y  can be derived analytically 

from these coefficients due to the orthonormality of the basis:  

 
1

2

0

1

[ ]
P

j

j

E Y a V Y a




   [8.23] 
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For reliability analyses, one substitutes the model response by a PC decomposition 

into the limit state function that describes the system failure. Considering for 

simplicity a failure criterion associated with a deterministic maximum admissible 

threshold 
maxy , the limit state function reads:  

max( ) ( )g y X X  [8.24] 

Substituting the model response ( )X  by a PC expansion ( )PC
X  into Eq. 

[8.24], one gets the analytical limit state function: 

1

max

0

( ) ( )
P

PC

j j

j

g y a 




 X X  [8.25] 

This quantity corresponds to a stochastic response surface which repaces the 

original limit state function, that is an analytical (polynomial) expression whose 

evaluation cost is negligible. Thus the probability of failure may be estimated 

inexpensively by applying the classical reliability methods (e.g. direct Monte Carlo 

simulation, FORM and importance sampling). 

It has to be noticed that the PC-based approximation [8.25] differ from the 

quadratic response surfaces used in reliability analysis, which are local 

approximations (at the vicinity of the design point when using FORM). In this 

context, a parametric study leads to build a new response surface for each value of 

the parameter, in contrast to the PC approach. 

8.4. Applications in structural reliability 

8.4.1. Elastic truss 

8.4.1.1. Problem statement 

One considers the elastic truss represented in figure 8.2 [BLA 07, SUD 07]. Ten 

input random variables are assumed, whose distributions, means and standard 

deviations are reported in table 8.2. The quantity of interest is the (random) 

maximum vertical displacement of the structure denoted by 1 ( )V  X . 

8.4.1.2. Reliability analysis 

Of interest is the reliability of the truss structure with repect to an admissible 

maximal displacement. The associated limit state function reads:  

max max( ) ( ) 0 11cmg v v     X X  [8.26] 
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Figure 8.2. Truss structure with 23 bar elements 

 

Variable Distribution Mean Standard 

Deviation 

E1, E2 (MPa) Lognormale 210 000 21 000 

A1 (cm²) Lognormal 20 2 

A2 (cm²) Lognormal 10 1 

P1- P6 (kN) Gumbel 50 7,5 

Table 8.2. Elastic truss – input random variables 

The reference value of the probability of failure is obtained by direct Monte Carlo 

simulation using 610N   samples. The reliability analysis is carried out from 

various PC approximations of the response (denoted by ( )PC
X ) made of 

normalized Hermite polynomials. To this end, the input random vector X= 

{E1,E2,A1,A2,P1,…,P6}
T
 is transformed into a random vector containing independent 

standard Gaussian variables.
 
  

A PC expansion of degree 3 is considered. The PC coefficients are computed by 

Smolyak sparse quadrature (1,771 calculations have been performed). The reference 

results are obtained by applying an importance sampling strategy (the importance 

PDF is centered on the design point determined by FORM), from which one gets a 

generalized reliability index. The results are gathered in table 8.3. A 2% accuracy on 

the reliability index is obtained for all the admissible thresholds in the interval [10-

16] cm. 

The results obtained from a PC expansion whose coefficients have been 

estimated by regression are reported in table 8.4. Precisely, the reliability indices are 

alternatively computed from a full PC expansion of degree 3p   and from a sparse 
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PC representation. Whatever the approach, the coefficients have been calculated 

from an experimental design made of quasi-random numbers. It appears that both 

the full and the sparse PC approximation yield accurate estimates of  , with a 

relative error less than 3 5% . 

 

Threshold 

(cm) 

Reference 
Smolyak Projection 

 Pf β Pf β 

10 4.31x10-2 1.715 4.29x10-2 1.718 

11 8.70x10-3 2.378 8.73x10-3 2.377 

12 1.50x10-3 2.967 1.47x10-3 2.974 

14 3.49x10-5 3.977 2.83x10-5 4.026 

16 6.03x10-7 4.855 4.01x10-7 4.935 

Table 8.3. Elastic truss – Reliability results obtained using a third order polynomial chaos 

expansion based on Smolyak projection 

It is observed though that the sparse PC approach only requires about half (resp. 

one eighth) as many calculations as the full PC approach based on regression (resp. 

based on Smolyak quadrature).  

 

Threshold 

(cm) 

Reference Full PC Sparse PC 

 
REF  ̂   (%) ̂   (%) 

10 1.715 1.71 0.6 1.72 0.0 

11 2.378 2.38 0.0 2.38 0.0 

12 2.967 2.98 0.3 2.99 0.7 

14 3.977 4.04 1.5 4.07 2.3 

16 4.855 4.95 2.1 5.02 3.5 

Error 1 – Q² 1x10-6 9x10-5 

Number of terms 286 114 

Number of model evaluations 443 207 

Table 8.4. Elastic truss – Reliability results obtained using a full (with p=2) and a sparse PC 

expansion based on regresion 
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8.4.2. Frame structure 

The frame structure represented in figure 8.3 is now considered [LIU 91, BLA 

10b]. The frame beam elements are made of 8 different materials, whose properties 

are gathered in table 8.5. 

 

Figure 8.3. Example of a frame structure subjected to lateral loads 

 

Element Young’s modulus Moment of inertia Cross-sectional area 

1B  
4E  

10I  
18A  

2B  
4E  

11I  
19A  

3B  
4E  

12I  
20A  

4B  
4E  

13I  
21A  

1C  
5E  

6I  
14A  

2C  5E  7I  15A  

3C  5E  8I  16A  

4C  
5E  

9I  
17A  

Table 8.5. Frame structure – Element properties   

The response of interest is the horizontal component u  of the top-floor 

displacement at the top right corner. The 3 applied loads, the 2 Young’s moduli, the 

8 moments of inertia and the 8 cross-section areas of the frame components are 

assumed to be random. They are collected in the random vector 
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 
T

1 2 3 6 13 14 21P P P I I A A      X  of size 21M  . The properties of the 

random variables are reported in table 8.6. 

 

Variable Distribution Mean † Standard Deviation † 

1P  (kN)  133.454 40.04 

2P  (kN) Lognormal 88.970 35.59 

3P  (kN)  71.175 28.47 

1E  (kN/m²) Truncated normal over  2.17375x107 1.9152x106 

2E  (kN/m²)  0,  2.37964x107 1.9152x106 

6I  (m4)  8.13443x10-3 
1.08344x10-3 

7I  (m4)  2.13745x10-2 2.59609x10-3 

8I  (m4)  2.59610x10-2 3.02878x10-3 

9I  (m4) Truncated normal over 1.08108x10-2 2.59610x10-3 

10I  (m4)  0,  1.41055x10-2 3.46146x10-3 

11I  (m4)  2.32785x10-2 5.62487x10-3 

12I  (m4)  2.59610x10-2 6.49024x10-3 

13I  (m4)  2.13745x10-2 2.59609x10-3 

14A  (m²)  3.12564x10-1 5.58150x10-2 

15A  (m²)  3.72100x10-1 7.44200x10-2 

16A  (m²)  5.06060x10-1 9.30250x10-2 

17A  (m²) Truncated normal over 5.58150x10-1 1.11630x10-1 

18A  (m²)  0,  2.53020x10-1 9.30250x10-2 

19A  (m²)  2.91168x10-1 1.02323x10-1 

20A  (m²)  3.73030x10-1 1.20933x10-1 

21A  (m²)  4.18600x10-1 1.95375x10-1 

† The mean value and the standard deviation of the cross-sections, moments of inertia and 

Young’s moduli are those of the untruncated Gaussian  

Table 8.6. Frame structure – input random variables   

Moreover, the input random variables are correlated as follows: the correlation 

coefficients between the cross-section areas and the moments of inertia of a given 

element are equal to 95,0
iiIA , the correlation coefficients related to the other 

geometrical properties are equal to 13,0
jijiji AAIIIA  , the correlation 

coefficient between the two Young’s moduli is equal to 9,0
54
EE . The random 
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vector X  is transformed into a vector of independent standard Gaussian random 

variables by means of a Nataf transform ( )T X  [NAT 62] prior to building the 

PC expansion. 

Let us study the serviceability of the frame structure with respect to the limit 

state function: 

max( ) ( ( ))g u T  X  [8.27] 

where 
maxu  is a maximal admissible horizontal displacement. It is approximated by 

an analytical function by replacing the model ( ( ))T   with its PC representation 

made of Hermite polynomials,  denoted by ( )PC  . One carries out a parametric 

study varying the threshold 
maxu  from 4 to 8 cm. The generalized reliability indices 

are estimated b post-processing a full third-order PC as well as a sparse PC. The 

results are reported in table 8.7.  

As observed in the truss example, the estimation error of the reliability index 

slightly increases with the threshold value. Both types of PC approximation yield 

relative errors on   less than 5% when the threshold ranges from 4 to 8 cm. The 

sparse PC approach reveals much more efficient than the full PC approach, with a 

gain factor of 8 in terms of number of model evaluations (only 450 finite element 

runs instead of 3,724). 

 

Threshold (cm) Reference Full PC Sparse PC 

 
REF  ̂   (%) ̂   (%) 

4 2.27 2.26 0.4 2.29 0.9 

5 2.96 3.00 1.4 3.01 1.7 

6 3.51 3.60 2.6 3.61 2.8 

7 3.96 4.12 4.0 4.11 3.8 

8 4.33 4.58 5.8 4.56 5.3 

Error 1 – Q² 1x10-3 1x10-3 

Number of terms 2,024 138 

Number of model evaluations 3,724 450 

Table 8.7. Frame structure – Estimates of the generalized reliability index 
1( )fP    

for various values of the threshold displacement   
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8.5. Conclusion 

The methods based on polynomial chaos expansions have motivated many 

investigations over the last few years. Their application to structural reliability is 

quite novel and can be viewed as a particular type of stochastic response surface. 

This chapter has shown the principles of these methods with respect to the 

simulation techniques classically used in reliability analysis, and has introduced 

their formalism. 

The two application examples have shown the interest in using PC-based 

response surfaces for reliability analysis. Indeed, at the computational cost of the 

order of 200 calls to the finite element model for the elastic truss (resp. 450 calls for 

the frame structure), one obtained the probabilities of failure related to various 

thresholds, for a problem involving 10 (resp. 21) input random variables. In practice, 

the parametric study is carried out at a negligible cost with respect to a single 

reliability analysis, as the polynomial chaos expansion is built once and for all, and 

is then post-processed for the various threshold values. 

In addition to probabilities of failure, the polynomial chaos expansion can be 

also used in order to study the sensitivity of the response, by evaluating its 

probability density function, its statistical moments and the sensitivity indices to the 

input variables, still without requiring any additional model evaluation [SUD 07, 

BAR 07]. The latter reference [BAR07] has shown though that the use of a basis 

made of Lagrange polynomials is a relevant alternative to Hermite polynomials 

when the number of input parameters remains low (say M < 4-5). 

Lastly, the building of adaptive sparse polynomial bases paves the way to the 

solving of high-dimensional problems (M~50-100) at a reasonable computational 

cost (N<1000), in particular thanks to the introduction in probabilistic mechanics of 

advanced statistical regression methods such as LAR (Least Angle Regression) 

[BLA 10a]. 
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