
Chapter 10 

Time-variant reliability problems 

10.1. Introduction 

Although more or less ignored so far in this book, the time dimension is often 

present in structural reliability problems and has to be properly taken into account. 

Let us come back to the most basic formulation known as “R-S”, in which failure 

occurs when a demand S is greater than a capacity R. It is clear that for real 

structures both quantities may depend on time. Indeed: 

 the resistance (or capacity) R of the structure (e.g. material properties) may 

be degrading in time. The degradation mechanisms usually present an 

initiation phase and a propagation phase. Examples of such mechanisms are 

the crack initiation and propagation in fracture mechanics, the corrosion of 

steel structures and reinforced concrete rebars, the steel toughness decrease 

under irradiation in nuclear components, the concrete shrinkage and creep, 

etc.; 

 the load effect (or demand) S may be randomly varying in time due to the 

time variation of the loading, e.g. environmental loads (wind velocity, 

temperature, wave height, etc.) or service loads (traffic, occupancy loads, 

etc.). 

Both types of time dependency may be present simultaneously or not and their 

nature is different: while degradation phenomena are usually monotonic and 
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irreversible (corresponding to a decrease of the resistance), loads are usually 

« oscillating » in nature and should be modelled by random processes. 

The aim of this chapter is not to fully cover the theory and tools of time-variant 

reliability problems, which is beyond the scope of this book. In contrast, it aims at 

defining the basic concepts and focuses on a specific approach known as “PHI2 

method” which allows the analyst to solve time-variant reliability problems using 

time-invariant tools such as the FORM method. For a more complete treatment of 

time-variant reliability problems the reader is referred to the numerous publications 

by Rackwitz [e.g., RAC 01, RAC 04]  and the books by Ditlevsen & Madsen 

[DIT 96, chapter 15] and Melchers [MEL 99, chapter 6].  

10.2. Random processes  

Random processes allow one to mathematically describe loads that are randomly 

varying in time [CRA 67, LIN 67]. In the sequel the basic notions are introduced 

without too much mathematical rigour. 

10.2.1. Definition and elementary properties 

A random process  tX  is a set of random variables indexed by the time 

instant  0,t T with values in X  . In this notation   denotes the 

elementary events of an abstract probability space  , , . At each time instant 

the process reduces to a random variable  
0t

X  which is assigned some prescribed 

distribution. Conversely a realization or trajectory of the process corresponds to the 

usual function  0tt X  for a given 0 . It will be simply denoted by small letters, 

say  0,x t  . In order to define completely a random process, the full set of joint 

probability distribution functions of any finite subset of random variables 

    
1

, ,
Nt tX X  for any time instants 10 Nt t T    shall be prescribed. 

For structural reliability purposes however, specific types of processes are of 

common use, e.g. Poisson-, rectangular renewal wave- or Gaussian processes, whose 

description is much easier, as seen in the following paragraphs. 
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The usual definitions of marginal probability density functions (PDF), statistical 

moments (mean value  X t , standard deviation  X t , etc.) that are well known for 

random variables naturally exist for random processes « at each time instant ». Of crucial 

importance is also the autocorrelation function defined as follows: 

 
1 21 2, EXX t tR t t X X     [10.1] 

where  E .  denotes the mathematical expectation. This function represents the 

statistical dependence of points of trajectories considered at time instants 1 2,t t . 

Equivalently the autocorrelation coefficient function is defined by:  

 
   

   
1 2 1 2

1 2

1 2

E
,

t t X X

XX

X X

X X t t
t t

t t

 


 

   


 [10.2] 

Loosely speaking a random process is said stationary if its “characteristics” are 

invariant in time. Various rigourous definitions may be given. We will limit here to 

second-order stationarity, which implies that the statistical moments 

E , 1,2k

tX k    do not depend on time and that the autocorrelation function is 

invariant under time shift:    1 2 1 2, ,XX XXR t h t h R t t   . The latter equation 

implies that the autocorrelation function only depends on the time interval 2 1t t   .  

A random process is said differentiable if the following limit
   t h tX X

h

  
 

exists in the mean-square sense.  The limit process is denoted by 
tX and satisfies: 

2

0
lim E 0t h t

t
h

X X
X

h





  
   

     [10.3] 

Due to linearity the mean value of the derivative process is equal to 

 
 X

X

d t
t

dt


  . It may easily be shown that its autocorrelation function reads:  

 
 2

1 2

1 2

1 2

,
, XX

XX

R t t
R t t

t t




 
 [10.4] 
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In  particular, for a stationary process, the following relationship 

holds:  
 2

2

XX

XX

d R
R

d





  .  

10.2.2. Gaussian random processes 

In contrast to other fields (e.g. in quantitative finance), the random processes that 

are used in engineering in order to model time-varying loads (wind velocity, wave 

height, etc.) show some regularity that are related to the underlying physical  

phenomena. In practice the Gaussian random processes are of great importance in 

this field. 

A scalar random process tS
 

is said Gaussian if the random vector 

    
1

, ,
Nt tX X 

 
is a Gaussian vector for any finite set of 

instants 10 Nt t T    . It is completely defined by prescribing its mean 

value ( )S t  and standard deviation ( )S t at each time instant, as well as its 

autocorrelation coefficient function 1 2( , )S t t .  Classical forms of autocorrelation 

coefficient functions are the exponential type (
1 2exp / St t     ), the square-

exponential type (   
2

1 2exp / St t   
 

) and the cardinal sine type 

(  1 2sin ( ) / /St t    1 2( ) / St t  ). Once the process is defined through these 

properties trajectories may be simulated for computational purposes by various 

methods (Fourier decomposition, Karhunen-Loève expansion, EOLE 

decomposition, etc. [PRE 94, SUD 07]). 

10.2.3. Poisson and rectangular wave renewal processes 

Point processes appear in numerous situations when similar events occur 

randomly in time (computer connections to a server, customers arriving at a booth, 

etc.). In structural reliability problems, they allow one to count crossings of a limit 

state surface. 

Let us denote by  , 1iT i 
 
the time of i-th occurrence of the event under 

consideration (with values in  0, ). The counting function  tN  is defined by: 

    sup :t nN n T t  
 [10.5] 



Index     5 

It is a random process whose trajectories are piecewise constant and take integer 

values, with discontinuities at the time instants where there is an occurrence of the 

observed phenomenon. Such a process is a Poisson process if it satisfies the 

following properties: 

– for any finite set of instants 
10 Nt t   , random variables 

1 2 2 1
, , ,

N Nt t t t tN N N N N


   are independent (assuming 
0 0N  ); 

– 0 ,s t  
 

random variable 
t sN N follows a Poisson distribution with 

parameter  t s  , where  is called process intensity. Thus: 

 
 

!

n

t

t

t
N n e

n

    [10.6] 

For such processes it may be proven that the time to first occurrence has an 

exponential distribution with parameter  , (i.e.  1 1 tT t e    ). The time 

between two successive occurrences 1n nT T 
 

also follows an exponential 

distribution. 

Poisson processes are useful for constructing rectangular renewal wave processes 

that are piecewise constant (e.g. exploitation or traffic loads) while changing their 

amplitude at random time instants. Such processes may be used to model traffic or 

exploitation loads. 

Such a process is defined by a) the probability density function of the load 

amplitude (thus of the « jumps » in between) and b) the Poisson process intensity. A 

trajectory is depicted in Figure 10.1. 

 

 



6     Fiabilité des ouvrages 

 

 

Figure 10.1. Example of trajectory of a rectangular renewal wave process 

Rectangular renewal wave and Gaussian processes as well as those obtained by 

simple transforms (such as lognormal processes obtained by exponentiation of 

Gaussian processes) allow the analyst to model a large variety of loads for practical 

applications.  

Finally, note that the parameters that define the processes (e.g. mean value) may 

be random variables as well. This happens for instance in offshore engineering when 

the environmental loads (wave height) are modelled for different sea state which 

also occur with some randomness in large time scales. 

10.3. Time-variant reliability problems  

10.3.1. Problem statement  

As for time-invariant reliability problems one assumes now that the failure of the 

structure under consideration is characterized by a limit state function which may 

depend on time in two ways: either time may be an input parameter of the function 

or there are some random processes in its definition (the latter being stationary or 

non stationary with time-dependent hyperparameters). Let us denote this limit state 

function by     , ,tg t R S , where       1 , , pR R  R
T

 (resp.
 

      1 , ,t qS S  S
T

) is a random vector (resp. a set of scalar random 

processes) with prescribed joint probability density function. 
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The main difference between a time-invariant and a time-variant problem lies in 

the fact that one does not know the time instant when failure occurs in the latter 

case. This instant is the smallest  0,T  such that the limit state function takes a 

negative value. This leads to the definition of the cumulative probability of failure:  

       (0, ) 0, : , , 0f tP T t T g t    R S
 [10.7] 

In the general case this quantity shall not be confused with the instantaneous 

probability of failure denoted by 
, ( )f iP t

 
and defined as: 

       , , , 0f i tP t g t  R S
 [10.8] 

The latter quantity which could be computed by “freezing” time in the limit state 

function and using classical methods (Monte Carlo simulation, FORM/SORM, 

importance sampling, etc.) does not have any particular interpretation, except for 

right-boundary problems that are defined in the next section. In particular the 

following inequality holds: 

 
 ,

0,
(0, ) maxf f i

t T
P T P t




 [10.9] 

This lower bound is usually very poor and there is little interet in its 

computation.  

10.3.2. Right-boundary problems 

As remarked in the introduction the degradation of material properties introduces 

some time dependence into reliability problems. By definition however, this 

degradation tends to decrease the material resistance so that a limit state function of 

type « R - S » will be monotonically decreasing in time. Such a reliability problem in 

which all the trajectories of the limit state function are monotonically decreasing is 

called a right-boundary problem. In this specific case only one can prove that the 

cumulative failure probability is equal to the instantaneous failure probability 

computed at the right-boundary of the time interval (thus the name): 

,(0, ) ( )f f iP T P T
 [10.10] 
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Solving the time-variant reliability problem reduces to solving time-invariant 

problems, possibly for various values of T. Classical methods such as FORM/SORM 

and Monte Carlo simulation may be directly applied.  

As an example, consider a steel rebar in a reinforced concrete structure which 

corrodes in time under the effect of concrete carbonation and/or chloride ingress. 

The uncorroded rebar cross section ( )t may be modelled by:  

 
0

0

si
( )

-2 si

init

corr init init

t T
t

i t T t T




 


 

   [10.11] 

where 0 is the initial rebar diameter, initT  is the initiation time for corrosion (e.g. the 

time required for the carbonated layer to attain the rebars), 
corri is the corrosion 

current density and  is a constant.  

The performance of the concrete structure may be related to the uncorroded rebar 

cross section ( )t : indeed the corroded external layer loses its mechanical resistance 

and the resulting rust tends to expand into the concrete pores and to crack and 

shatter the concrete surface (spalling phenomenon). Thus the failure w.r.t. to 

spalling may be defined by such an inequality:   0( ) 1t    where 0.05  is a 

typical value for service limit state. In this setting the associated limit state function 

may be cast as  0( ) -2 corr initg t i t T   , which is clearly decreasing monotonically 

in time for any realization of the (positive in nature) random variables 0 , ,corr initi T . 

10.3.3. General case 

As mentioned already, the unique feature of time-variant reliability analysis lies 

in the fact that the time-to-failure   is random and not known in advance: 

depending on the realizations of the random processes tS , failure may happen more 

or less early. This time-to-failure   satisfies: 

         
def

0, : , , 0 (0, )ft t g P t        R S  [10.12] 
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From the above equation it is clear that the cumulative probability of failure 

 0,fP t  is nothing but the cumulative distribution function (CDF) of the time-to-

failure   , i.e. the time required for the structure to “cross” the limit state 

surface. Computing this quantity relies upon the evaluation of the mean outcrossing 

rate which is defined in the next paragraph. 

10.3.3.1. Outcrossing rate 

Let us denote by  tN   the number of outcrossings of the zero-level by the 

limit state function (i.e the structure passes from the safe domain to the failure 

domain) within the time interval  0, t . Failure occurs within this time interval either 

if it occurs at the initial instant 0t   or if there is at least one crossing of the zero-

value by the limit state function before time instant t. Thus: 

        0(0, ) , , 0 0 0f tP t g t N     R S  [10.13] 

After some derivations one can prove that the right-hand side expression may be 

upper bounded as follows [DIT 96, SUD 07]: 

,(0, ) (0) Ef f i tP t P N       [10.14] 

where E tN     stands for the expected number of outcrossings within 0, t . The 

outcrossing rate ( )t   is defined by:  

  
 +

0

, 1
( ) lim where , t h t

h

N t t h
t N t t h N N

h






  




 
     [10.15] 

This quantity corresponds to the probability of having exactly one outcrossing in 

the infinitesimal interval  ,t t h , divided by h. One also considers that the 

stochastic processes involved in the calculation are regular so that 

  
0

, 1
lim 0
h

N t t h

h





 
 . Under this regularity condition, and due to the 

additivity property of the counting variable in time, one proves that: 

+

0
( )

t

tE N d        [10.16] 
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By substituting for [10.16] into [10.14] and recalling [10.9], one finally obtains 

the following bounds on the cumulative failure probability: 

 
  +

, ,
00,

max (0, ) ( 0) ( )
T

f i f f i
t T

P t P T P t d  


    
 [10.17] 

Thus solving a time-variant reliability problem (or at least obtaining an upper bound 

to (0, )fP T ) “reduces” to computing the outcrossing rate. Some important analytical 

results related to simplified problems are now presented, which are used in the following 

as basic ingredients to solve general problems. 

Stationary time-variant reliability problems correspond to cases when the limit 

state function does not depend explicitly on time and the input random processes 

(gathered in  t S ) are stationary. The limit state function is formally denoted by 

    , tg  R S . In this specific case the outcrossing rate does not depend on time 

and may be evaluated at any time instant (e.g. 0t  ). Equation [10.17] reduces to:  

 , 0f iP t  
+

,(0, ) ( 0)f f iP T P t T    [10.18] 

REMARK – In the case when the limit state function does not depend on random 

variables but only on stationary random processes (which is formally denoted 

by   tg S ) the number of outcrossings  tN   is a Poisson process of constant 

intensity   . In this case a result that is better than the above upper bound is 

available, namely (0, ) ( ) 1 T

fP T F T e     . However this approximation is not 

valid anymore when g also depends on random variables ( )R
 

since the 

outcrossings do not occur independently in time anymore (  tN   is not a Poisson 

process). The correct estimation is
 |

(0, ) E 1
T

fP T e
   

  

R

R in this case and may 

be computed by specific methods. In the latter equation | 
R is the conditional 

outcrossing rate and  E .R denotes the expectation with respect to these variables, 

see details in [SCH 91, RAC 98]. 

Computing the outcrossing rate of a scalar (resp. vector) random process through 

a given threshold (resp. a given hypersurface) is a complex matter and beyond the 

scope of this chapter. The reader is referred to [DIT 96, RAC 04] for a complete 

treatment. In this chapter one limits the presentation to the classical Rice’s formula, 

[RIC 44] which serves as a basis of more advanced results.  
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Let  tS  be a scalar differentiable random process and  tS  its derivative 

process. Let us denote by  ,
SS

f s s their joint probability density function. Of 

interest is the outcrossing rate ( )t  of this process through a (possibly varying in 

time) threshold denoted by ( )a t . Rice’s formula reads: 

   +

( )
( ) ( ) ( ),

SSa t
t s a t f a t s ds



 
 [10.19] 

In case of a stationary random process and a constant threshold (say 0a   in the case 

of a limit state function for reliability analysis), the above formula reduces to 

 +

0
,

SS
s f a s ds



  . As an example, if 
tS is a stationary Gaussian process with mean 

value S and standard deviation S , one proves that the outcrossing rate for a threshold 

a is
,gaussien 1

2

S S

a

S S

a 
 

 

  
  

 
where 

2 / 2( ) / 2xx e  denotes the standard 

normal PDF. If the Gaussian process is not stationary and if the threshold ( )a t is time-

dependent, then the outcrossing rate is equal to  ,gaussien ( )
( ) ( )

/

S

S SS

a t
t a t


 

  


 

   
 

, 

where ( ) ( ) ( )
x

x x x u du 



     

[CRA67]. 

The calculation of outcrossing rates of vector processes through hypersurfaces 

makes use of the so-called Belayev’s formula which is presented in [DIT 96, 

RAC 04]. 

10.4. PHI2 method 

In the previous section the basic concepts that are useful for posing and solving 

time-variant reliability problems have been introduced, namely the random 

processes, the outcrossing rate, the cumulative probability of failure and its 

associated bounds. In order to evaluate Equation [10.17] in practice, the outcrossing 

rate of the limit state function through the zero-level shall be computed. As already 

mentioned analytical results are available only in very specific cases. Otherwise the 

analyst has to resort to numerical methods. 

Two classes of approaches are nowadays well established in order to solve time-

variant reliability problems: 
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– the so-called asymptotic method developed by Rackwitz and co-authors, which 

estimates the outcrossing rate and its time integral from Rice’s formula and various 

asymptotic approximations such as the Laplace integration (see [RAC 98, RAC 04] 

for details);  

–  the so-called PHI2 method, which is based on solving a system reliability 

problem and which has been developed in [AND 02, AND 04, SUD 08] based on a 

similar work by [HAG 92, LI 95]. As it will be explained in the sequel this approach 

allows one to solve time-variant problems using only tools available for solving 

time-invariant problems, namely the First Order Reliability Method (FORM) for 

systems. Thus it may be applied using classical reliability software such as 

PhimecaSoft [LEM 06] or Open TURNS (www.openturns.org). 

By definition the outcrossing rate is computed from the probability of having one 

crossing of the limit state surface (zero-level of the limit state function) within two 

neighbour instants t and t h  (Equation [10.15]). In the reliability context such a 

crossing means that the structure was in the safe domain at time instant t and in the 

failure domain at time instant t h . Thus the outcrossing rate may be evaluated as 

follows (the notation       ,t t  X R S
T

 is introduced for the sake of clarity): 

        
+

0

, 0 , 0
( ) lim

t t h

h

g t g t h
t

h

 








  


X X
 [10.20] 

The numerator of the above equation is nothing but the probability of failure of a 

two-component parallel system which may be estimated by the FORM method for 

systems [LEM 09, chapter 9].  

Each component-reliability problem (i.e. at time instants t and t h ) is first 

solved using FORM. Let us denote by ( )t and ( )tα  (resp. ( )t h   and ( )t hα ) 

the reliability index and the unit normal vector at the design point that are related to 

the limit state function    , 0tg t X  (resp.    , 0t hg t h  X ). The 

system probability of failure may be computed within the first order approximation 

by: 

        
 

FORM

2

, 0 , 0

( ), ( ), ( ) ( )

t t hg t g t h

t t h t t h

 

 

  

     

X X

α α
 [10.21] 
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where
2 2

2 22

1 2
( , , ) exp

2(1 )2 1

x y x y xy
x y dx dy




   

  
   

  
   denotes  the 

cumulative distribution function of the binormal distribution. By combining [10.20] 

and [10.21], one can prove that the outcrossing rate reads [SUD 08]: 

 + ( )
( ) ( ) ( )

( )

t
t t t

t


  

 
   

 
α

α
   where  ( ) ( ) ( )

x

x x x u du 



     [10.22] 

For stationary time-variant problems the outcrossing rate does not depend on 

time and thus simplifies into: 

 + ( )
2

t
 




 α

 [10.23] 

One can note the similarity between both above equations and those given at the 

end of Section 10.3 for the application of Rice’s formula to Gaussian processes. In 

order to give an interpretation of [10.22] one may consider that the FORM method 

consists in “scalarizing” the outcrossing problem by considering the limit state 

function as an equivalent scalar process, whose outcrossing of the threshold  t is 

of interest.  

10.4.2. Implementation of the PHI2 method – stationary case  

In case of a stationary problem the outcrossing rate is constant in time. It may be 

computed form Equation [10.23] by approximating it by a finite difference scheme: 

  ( ) ( )

2
num

t t t

t

 




  




α α

 [10.24] 

To do so a sufficiently small time increment t  shall be selected. The thumb 

rule 3

min10t   has proven efficiency and accuracy in applications. In this 

equation min is the smallest correlation length among all the random processes 

tS involved in the limit state function [SUD08]. The various steps for evaluating 

[10.24] are now summarized: 

– The Gaussian vectors  1 S  and  2 S  corresponding to the Gaussian 

process  t S at time instants t  and t t  are first defined. The components 
1

jS  and 
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2

jS are pairwise correlated with correlation coefficient ( , )
jS t t t  , where

jS is the 

autocorrelation coefficient function of ,t jS  (Equation [10.2]). Note that if the 

components Sj of 
tS  are correlated, this so-called cross-correlation has to be taken into 

account as well. 

– The “instantaneous” limit state function     1

1 ,g  R S is defined at time 

instant t by replacing the random processes
tS  by vector 1

S in     , tg  R S and 

FORM is applied, which yields the reliability index (1) and the unit normal vector (1)
α ; 

– The “instantaneous” limit state function     2

2 ,g  R S is defined at time 

instant t t  by replacing the random processes t tS  by vector 2
S in 

    , tg  R S and FORM is applied, which yields the reliability index (2) and the 

unit normal vector (2)
α ; 

– From these results the outcrossing rate [10.24] is evaluated then the cumulative 

failure probability: 

 (1) (2) (1)

2
num

t

 




 




α α

           
 (1)(0, )f numP T T      

 [10.25] 

It is clear that the upper bound linearly increases with T. In order to interpret the 

result conveniently, the upper bound may be transformed into a “generalized 

reliability index”   inf 1 (1) +(0, )T T        . From the relationship between 

probability of failure and reliability index the above value is a lower bound to the 

reliability index, thus the notation inf . The upper bound reliability index associated 

to the lower bound in Equation [10.17] is simply equal to (1) . 

Note that two different correlation coefficients are used in the analysis, which 

should not be confused: the first one is the autocorrelation coefficient of each input 

random process denoted by ( , )
jS t t t  ; the second one is the correlation between 

the linearized limit state surfaces at time instants t and t t , which is given by the 

scalar product (1)
α . (2)

α . 
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10.4.3. Implementation of the PHI2 method – non stationary case  

In this case the limit state function explicitly depends on time and / or the input 

random processes 
tS show non stationarity. Thus the outcrossing rate is evolving in 

time and shall be computed at different time instants, then integrated over 

 0,T (Equation [10.17]) in order to get the upper bound to  0,fP t . In practice the 

time interval is discretized, say / , 0, ,it iT N i N  and the procedure described 

in Section 10.4.2 is applied at each time instant. The upper bound to  0,fP t  may 

be computed using the trapezoidal rule: 

+ + 1
+

,

1

(0) ( )
(0, ) (0) ( )

2

N

f f i i

i

T T
P T P t

N

 






 
   

 


 [10.26] 

Note that the time increment /T N  used for computing the integral is not of the 

the same order of magnitude as the time increment t  used for evaluating the 

outcrossing rate. 

10.4.4. Semi-analytical example  

Let us consider a cantilever beam of length L, flexural modulus EI that is submitted 

to a pinpoint load F at its free extremity. The maximum deflection of the beam under 

quasi-static conditions is equal to 
3

3

FL

EI
   (the variation of the load in time is assumed 

slow enough so as to ignore dynamical effects). Of interest is the reliability of the beam 

with respect to an admissible threshold max for the maximal deflection. The flexural 

modulus is supposed to be lognormally distributed (parameters  ,EI EI  ). It is also 

supposed that the logarithm of the load is a stationary Gaussian process Ss of mean 

value F , standard deviation F  
and autocorrelation coefficient function 

 
2( / )Ft

F t e
 

 , where F is the correlation length. So as to be able to perform 

analytical derivations, the limit state function associated with the criterion “the maximal 

deflection is below the admissible threshold” may be cast as: 

 
 

3

max max, ln ln ln ln ln
3

def

t t

L
g EI S S EI       

 [10.27] 

Let us select some particular instant 0t . Random variable ln EI  is Gaussian by 

definition and may be cast as follows: 1ln EI EIEI U   , where 
1U  ~ N(0,1) is a 
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standard normal variable. Similarly
0t

S is a Gaussian variable of parameters ,F F   that 

may be cast as
 0 2t F FS U   , where 

2U  ~ N(0,1). After substituting for these 

expressions in [10.27], the limit state function reveals linear in the reduced 

variables
1 2,U U . FORM is exact in this case and the associated reliability index 

reads: 

 3

max(1)

2 2

ln ln / 3 F EI

F EI

L  


 

  



 [10.28] 

The coordinates of the unit normal vector to the limit state surface at the design 

point reads:  (1) 2 2 2 2/ , /EI F EI F F EI        α
T

. 

In order to “freeze” the limit state function [10.27] at time instant 0t t , one 

should notice that 
0t

S and 
0t tS   

are correlated Gaussian variates with correlation 

coefficient 
2( / )Ft

e
  

 (this number depends on the user choice of Ft  , e.g. 

310 Ft   as suggested above). The isoprobabilistic transform required by FORM 

in order to handle dependent Gaussian variates leads to introducing 
3U  ~ N(0,1) and 

reads (after using the Cholesky decomposition of the correlation matrix): 

 0 0

2

2 2 3, 1t F F t t F FS U S U U          
 [10.29] 

The instantaneous limit state function at time instant 0t t  reveals linear in the 

three reduced variables 1 2 3, ,U U U . The (exact) reliability index is identical to that 

obtained at time instant t (Equation [10.28]), which is logical since the problem is 

stationary. The unit normal vector now reads:  

 (2) 2 2 2 2 2 2 2/ , / , 1 /EI F EI F F EI F F EI              α
T

 

In order to finish the computation numerical values shall be given to the various 

parameters. Then (1) (2)  is computed from Equation [10.28]. The ( )i
α -vectors are 

evaluated and the values are used to compute the outcrossing rate and the probability 

of failure using [10.25]. 
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10.5. Industrial application: truss structure under time-varying loads  

Consider the elastic 23 bar truss depicted in Figure 10.2 that has been already 

presented in Chapter 8. 

Of interest is the time-variant reliability of such a truss structure under time-varying 

loads applied on the upper part. 

 

 

Figure 10.2. 23 bar- truss structure 

The input random variables are described in Table 10.1. The six vertical loads 

are modelled by a single stationary Gaussian process Pt with mean value 50 kN, 

standard deviation 7.5 kN, and Gaussian autocorrelation coefficient 

function  
2( / )Pt

P t e
 

 where the correlation length is 1dayP  . According to this 

value the time variation of the load is sufficiently slow so that inertial effects may be 

neglected: the quasi-static solution is thus valid. The time-variant reliability of the 

truss with respect to an admissible maximal deflection reads: 

1 1 2 2 max 1 1 2 2 max( , , , , ) ( , , , , ) 0 16 cmt tg E A E A P v E A E A P v     
 [10.30] 

where 1 1 2 2( , , , , )tE A E A P  is the maximal deflection computed by finite element 

analysis. Due to stationarity a single evaluation of the outcrossing rate is necessary. 

The initial problem has 4 basic random variables and a single random process. 

Using the PHI2 method it is transformed into two (time-invariant) FORM analysis 

which involve 4+2=6 random variables (including one for tP and one for t tP ). The 

time increment is 310t   .  
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Random 

variable Distribution 

Mean 

value 

Standard 

deviation 

E1, E2 (MPa) Lognormale 210 000 21 000 

A1 (cm²) Lognormale 20 2 

A2 (cm²) Lognormale 10 1 

Pt (kN) 
Gaussian 

process 
50 7,5 

Tableau 10.1. 23 bar-truss – description of the random variables 

The instantaneous reliability analysis yields =4.032 and  = {-0.533447, 

-0.067651, -0.533447, -0.067651, 0.649397, 0.}T. At time instant t t the same 

reliability index is obtained and the unit normal vector is  = {-0.533447, 

-0.067651, -0.533447, -0.067651, 0.649396 0.000918}T.  

It may be observed that only the last two components of the -vector (i.e. the 

ones related to the random process) are changing between the two time instants. 

Using Equation [10.18] yields the outcrossing rate -54,3.10   / day. The upper 

bound to the cumulative failure probability is obtained from [10.25].  

The evolution in time of this quantity is plotted in Figure 10.3. These results 

show that the cumulative failure probability may be greater than the instantaneous 

probability of failure by orders of magnitude. Note that the latter correspond to the 

time-invariant case when the loads are modelled by a single random variable. 

10.6. Conclusion  

Structural reliability methods are nowadays well established for time-invariant 

problems and they are used on a regular basis in industrial applications, as shown 

throughout this book. Time-variant reliability analysis is by far less mature. First 

handling random processes instead of random variables introduces some additional 
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abstract concepts. Moreover the quantity of interest, namely the cumulative 

probability of failure is rather difficult to compute. 

 

Figure 10.3. 23 bar-truss – cumulative probability of failure  

In this chapter only the basic concepts have been introduced. In particular the 

stochastic dynamics problems have not been addressed. Specific methods have been 

introduced for such problems, see e.g. [KRE 83, SOI 01, LUT 03]. Only the PHI2 

method has been presented in details: it allows the analyst to compute the 

outcrossing rate using FORM for systems. This means that only classical time-

invariant tools may be used for solving time-variant problems, which are available 

in many reliability softwares.  

Finally note that the Monte Carlo method has not been presented here in the 

context of time-variant problems. Its use would require sampling trajectories of the 

random processes and then the solution of transient mechanical problems. This is 

obviously a very tedious and costly approach that shall be used only as a last resort, 

especially for nonlinear dynamics treated in the time domain (e.g. seismic analysis 

of structures). 
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