
 
 

Chapter 12 

Bayesian Updating Techniques in Structural 

Reliability 1 

4.1. Introduction 

Computer simulation models such as finite element models are nowadays 

commonly used in various industrial fields in order to optimize the design of 

complex mechanical systems as well as civil engineering structures. In the latter 

case, the structures under consideration (e.g. cable-stayed bridges, dams, tunnels, 

etc.) are often one of a kind. Thus they are usually instrumented during their 

construction and after, so that experimental measurement data (displacement, 

strains, etc.) are collected all along their life time. 

These measurements are traditionally used for detecting a possible unexpected 

behaviour of the system (e.g. a temporal drift of some indicator). In this case data is 

processed using classical statistical methods without any physical modelling of the 

structure. However this data could be used together with some computational model 
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that would have been elaborated at the design stage in order to update the model 

predictions. Classical approaches in this field are purely deterministic: the analyst 

tries to select the set of model parameters that best fit the available data by 

minimizing the discrepancy between measurements and model prediction (e.g. using 

least-square minimization), without taking into account possible sources of error or 

uncertainty such as measurement error, model uncertainty, etc. 

In this chapter Section 1 describes a probabilistic framework that allows one to 

combine a computational model (e.g. a finite element model), a prior knowledge on 

its input parameters and some experimental database. This framework makes use of 

Bayesian statistics which is rigorously presented in the sequel. Section 2 presents 

the retained probabilistic model for the interaction between measurements and 

model predictions. Section 3 recalls how to compute the probability of failure of a 

structure and how to update it using additional measurement data. Section 4 

describes how to « invert » the reliability problem and compute quantiles of the 

mechanical response instead. Section 5 presents the Markov Chain Monte Carlo 

simulation method (MCMC) – that has been already introduced in the previous 

chapter – and how it may be used for Bayesian updating problems. Finally, 

Section 6 describes an application example related to the durability of concrete 

containment vessels of French nuclear power plants. 

4.2. Problem statement: link between measurements and model prediction 

Let us consider a mathematical model ( )tx  that represents the temporal 

evolution of the response ( ) Nt y of a mechanical system as a function of a vector 

of input parameters Mx . These basic parameters are supposed to be uncertain or 

not well known. They are modelled by a random vector  1 MX … X  X
T

whose 

joint probability density function (PDF) is prescribed. This PDF may be selected at 

the design stage from available data (see chapters 4 & 5) or from expert judgment. 

In this context the model response at time instant t is a random vector denoted 

by    t t Y X . The collection of random vectors   ( ) 0t t T  Y is a random 

process (see Chapter 10 for a rigorous definition).  

Let  ty be the « true » value of the system response at time instant t, i.e. the 

value that would be measured by a perfect, infinitely accurate device (no 

measurement error). This value is usually different from the observed 

value ( )obs ty which has been obtained by the measurement device at hand.  
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If a perfect model of the system behaviour was available, there would exist a 

vector of basic parameters denoted by x  such that ),~()(~ tMt xy  . However models 

are always simplified representation of the real world that contains unavoidably 

approximations. Thus a so-called measurement/model error term is introduced in 

order to characterize the discrepancy between the model output and the 

corresponding observation. Considering various time instants  
, 1, ,

q
t q Q , this 

assumption reads: 

     q q q

obs t
 
  
 

  y x e  [4.1] 

In the latter equation the observed value ( )obs ty and the (implicit or explicit) 

definition of the model are known, whereas x and  q
e are unknown. If one 

assumes that the error  q
e is a realization of a random vector ( )q

E that characterize 

the measurement/model error (usually a Gaussian vector of zero mean value and 

covariance matrix C ) the above equation means that  q

obsy is a realization of a 

random vector  q

obsY whose conditional distribution reads : 

xXY )(q

obs
  ~  ( )( ( , ), )qM tx C  [4.2] 

where  ,μ C  denotes a multinormal distribution with mean value μ  and 

covariance matrix C.  

In practice, depending on the problem under consideration, the error term ( )q
E may 

represent either the measurement uncertainty, the model error or both. These two 

quantities are usually independent so that this error may be decomposed again as the 

sum of two terms. The total covariance may be split as modmes C C C , where 
mesC  

represents the covariance matrix of the sole measurement error. 

4.3. Computing and updating the failure probability 

4.3.1. Structural reliability – problem statement 

Structural reliability analysis aims at computing the probability of failure of a 

mechanical system whose parameters are uncertain and modelled within a 

probabilistic framework. Reliability methods that lead to compute a probability of 

failure with respect to some scenario are well documented in the books by Ditlevsen 

& Madsen [DIT 96] and Lemaire [LEM 09]. 



4     Book title 

Let X denote the vector of input random variables describing the problem (that 

usually include the input parameters of some mechanical model ), and let us 

denote by M
X

 its support. A failure criterion may be mathematically cast as a 

limit state function  g
X

x x  such that   : 0fD g x x is the failure 

domain and   : 0sD g x x  is the safe domain. The boundary between both 

domains is called the limit state surface D . The failure probability is then defined 

by 

  0 ( )
f

f
D

P g f d    X
X x x  [4.3] 

where f
X

 is the joint PDF of X .   

As the integration domain fD  is implicitly defined from the sign of the limit 

state function g and the latter is usually not analytical, a direct evaluation of the 

integral in Eq.[4.3] is rarely possible. It can be numerically estimated using Monte 

Carlo simulation (MCS): 
simN realizations of the input random vector X are drawn 

according to its joint PDF f
X

, and for each sample the g-function is computed. The 

probability of failure is estimated by the ratio /f simN N where fN is the number of 

samples (among N) that have lead to failure (i.e. a negative value of g).  

This method, which is rather easy to implement, may be unaffordably costly in 

practice. Indeed, suppose that a probability of failure of the order of magnitude 10 k  

is to be estimated with a relative accuracy of 5%: a number of 
2

sim 4.10kN  simulations is then required. As failure probabilities usually range 

from 210 to 610 it is clear that MCS will not be directly applicable for industrial 

problems, for which a single run of the model  and the associated performance g 

may require hours of CPU. In order to bypass this difficulty, alternative approximate  

methods have been introduced such as the First Order Reliability Method (FORM).  

FORM allows one to approximate the failure probability by recasting the integral in 

Eq.[4.3] in the standard normal space, i.e. a space in which all random variables 

ξ are normal with zero mean value and unit standard deviation. To this aim an 

isoprobabilistic transform  T  X ξ X is used.  

If the basic random variables gathered in X are independent with respective 

marginal cumulative distribution function (CDF) ( )
iX iF x , this transform 

reads:  1 ( )
ii X iF x   , where is the standard normal CDF. In the general case, 

the Nataf or Rosenblatt transforms may be used, see [LEM 09, chap. 4] for details. 
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After mapping the basic variables X into standard normal variables ξ , Eq.[4.3] 

rewrites: 

     
 

1 1
: 0

f M M
G g T

P d …d  
 

  ξ ξ ξ
ξ  [4.4] 

where     1G g T   is the limit state function in the standard normal space and 

M  
is the multinormal (M-dimensional) PDF defined 

by     2 2 2

1

1
exp2

2

M

M M…
 

   
  
  

 

   ξ   . This PDF is maximal for ξ 0
 

and 

decreases exponentially with
2

ξ . Thus the points that contribute most to the 

integral in Eq.[4.4] are those points of the failure domain that are close to the origin 

of the space.  

The next step of FORM consists in determining the so-called design point *
ξ , i.e. the 

point of the failure domain fD that is the closest to the origin. This point is solution 

of the following optimization problem: 

 
21

Arg min / 0
2M

G



 
  

 ξ
ξ ξ ξ  [4.5] 

Dedicated constrained optimization algorithms may be used for solving it. The 

minimal (algebraic) distance from the limit state surface D  to the origin is called 

the Hasofer-Lind reliability index:   sign G 0   . Once *
ξ  has been compu-

ted the limit state surface D  is linearized around this point and replaced by a 

tangent hyperplane. The failure domain is then substituted for by the half space 

defined by this hyperplane. The approximation of the integral in [4.4] by integrating 

over the half space leads to the FORM approximation ( )f f FORMP P    .  

The equation of the linearized limit state (i.e. the hyperplane) may be cast as 

 G   ξ α ξ
T

. In this expression the unit vector (which is orthogonal to the 

hyperplane) contains the cosines of the angles defining the direction of the design 

point. The square cosines 2

i are called importance factors since they allow one to 

decompose the variance of the (approximate) performance  G ξ  into contributions 

of each variable i  and by extension, to quantify the impact of each basic variable Xi 

onto the reliability. 
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The First Order Reliability Method allows the analyst to get an approximation 

of
fP  at a reasonable computational cost (usually, from a few tens to a few hundreds 

of evaluations of g). The approximation is all the better since the reliability index  

is large. Moreover, the approach yields importance factors. Sensitivity measures that 

quantify how the probability of failure changes when some assumption on the basic 

random variables is changed are also interesting quantitative indicators for the 

designer.  

4.3.2. Updating the failure probability 

The failure probability as defined in the previous paragraph is usually computed 

at the design stage. For an already existing system for which additional information 

is available (e.g. measurements of response quantities in time), it is possible to 

update the probability of failure by accounting for this data. 

Let us consider a set of observations2 
(1) ( )Q

obs obsy … y 
 
 

  
T

 collected at time 

instants ( ) 1qt q … Q     along the life time of the structure. Confronting this data to 

model simulation results leads to introduce the so-called measurement 

events 0qH   [DIT 96] using the following notation:  

 ( ) ( )q q q

q obsH t y E   X  [4.6] 

In this equation ( )qE denotes a Gaussian random variable that characterizes the 

measurement/model error. The updated failure probability  upd

fP t  is now defined as 

the following conditional probability: 

    10 | 0 0upd

f QP t g t H … H      X  [4.7] 

When recasting the measurement events as the limit  
0

lim 0qH





   , one 

gets:  

 
       

 

1

0

1

0 0 0
lim

0

Qupd

f Q

q

q

g t H … H
P t

H


 






          


 
   

 

X
 [4.8]  

                               
2
 From now on the response quantity under consideration and the associated measurements are supposed 

to be scalar quantities for the sake of simplicity. 
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In the above equation both the numerator and denominator are failure 

probabilities of parallel systems (intersections of events) that may be estimated by 

an extension of the FOR method to systems [LEM 09, chap. 9]. After some algebra, 

Eq.[4.8] reduces to [MAD87]: 

( ) ( )upd upd

fP t t 
 
 

       avec    

 

0

2

( ) ( )
( )

1 ( ) ( )

upd t t
t

t t




  


  

z R β

z R z

T

T

 [4.9]  

In this equation 
0 ( )t  is the initial reliability index associated with the event 

 ( ) 0g t X and 1 Q  
 
 

 β
T

gathers the reliability indices related to the 

events 0qH   . Moreover 1( ) ( ) ( )Qt z t z t 
 
 

 z is the vector of correlations 

between the linearized margins  0qH   and  ( ) 0g t X
 
whose components 

are 0( ) ( )j jz t t α α . Finally R is the correlation matrix of the linearized 

measurement margins, whose generic entry reads
kl k l R α α . Thus the updated 

failure probability may be computed only from a set of FORM analyses. 

4.4. Updating a confidence interval on response quantities 

4.4.1  Quantiles as the solution of an inverse reliability problem 

Suppose the random response of a mechanical model ( ) ( )Y t t X is of 

interest. Its variability may be fruitfully grasped through the computation of a 

confidence interval on the prediction, which means computing quantiles of ( )Y t . 

Indeed a e.g. 95%-confidence interval (i.e. a range such that the probability of 

( )Y t being in this range is 95%) is obtained by computing the 2.5% and 97.5% 

quantiles of ( )Y t . As a consequence the computation of -quantiles ( )y t defined 

by: 

   ( ) ( ) ; 0,1Y t y t      [4.10]  

is of interest. By introducing the mechanical model  in the previous equation one 

obtains ( )y t as the solution of the following: 

 ( ) ( ) 0M t y t    X  [4.11]  
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Equation [4.11] may be considered at each time instant t as an inverse reliability 

problem [DER 94], in which the value of a parameter (here, y ) is looked after so 

that a given “failure probability” is attained (here, ) for a given limit state function 

(here, ( ; ) ( )t y t y    X X ). In order to solve this problem efficiently an 

extension of FORM has been proposed in [DER 94]. Within the FORM 

approximation the problem is recast as:
 

find  ( ; ) 0 ( )f FORM cy P g t y       X  [4.12] 

where 1( )c    is the target reliability index associated with the -quantile of 

interest. The algorithm used for computing quantiles is presented in details in 

[PER 07, PER 08].  

4.4.2  Updating quantiles of the response quantity 

The “inverse FORM” approach may be elaborated one step further in order to 

compute updated quantiles that are defined as quantiles computed conditionally to 

observations. When combining [4.9] and [4.12] the “updated” version of the latter 

reads: 

 1find ( ; ) 0 | 0 0 ( )f FORM Q cy P g t y H … H        X      [4.13] 

where the measurement events are defined in Eq.[4.6]. The “updated inverse 

FORM” algorithm as originally proposed in [SUD 06] couples the inverse FORM 

algorithm with Eq.[4.9] by modifying in each iteration the target reliability index 
)1( k

c which is equal at iteration k+1 to:
 

   
2

( 1) 1 ( ) ( )( ) ( )1 ( )( ) ( )k k kk k

c tt t         z R βz R z
TT  [4.14] 

In the above equation, matrix R does not change from one iteration to the other in 

contrast to vectors z and β  . Note that the convergence of the algorithm is not 

proven although numerous application examples have shown the efficiency of the 

method. 

4.4.3  Conclusion 

The method proposed in the above paragraphs allows one to update the failure 

probability of a structure or indirectly, to update the confidence intervals of the 
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prediction of a mechanical model by using measurement data gathered all along the 

life time of the structure. 

This approach enables the reconciliation of the prior model predictions 

   Y t t X and the observed data
(1) ( )Q

obs obsy … y 
 
 

  
T

in order to better estimate 

the probability of failure of the real structure (“as built”) under consideration. 

However it does not bring any additional information onto the basic variables X. An 

alternative approach based on Markov Chain Monte Carlo Simulation is presented in 

the next section for this purpose. 

4.5.  Bayesian updating of the model basic variables 

4.5.1  Reminder on Bayesian statistics 

Bayesian statistical methods [ROB 92, OHA 04] are usually used in order to 

combine some prior information on parameters of a random vector and data, i.e.  

realizations of this random vector. Let us denote by 
(1) ( )Q… 

 
 

  x x  a set of 

observations that shall be modelled by a PDF  ;f
X

x θ , whereθ  is the vector of 

hyperparameters of size n . Bayesian statistics assumes that some prior information 

on θ  exists that may be modelled by a prior distribution  p
Θ
θ of support 

n
D R 

  . Bayes’ theorem in its continuous setting combines both sources of 

information in order to yield a posterior distribution  f
Θ
θ : 

     
1

;f p L
c


Θ Θ
θ θ θ   [4.15] 

In this equation L is the likelihood of the observations which is defined in case of 

independent observations by: 

   ( )

1

;
Q

q

q

L f


  X
θ x θ   [4.16] 

and c  is a normalizing constant defined by    
D

c p L d


  Θ
θ θ θ . From 

[4.15-4.16] one can furthermore obtain the predictive distribution of X , namely:  

     p

D
f f f d


 X X

x x θ θ θ   [4.17] 
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More directly the point posterior distribution of X reads    ˆˆ ff  
XX

x x θ , 

where θ̂  is a characteristic value of the posterior distribution  f
Θ
θ , e.g. the mean 

or median value. 

4.5.2  Bayesian updating of the model basic variables 

As observed from Eq.[4.2], each measurement data may be modelled by a 

random variable whose conditional distribution with respect to the vector of input 

variables reads:  

   

     

( )

/ 2 1/ 2 1

; ;

1
(2 ) (det ) exp

2

q
obs

q q

M

q qM

f t t

t t





    
             

     
      
   

   

 
        

 

Y X
y x y x C

C y x C y x
T

  [4.18] 

Let us denote by  p
X

x  the prior distribution of the input random vector X , i.e. 

the one used in reliability analysis before introducing measurement data. Using 

Bayes’s theorem one can evaluate the posterior distribution denoted by 

 f
X

x through the likelihood of the measurement data gathered in : 

         ( )

1

1 1
;

Q
qq

M obs

q

f p L p t
c c


  
    

  


    X X X
x x x x y x C   [4.19] 

The normalizing constant c in the above equation ensures that  f
X

x is a 

distribution (of integral 1). Its computation may be carried out using simulation 

methods (such as Monte Carlo simulation, Latin Hypercube Sampling, etc.) or 

numerical integration (e.g. Gauss quadrature method). However this is a rather 

complex computational task. 

Another approach consists in sampling according to this posterior distribution by 

using a method that does not require the computation of the normalizing constant c. 

This is one feature of the so-called Markov Chain Monte Carlo simulation methods 

presented in the previous chapter.  

Various algorithms such as the Gibbs sampler or the Metropolis-Hastings 

algorithm [HAS70] are available, see a review in [NTZ09]. The latter is a 

acceptation/rejection algorithm that works as follows. Suppose a random vector X of 

prescribed PDF ( )f
X

x  is to be sampled, and suppose the PDF has a complex 

expression that may be evaluated for any value x up to a constant. A Markov chain 
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is initiated (value ())
x ). At the current state of the chain ( )k

x  at iteration k, the next 

point ( 1)k
x  is evaluated as follows: 

 ( ) with probability  ( , ),

otherwise.

( ) ( )
( 1)

( )
q

k k
k

k



 x x x x x

x

x

 [4.20] 

In this equation )( )(kq xx  is the transition (or proposal) distribution that is 

selected by the analyst and )~,(
)(

xx
k

 is the acceptance probability. A common 

transition is obtained by generating the candidate x~  by adding to each component a 

random disturbance to ( )k
x according to a prescribed (e.g. zero-mean Gaussian) 

distribution.  

( ) ( ) ( );k k k

i i i  x x ~ (0,σ²)  [4.21] 

This is the so-called random walk algorithm. In this case the acceptance 

probability reduced to: 



















)
)(

(

)~(
,1min)~,( )(

k
X

f

X
f

k

x

x
xx  [4.22] 

In order to decide if the candidate x~  is retained with the acceptance 

probability )~,(
)(

xx
k

 , a random number ( )ku  is uniformly sampled between 0 and 

1. The candidate is accepted if )~,(
)()(

xx
kk

u  and rejected otherwise. Thus a 

sequence of points is simulated which is proven to asymptotically behave as 

realizations of the random vector X. One must check if the Markov chain has 

attained its stationary state, i.e. that a sufficiently large number of points has been 

simulated. Various heuristic control methods have been proposed in the literature, 

see for instance a review in [ElA 06]. 

The Metropolis-Hastings algorithm may also be used in a cascade version in 

which the candidate point is first accepted or rejected with respect to the ratio of 

prior distributions, then with respect to the likelihood ratio. This algorithm proposed 

by Tarantola [TAR 05] for this purpose is now described. 
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[Initialization] 0k   : The Markov chain is initialized by (0)
x  that may be 

randomly selected or deterministic (i.e. the vector mean value). 

While 
MCMCk N ( NMCMC  is the size of the MCMC sample set) 

1. Generate a random increment )(k ~ N(0,σ²) and a candidate )()(~ kk  xx .  

2. Evaluate the prior acceptance probability: 



















)
)(

(

)~(
,1min)~,( )(

k
X

f

X
f

P
k

x

x
xx  

3. Randomly generate up~ [0,1]. If )~,( )(
xx

k

PPu 
 
then x~  is accepted (Go to 4.) 

otherwise it is rejected (Go back to 1.) 

4. Evaluate the likelihood acceptance probability 

 ( ) ( ; )
( , ) min 1,

( )
( ; )

k L

L k
L

 
x

x x

x

, where the likelihood function L has been 

defined in Eq. [4.19]. This step requires a run of the deterministic model . 

5. Randomly generate uL ~ [0,1]. If )~,(
)(

xx
k

L
Lu   then x~  is accepted:     

( 1)k x x  and 1k k  . Otherwise x~ is rejected. 

Coming back to the initial problem of updating the predictions of a model by 

using observation data, the MCMC algorithm is applied in cascade to the posterior 

distribution of the random vector X, as defined in Eq.[4.19]. The sample set of 

points that is obtained, say  ( )(1)' , , MCMCN
 x x , is then used as input of a Monte 

Carlo simulation of model . In practice the evaluations of  onto the sample set 

’ have already being carried out during the process of generating ’. Computing 

the updated confidence intervals of the model prediction reduces to estimating the 

related empirical quantiles on the already available response sample 

set     ( )(1) , , MCMCN
x x .  

In conclusion the Bayesian approach based on Markov Chain Monte Carlo 

simulation allows one to update the distribution of the input random vector by 

incorporating the observations made on the system response. From this updated (i.e. 

posterior) distribution updated confidence intervals may be computed that compare 
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with those obtained by the “updated inverse FORM” algorithm. Both approaches are 

now benchmarked on an industrial example. 

4.6. Updating the prediction of creep strains in containment vessels of nuclear 

power plants  

4.6.1  Industrial problem statement  

The containment vessel of a nuclear power plant contains the reactor pressure 

vessel and the components of the primary circuit, namely pumps, steam generators 

and pipes. The leak tightness of this vessel shall be guaranteed in case of an 

hypothetical accident such as LOCA (loss of coolant accident) that could happen 

when a pipe is ruptured, thus generating a rapid pressure increase within the vessel 

while possible releasing radioactive products from the primary circuit. 

The containment vessels of French PWR (pressurized water reactors) are made 

of one or two walls made of reinforced and pre-stressed concrete. The so-called 

concrete creep phenomenon, which corresponds to delayed strains in concrete due to 

ageing leads to the decrease of the tension of the pre-stressing cables in time. In 

order to assess the safety of the containment vessel all along the life time of the plant 

in the context of hypothetical LOCA accidents, it is necessary to predict accurately 

the evolution in time of the delayed stresses and associated loss of cable prestress. 

However the creep phenomenon is very complex in nature. Its physical origins 

are fully understood, especially when its kinetics on long-term time scales is 

concerned. In order to bypass the lack of detailed modelling, a detailed monitoring 

of the containment vessels has been installed. Thus measurements of the delayed 

strains in standard conditions are carried out on a regular basis. The Bayesian 

framework that has been presented in the previous sections is well adapted to exploit 

this experimental feedback together with physical models of creep. 

4.6.2  Deterministic models 

Let us consider a cylindrical portion of the containment vessel that is sufficiently 

far away from local geometrical details (reinforcements, material hatch, etc.) so that 

it is relevant to consider that the concrete stress tensor under cables pre-stress is bi-

axial (the pre-stress cables are vertical and circumferential in this zone). The 

mechanical model used in the sequel for delayed stresses is defined in the French 

standard BAEL [BAE 99] although it takes into account specific modifications as 

investigated by Granger for containment walls [GRA95]. Accordingly the total 

strain tensor may be decomposed into five contributions: 
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The total strain tensor ε
 
can be decomposed into the elastic, creep and shrinkage 

components: 

 

( ) ( ) ( ) ( ) ( ) ( )el as ds bc dc

d l d d l d lt t t t t t t t t t t t t           ε ε ε ε ε ε   [4.23] 

where  

  t  is the time spent starting from the concrete casting, 
dt  (resp. 

lt ) 

denotes the time when drying starts (resp. the time of loading, i.e. cable 

tensioning in the present case); 

 ( )el tε  is the elastic strain; 

  ( )as

dt tε  is the autogeneous shrinkage, corresponding to the shrinkage 

of concrete when insulated from humidity changes; 

 ( )ds

dt tε  is the drying shrinkage ; 

 ( )bc

lt tε  is the basic creep corresponding to the creep of concrete when 

insulated from humidity changes; 

 ( )dc

d lt t t ε  is the drying creep.  

The following models are used for each component. The elastic strains are 

related to the stress tensor σ  by Hooke’s law: 

1
(tr )

el el
el

i iE E

 
 ε σ σ 1   [4.24] 

where iE is the elastic Young’s modulus (measured at lt t ) and el is the 

Poisson’s ratio. The autogeneous and drying shrinkage are modelled by (time unit is 

one day in the sequel):  

2

100
( ) ( )

50 50 45 4

as as ds dsd d

d d

d m d

t t t tRH
t t t t

t t R t t
 

 
   

    
ε ε 1 ε ε 1   [4.25] 

In these equations
 

as

ε  (resp. ds

ε ) is the asymptotic autogeneous shrinkage (resp. 

the asymptotic drying shrinkage), RH is the relative humidity in %, Rm is the drying 
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radius (half of the containment wall thickness, in cm) and 1 is the unit strain tensor, 

meaning that these strains are isotropic. The basic creep is modelled by:   
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
















































1

1

2,01
4,22)(1,0

04,2
)(

1
3500),(

tt

tt

tt
tr

EE
tt

dii

c

i

c
bc

1σσε


      [4.26] 

where c  is the creep Poisson’s ratio. The drying creep is modelled by :  

 
tr 2

( ) 3200 ( ) ( )dc ds ds

d l d l d

i

t t t t t t t
E


     

σ
ε ε ε 1  [4.27] 

In a prestressed concrete containment vessel, the stress tensor may be regarded as bi-

axial in the current zone, i.e. having a vertical component 0 9 3zz  
 
MPa and an 

orthoradial component 0 13 3    MPa. The drying radius, which is equal to half of 

the wall thickness, is 0.6 m. The cable tensioning is supposed to occur two years 

after the casting of concrete ( 2 ans)l dt t  . 

Due to the presence of reinforcing bars and prestressed cables, the above equations 

for creep and shrinkage (initially obtained for unreinforced concrete) are corrected 

by a multiplicative factor λ = 0.82 obtained from the design code and experimental 

results[GRA 95]. The other parameters are modelled by independent random 

variables, whose parameters are gathered in Table 4.1.  

 

Parameter  Notation  Distribution  Mean value  Coef. of variation 

Concrete Young’s 
modulus 

iE   Lognormal 33 700 MPa  7.4 %   

Poisson’s ratio el   Truncated normal 
[0;0,5]  

0.2  50  %   

Creep Poisson’s ratio c   Truncated normal 
[0;0,5]  

0.2  50  %   

Relative humidity  RH   Truncated normal 
[0;100%]  

40 %  20 %   

Max. autogeneous 
shrinkage strain 

as   Lognormal  690 10   10 %   

Max. drying shrinkage 
strain  

ds   Lognormal  6526 10   10 %   

Table 4.1 Concrete creep model – probabilistic description of the parameters 
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A fictitious containment vessel is considered for which it is supposed that 

experimental measurements of the axial strain 
zz are available. Measurements are 

supposed to have been carried out approximately every 150 days from 1,500 and 

2,500 days after the concrete structure has been loaded. They are reported in 

Table 4.2. 

 
Measurement Date (days) Value (10

-6
) 

#1  1152  497   
#2  1303  523   
#3  1451  590   
#4  1601  652   
#5  1750  685   
#6  1900  756   
#7  2054  777   
#8  2201  822   
#9  2153  858   
#10 2501  925   

Table 4.2 Concrete creep model – fictitious strain measures 

The measurement/model error is supposed to be normally distributed with zero 

mean value and standard deviation 615 10 . The various errors at different time 

instants are supposed independent.  

4.6.3 Prior and posterior estimations of the delayed strains 

All the simulation results have been obtained using the probabilistic model 

reported in Table 4.1. The prior 95% confidence interval on the vertical strain zz  is 

computed by the “inverse FORM” approach. Results are gathered in Figure 4.1, in 

which the measurement values from Table 4.2 have been plotted as well. These 

results have been validated by brute force Monte Carlo simulation [PER08].  

It may be observed that using the prior estimation of the parameters’ distribution 

(Table 4.1) leads to a large underestimation of the vertical delayed strains of circa 

40%. This may be explained by the fact that the values of the prior model 

parameters have been taken from a codified building code (BAEL) and thus are not 

well adapted to the specific concrete used for containment vessels. 
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Figure 4.1 Prior predictions of the vertical total strain zz  and fictitious experimental results  

The « updated inverse FORM » approach is then applied using the measurement 

values in Table 4.2. Results are plotted in Figure 4.2. It can be observed that the 

posterior 95% confidence interval now covers the experimental data and that it is 

much smaller than the prior interval. The Bayesian framework has allowed one to 

reconcile the experimental data with the model and to reduce the uncertainty on the 

prediction of long-term behaviour of the structure. It has been shown in [SUD06] 

that the posterior result is not much sensitive to the number of data used for the 

updating process since the time variation of creep is rather slow and smooth. 

The MCMC approach for updating the distributions of the input parameters has 

been applied as well. The results are plotted in Figure 4.3 and corroborate those 

obtained by the “inverse FORM” approach, the maximal discrepancy between the 

updated quantiles obtained by each approach being less than 4%. The obtained 

updated confidence interval is slightly tighter than that obtained by inverse FORM 

(Figure 4.2) and 4 times smaller than the prior interval. 
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Figure 4.2 Prior/posterior predictions of the vertical total strain zz  obtained by the 

« updated inverse FORM » approach and experimental results  

 
Figure 4.3 Prior/posterior predictions of the vertical total strain zz obtained by MCMC and 

experimental results  

As indicated in Section 4.5 the MCMC method yields the posterior distribution 

of the various input random variables of the problem. Some of these distributions are 

plotted in Figure 4.4. One can observe that all the posterior distributions are less 

scattered than the corresponding priors: adding information within the 

computational model has reduced the uncertainty. 
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Figure 4.4.  Prior and posterior distributions of selected random variables  

4.7. Conclusion 

Structural reliability methods are usually used when designing a complex 

structure so as to guarantee that the failure probability associated with various 

criteria is sufficiently low. For exceptional civil engineering structures such as 

cable-stayed bridges or nuclear concrete containment vessels, monitoring is usually 

established from the very construction of the system. Thus a large amount of data is 

collected all along the life time of the system. In this chapter it has been shown that 

this data may be used in order to refine the long-term evolution of the structure.  

The Bayesian updating techniques presented in this chapter allow the analyst to 

address efficiently this question. The “inverse FORM” approach only updates the 

quantiles of the model response, without yielding any additional information on the 

model input variables. In contrast the Markov chain Monte Carlo simulation allows 

one to update the distributions of the input variables from a prior to a posterior 

estimate.  The latter posterior distributions may be re-propagated through the 

mechanical model in order to obtain updated quantiles. 
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The same methods have been used successfully for predicting the crack 

propagations in steel structures [SUD 07] and the delayed strains of a concrete 

containment vessel by using a detailed (finite element) model for creep and 

shrinkage [BER11]. In the latter case the computational cost of a single run of the 

model is rather large. Thus a surrogate model of the finite element model has been 

built first, namely a polynomial chaos expansion (see chapter 8 for details). This 

surrogate which is essentially a polynomial function of the input variables may then 

be used straightforwardly within the MCMC algorithm. 

As a conclusion it shall not be forgotten that the Bayesian framework, although it 

is an elegant approach for integrating experimental feedback into computational 

models, cannot replace completely a proper physical modelling: in particular the 

physical model  shall at least describe the general trend of the time evolution of 

the structural behaviour in order to obtain relevant results. 
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