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Abstract

Sobol’ indices are a well established measure for global sensitivity analysis on
models with independent input variables. However, several alternative sensitivity
measures have been proposed to deal with dependent (correlated) inputs. Among
others, Kucherenko et al. (2012) and Caniou (2012) have proposed two different
generalisations of the Sobol’ indices. The first uses a direct decomposition of vari-
ance, evaluatable with a double loop Monte Carlo estimation, while the latter uses a
High Dimensional Model Representation as structural substitute of the actual model.
The two approaches lead to different indices whose interpretation differs and is some-
times not trivial. In the context of this thesis, the two methods are implemented and
applied onto models with increasing complexity to assess how the indices change for
different dependence structures. The resulting indices are interpreted and discussed
in order to understand the evolution of the values for varying correlation. Depen-
dence is modeled by a Gaussian copula. For expensive-to-evaluate models the double
loop Monte Carlo estimation of Kucherenko indices might in general not be feasible.
Instead of the actual model, a cheap-to-evaluate surrogate, built using polynomial
chaos expansion, is applied.
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Global Sensitivity Analysis with Dependent Inputs

1 Introduction

1.1 Need for sensitivity analysis

Sensitivity analysis is a useful tool often used nowadays in industry and academics. How-

ever, for a non-practitioner it is normally unclear what sensitivity analysis is about. The

following simple example should serve as an introduction to this research field. Imagine

a construction material supplier starting his company. After the first two years he checks

his bookkeeping: he has a gravel and a clay quarry, each equipped with the needed

excavation machines, trucks for transport and workers. The books tell him how much

materials he extracts from each quarry every month and the money he makes selling it to

the manufacturers. Naturally, he does not get the same amount of material every month,

depending on many factors like obstacles in the ground, condition of the machines, health

of his workers, weather conditions and demand from the manufacturers. In other words,

each of his income contributions has uncertainties: for every quarry there exists an ex-

pected value of output µ, a variance σ2 and a likelihood for certain values around the

mean, described by a probability density function (pdf). As a result, his income is also

varying every month and from time to time the entrepreneur’s monthly income sinks be-

low a critical level and he cannot pay his bills without taking from his reserves. To avoid

these scenarios in the future, he wants to stabilise his income by decreasing its monthly

variance. To determine in which of his income sources he should put the most effort to re-

duce the variance he poses the following question: the uncertainty of which contribution

influences the income variance the most?

Needless to say, the suppliers example is simplified by an additive model to calculate the

output (the farmer’s income). Nevertheless, the same question arises frequently in en-

gineering practice, where mathematical models have become very important to describe

processes or phenomena. For example, in civil engineering models are used to calculate

deflections in decisive parts of structures and the maximal stresses the materials have

to resist. For complex structures analytical solutions are not feasible. Instead numerical

methods such as the finite element method (FEM) are often used. Available FEM soft-

ware usually provide the user with an interface, where he enters information (the input

variables) about the structure (such as geometry, materials, cross-sections, degrees of

freedom) and the loads (such as position, direction, absolute value) and then calculates

the deflections and stresses (the outputs) based on this information. Naturally, those re-

sults already answers many of the engineer’s questions. However, in order to understand

the behaviour of the structural system, one needs to know how much the single inputs

(or subsets of them) influence the output and in which way (structural, interaction or

correlation with other inputs).

Not only structural engineering but many other engineering and research areas use math-

ematical models. The input values are often known only to some degree of uncertainty
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and are therefore described as random variables (Sudret, 2007). The goal is then to

understand which of those input variables influences the output variance the most and

which do not. These questions are addressed by the sensitivity analysis.

1.2 Global sensitivity analysis

An easy and very intuitive way to investigate the influence of input parameters is to look

at partial derivatives of the model at certain points of interest. This is called local sensi-

tivity analysis, since the results show the sensitivity of the model around a certain point.

In contrast to local sensitivity analysis, global sensitivity analysis (GSA) provides infor-

mation about the influence due to variation over the whole input spectrum. The goals

of GSA are the following: to determine which inputs contribute the most to the output

variance, which ones are non-influential and, in some cases, understand the interaction

and dependency structure of the underlying computational model. The results in turn

are primarily used to achieve two objectives. One is variance reduction of the output by

reducing the variance of the most influential inputs. The other is model simplification

by fixing non-influential inputs to their expected value, thus decreasing the amount of

variables in the model. Lastly, through GSA one can also achieve a deeper understanding

of the model behaviour by interpreting the dependency and interaction structure.

According to Iooss and Lemâıtre (2014), there are three different types of GSA: screening

techniques, importance measures and deep exploration of sensitivity. The goal of screen-

ing methods is to identify non-influential inputs using only a small number of model

runs. This allows a model simplification before going on to apply more elaborate and

costly analyses. However, they might not always be successful.

The importance measures rely instead on fitting a model to the output and studying this

fitted model. For linear models, the Pearson’s Correlation Coefficient ρ, often referred

to as linear correlation coefficient, the Standard Regression Coefficient (SRC) and Partial

Correlation Coefficient (PCC) provide importance measures for an input variable. If the

model is not linear but still monotonic, a rank transformation can be applied to the

sample sets. Afterwards, the Spearman’s Correlation Coefficient ρS , the Standard Rank

Regression Coefficient (SRRC) and the Partial Rank Correlation Coefficient (PRCC) can

be defined analogously to the linear case. However, in practice the models are frequently

non-linear and non-monotonic. In this case, a decomposition of the output variance can

lead to helpful importance indices for single inputs or even subsets of inputs.

Deep exploration methods aim to give a better understanding of sensitivity. Graphical

and smoothing techniques, like the scatterplots or parallel coordinate plots provide more

information on interactions between parameters. However, analysing the behaviour of an

experimental system or a long running computational model may be very costly. In order

to cope with this, metamodel-based methods were developed. The goal of metamodelling
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is to approximate a complex model by a surrogate which has good prediction capabilities

at negligible computational cost.

Ferretti et al. (2016) reviewed databases of high impact factor journals like Science and

Nature to find out how often and what types of sensitivity analyses are used in scientific

publications. They found that the majority of sensitivity analyses are either local or one

factor-at-a-time (OAT) analyses. Even though the share of GSA is growing over the years,

traditional techniques are still prevailing. The authors suppose the reason for this is the

complexity of GSA methods. However, simpler methods are often based on assumptions

that frequently do not suit the problem. Thus, using simple methods like OAT can lead to

incorrect results. Methods to derive correct indices do, however, demand more expertise.

Furthermore, the interpretation and handling of those indices is not always obvious.

Scientific work on the application and interpretation of those indices may further increase

the share of appropriate GSA in scientific papers and practice.

1.3 Importance indices for independent input variables

Due to their applicability for complex models, the variance-based indices are widely used

today to analyse models. For independent input variables, the so-called ANOVA (ANalysis

Of VAriance) leads to the Sobol’ indices (Sobol’, 1993; Homma and Saltelli, 1996; Sobol’,

2001). Those are unambiguous and provide helpful information on the importance of

input variables by allocating a share of the total variance to each input variable or its

interactions with other variables (see Sections 2.2 and 2.3). Using those indices, it is easy

to spot important and non-influental variables and detect interactions between variables.

Sobol’ indices of all orders added together equal 1, clearly showing they are effective

shares of the total output variance.

1.4 Dependence and correlation

In reality, however, there often exists some kind of dependence relation between (two or

more) input variables. For example, components may be produced by the same machine,

materials are tested by the same company or estimations on different quantities are made

by one expert. If there is any kind of relationship between variables, one talks about de-

pendence. Correlation describes a specified relationship between two variables. Since the

result of a mathematical function will naturally be correlated with the inputs, different

correlation measures were already mentioned in Section 3. To describe the relationship

between input variables, the linear correlation coefficient is often used and therefore will

be examined in the following.

The linear correlation coefficient ρ is arguably the most used measure of dependence. It
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is assessed by the normalized covariance between two variables X1 and X2:

ρ12 =
Cov[X1, X2]

σ1σ2
, (1)

where σi =
√

Var[Xi] is the standard deviation of Xi, i = 1, . . . , 2. The coefficient lies

between −1 and 1. If ρ12 is larger than 0, one can expect a large value of X2 if a large

value of X1 is observed, where large indicates above the mean. A negative value of

ρ12, on the other hand, means that if X1 lies above its mean, X2 tends to lie below its

expected value. In the case of no covariance between the samples ofX1 andX2, the linear

correlation coefficient is 0. Figure ?? shows two sampled data sets of (X1, X2) ∼ U2[0, 1]

for different values of linear correlation.

There are two interesting facts to conclude from Figure ??. One is that, in case of correla-

tion, for a certain value of X1, X2 is not uniformly distributed between 0 and 1 anymore.

The distribution of the correlated variable X2 changes. Since the resulting distribution

depends on a certain value of X1 = x∗1, it is called conditional distribution. The other

conclusion is that through correlation, be it positive or negative, the input space shrinks.

For no correlation the sample points were distributed evenly in the whole square [0, 1]2

whereas they are constrained in the case of correlation.

In case the samples of X1 and X2 are both monotonically increasing, one could also

talk about a high correlation. However, the linear correlation coefficient may not show

this, since it detects, as the name implies, only linear correlation. Therefore, Spearman

introduced the rank correlation coefficient, also called Spearman’s ρ, denoted by ρS . In

order to compute this measure, first points in each sample set are assigned a rank in the

sample. The smallest value gets rank 1 and the largest rank N (for a sample of size N).

This corresponds to replacing the random variable Xi by FXi(Xi) ∈ [0, 1], where FXi is

the cumulative distribution function of Xi. The linear correlation coefficient of the ranks

of the sample points results in ρS:

ρS =
Cov[FX1(X1), FX2(X2)]√

Var[FX1(X1)] Var[FX2(X2)]
. (2)

The correlations between input variables can be collected and summarised in a matrix,

the diagonal of which is equal to 1. The entry (i, j) with i 6= j represents the correlation

between Xi and Xj . Since ρij = ρji the matrix is symmetric. Eq. (3) shows a generic

linear correlation matrix for N variables:

ρ =


1 ρ12 . . . ρ1N

ρ21 1 . . .
...

...
...

. . . ρN−1,N
ρN1 . . . ρN,N−1 1

 . (3)

Of course, it is also possible to collect the covariances in the same manner. The covariance
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matrix is symmetric as well and denoted as Σ.

Dependence between input variables can have a strong influence on the outcomes of sta-

tistical analyses. With an easy example Caniou (2012) managed to show that it is crucial

to include dependence, if existent. Neglecting dependence and simply calculating Sobol’

indices for models with dependent input variables can result in a over- or underestima-

tion of risk. An underestimation can result in an wrong allocation of resources for risk

reduction, whereas an overestimation may lead to oversizing of a structure and unneeded

expenses.

1.5 Copula theory

The probabilistic distribution of random variables X can be displayed by their multivari-

ate joint probability density function (PDF) or its integral, the cumulative distribution

function (CDF). However, in engineering practice such a representation is not common.

Instead, the data set of each variable is processed separately and described by a marginal

distribution. The question of dependence or correlation is only addressed later and often

even ignored. In case of independence between variables this may not be problematic,

but as mentioned, it will lead to wrong results if correlation is present. The goal of copula

theory is to produce a joint CDF from the marginal distributions of the random variables

(Nelsen, 2006):

FX(X) = C[FX1(X1), . . . , FXM (XM )]. (4)

There virtually exists an infinite amount of copulas. For a given data set, the copula

can be inferred using standard statistical tools, e.g. maximum likelihood estimation.

Otherwise the copula structure may be postulated within certain parametric families.

The Gaussian copula belongs to the class of elliptical copulas and allows for an easy

isoprobabilistic transform, the Nataf-transform (Lebrun and Dutfoy, 2009). In case the

marginal distributions are all Gaussian, their linear correlation matrix is equal to the

matrix of the copula parameters. Moreover, this copula is already included in UQLab, the

used software in the context of this thesis. For these reasons, the Gaussian copula is used

to represent dependence.

1.6 Importance indices for dependent input variables

As mentioned above and shown in Figure ??, because of correlation between X1 and

X2, for a certain value of X1 the distribution of X2 will not be the same as its original

anymore. If one analyses a mathematical model with the variables X = (X1, X2, X3),

where X1 and X2 are correlated, but X3 is not, it seems obvious that the importance of

X1 and X2 should change (compared to a fully uncorrelated case) because of correlation.

A change of X1 will not only change the output through its structural and interactive con-
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tributions, but also through its correlation with X2. However, if this results in a decrease

or increase in importance depends on the model and the nature of the correlation.

Up to date there is no single commonly shared vision on how the influence of correlation

should be included in sensitivity analysis. Whereas in the independent case the definition

of importance is clear and the variance-based sensitivity indices allow a meaningful rank-

ing of the variables, the introduction of dependency leads to many problems. For one,

the methods to define importance indices for independent variables, like ANOVA, are not

formulated generally and are therefore not applicable if correlation is present. Further,

generating samples for their estimation may be complicated by correlation. Additionally,

as mentioned, it is not clear how correlation should influence the importance of variables

or what a meaningful sensitivity index would be. The definition of importance indices is

a primary issue.

One of the first to propose a solution to this problem was Borgonovo (2007). The idea

is to analyse the change in the output distribution caused by the variation of an input

variable. The resulting index is moment-independent and definitively quantifies the in-

fluence of a variable. However, such an index does not distinguish between structural,

interactive and correlative influences of the variable. Additionally, the interpretation of

the index is not straightforward compared to the variance-based ones, since variance is a

well-defined and often handled parameter in uncertainty quantification.

1.7 Goal of the thesis

For the reasons mentioned in the last section, this thesis will analyse methods leading to

variance-based indices. Caniou (2012) and Kucherenko et al. (2012) both aim to gen-

eralise the Sobol’ indices for dependent variables. Each approach starts from a different

definition of the classic Sobol’ indices and their resulting indices differ, highlighting the

fact that importance is not a clearly defined quantity in the presence of correlation. Fur-

thermore, the interpretation and usefulness of those indices is not apparent.

This thesis aims to produce a source code for the two methods, provide possible interpre-

tations of the indices and clarify the difficulty of global sensitivity anaylsis for dependent

input variables. By implementing the approaches by Caniou (2012) and Kucherenko et al.

(2012) into UQLab (Marelli and Sudret, 2014) and comparing them to each other as well

as to the classical Sobol’ indices, the advantages and disadvantages of each approach will

be discussed.
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2 Investigated approaches

2.1 Overview

The Sobol’ indices (Sobol’, 1993; Homma and Saltelli, 1996) allow a partial allocation

of the output variance to each input variable. The variance being a well interpretable

and understandable quantity has lead to the Sobol’ indices being used frequently in GSA.

The functional decomposition of variance via an High Dimensional Model Representation

(HDMR) is often referred to as ANOVA (ANalysis Of VAriance). However, it is only formu-

lated for independent input variables. Tackling this issue, Li et al. (2010) and Kucherenko

et al. (2012) proposed two different methods of variance decomposition for correlated

input variables, both generalising the Sobol’ indices in different ways. To clearly show

the relationship between each new approach and the classical Sobol’ indices, first two

ways of defining the Sobol’ indices are presented in Sections 2.2 and 2.3. Afterwards,

the methodology of the two approaches for correlated inputs is presented in Sections 2.4

resp. 2.5. As mentioned, this section will focus on the methodology of the approaches,

while details on implementation will be given in Section 3.

2.2 Sobol’ indices using an HDMR

The original idea behind the Sobol’ indices is to represent the model as a sum of com-

ponent functions with increasing dimensionality. Such a representation is called High

Dimensional Model Representation (HDMR). For independent variables X and a square-

integrable model M with finite variance there exists a unique decomposition (Sobol’,

1993; Le Gratiet et al., 2017):

Y =M(x) =M0 +
M∑
i=1

Mi(xi) +
∑

1≤i<j≤M
Mij(xi, xj) + · · ·+M12...M (x) , (5)

whereM0 is a constant (indeed, it is the mean of Y ) and does not depend on any variable

X, Xi depicts a single variable of X = (X1, . . . , XM ) and the component functions are

orthogonal to each other. Using this HDMR, which is called the Sobol’-Hoeffding decom-

position, the definition of importance indices is straightforward. The first order index of

Xi is the covariance of the function solely depending on Xi and the output Y normalized

by the total output variance:

Si =
Cov[Mi(xi), Y ]

Var[Y ]
, (6)

where Cov[•, •] depicts the covariance between the two arguments and Var[•] is the vari-

ance of the argument. Since Y can be expressed as in Eq. (5), it also contains Mi(xi).
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Therefore, the covariance term can be split up:

Si =
Var[Mi(xi)]

Var[Y ]
+

Cov[Mi(xi), (Y −Mi(xi))]

Var[Y ]
. (7)

The aforementioned orthogonality of the component functions implies that there is no co-

variance between them. Hence, the second term in Eq. (7) goes to zero and the first order

index of variable Xi is simply the variance of the component function solely depending

on Xi divided by the total variance:

Si =
Vari[Mi(xi)]

Var[Y ]
. (8)

The term “first order” highlights that this index depicts the influence of one single variable

Xi. The same can be done with the bivariate component functions, leading to the so-

called second order indices:

Sij =
Varij [Mij(xi, xj)]

Var[Y ]
. (9)

The second order index represents the effect of interaction betweenXi andXj . Extending

this idea onto more than two variables, it is possible to define a |u|-th order index of

subset u:

Su =
Varu[Mu(xu)]

Var[Y ]
. (10)

Using these observations, the total variance can be formulated as:

Var[Y ] =
M∑
i=1

Var[Mi(xi)] +
∑

1≤i<j≤M
Var[Mij(xi, xj)] + · · ·+ Var[M12...M (x)] . (11)

The variance of the sum of the component functions is, in fact, the sum of the variances

of the decomposition. Thus, the Sobol’ indices add up to 1 and are effectively shares of

the total variance caused by the component functions.

Various combinations of those indices can be computed. Often used is the so-called total

index of Xi, combining all Sobol’ indices including subscript i:

ST
i = Si +

∑
j 6=i

Sij +
∑

1≤j<k≤M, {j,k}6=i

Sijk + · · · =
∑
i∈w

Sw =

=
1

Var[Y ]

∑
i∈w

Var[Mw(xw)] .
(12)

The total index includes the structural and all interaction effects of an input variable. The

total indices of two interacting variables both fully include the interaction effects. As a

result, summing all total indices counts interactive effects multiple times and therefore

will be greater than (or equal to, if no interactions exist) 1.

The closed index of a subset u is in fact not considered a Sobol’ index, but also used in
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this context. It is defined as follows:

Sclo
u =

Varu[Mu(xu)]

Var[Y ]
+

∑
w⊆u

Varw[Mw(xw)]

Var[Y ]
. (13)

It is similar to the |u|-th order index of subset u but also includes all lower order indices of

variables Xu. It is called “closed” because it includes all first order indices of the variables

in Xu and the interactions between them, but no interactive effects with variables not

included in the subset.

2.3 Sobol’ indices as expectation values

A more intuitive way to define the importance of input Xi is to analyse how the model

output Y changes for different values of variable Xi:

Si =
Vari[Y |Xi]

Var[Y ]
. (14)

The value of Y for a certain value of Xi can be calculated as the average of the model

evaluations from a sample of X∼i and a given Xi = x∗i , where X∼i are all variables

except Xi. In mathematical terms, this is E∼i[M(Xi = x∗i ,X∼i)] = E∼i[Y |Xi], where E[•]
describes the expected value of the argument and X∼i is a sample of X∼i. Using this,

Eq. (14) can be rewritten:

Si =
Vari[E∼i[Y |Xi]]

Var[Y ]
. (15)

This is the first order Sobol’ index. It measures how the expected value of Y varies for

different values of Xi. It can be calculated directly in a double loop Monte Carlo (MC)

estimation: for each realisation x∗i of random variable Xi, the expectation E∼i[Y |x∗i ] is

calculated from a sample of the remaining variables X∼i and x∗i , forming the inner loop.

The same is repeated for varying values of Xi, which constitutes the outer loop.

If not only one, but two variables are fixed at certain values, second order indices can be

computed analogously. To make them complementary to the first order indices and only

represent the interaction effects between the two variables, the first order indices have to

be subtracted:

Sij =
Vari,j [E∼{i,j}[Y |Xi, Xj ]]

Var[Y ]
− Si − Sj . (16)

Consequently, for a subset u of indices it is possible to define the |u|-th order index:

Su =
Varu[E∼u[Y |Xu]]

Var[Y ]
−

∑
w⊂u

Sw . (17)
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The total index of Xi is obtained as the sum of all Sobol’ indices including i:

ST
i =

∑
i∈u

Su . (18)

According to the law of total variance (Cramer and Kamps, 2017), the variance of the

output can be split up as follows:

Var[Y ] = Vari[E∼i[Y |Xi]] + Ei[Var∼i[Y |Xi]] . (19)

Normalizing it by the output variance, one finds the sum of two shares:

1 =
Vari[E∼i[Y |Xi]]

Var[Y ]
+

Ei[Var∼i[Y |Xi]]

Var[Y ]
. (20)

Since the first term is the first order index of Xi (see Eq. (15)), the second term has to

include all combined effects of the remaining variables X∼i. It is thus the total index of

subset ∼ i:
1 = Si + ST

∼i , (21)

where:

Si =
Vari[E∼i[Y |Xi]]

Var[Y ]
. (22)

ST
∼i =

Ei[Var∼i[Y |Xi]]

Var[Y ]
. (23)

Interchanging the subscripts i and ∼ i in Eq. (23), the total index of Xi can also be

expressed as an expectation:

ST
i =

E∼i[Vari[Y |X∼i]]
Var[Y ]

. (24)

This index represents the expected variance of Y , when only Xi is varied. This index can

also be computed in a double-loop. However, this time in the inner loop the values of

X∼i are fixed and the variance of Y for changing values of Xi is computed. This variance

is averaged over different values of X∼i.

As in the previous section, the closed index of subset u can be formulated:

Sclo
u =

Varu[E∼u[Y |Xu]]

Var[Y ]
. (25)

In Kucherenko et al. (2012) this formulation is called first order effect of subset u, since

it depicts the first order index of Xu as if they were one single variable.

Table 1 summarizes the different definitions of the Sobol’ indices and the closed indices

obtained by the two introduced approaches, namely as expectations and by using an

HDMR. Interestingly, it turns out that the two approaches are formally equivalent for in-

dependent variables and do yield the same values. The direct comparison shows that the
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component functionMi(xi) of the HDMR can be interpreted as the conditional expecta-

tion E∼i[Y |Xi].

Table 1: Sobol’ indices as expectations and using an HDMR

As expectations Using an HDMR

Si · Var[Y ] Vari[E∼i[Y |Xi]] Var[Mi(xi)]

ST
i · Var[Y ] E∼i[Vari[Y |X∼i]]

∑
i∈w

Var[Mw(xw)]

Su · Var[Y ] Varu[E∼u[Y |Xu]]− Var[Y ] ·
∑
w⊂u

Sw Var[Mu(xu)]

Sclo
u · Var[Y ] Varu[E∼u[Y |Xu]] Var[Mu(xu)] + Var[Y ] ·

∑
w⊂u

Sw

2.4 ANCOVA

The ANCOVA (ANalysis of COVAriance), also called SCSA (Structural and Correlated

Sensitivity Analysis), was first introduced by Li et al. (2010). As the name suggests, this

method aims to produce helpful sensitivity indices for correlated input variables based

on the decomposition provided by ANOVA (see Section 2.2). The basic assumption is

that there exists an HDMR of the investigated model Y = M(X). This assumption is

critical, because due to the dependency between variables, there does not exist a unique

HDMR for a model. The reason for this is that because of correlation between variables

the component functions cannot be orthogonal anymore. As a result, there does not exist

a unique decomposition (Chastaings et al., 2012). There are, however, ways to cope with

this issue. Mara et al. (2015) proposed to do a Rosenblatt transform for every variable

Xi, each respecting Xi as the “independent” variable on which the others depend. Thus,

M (the amount of variables) sets of independent variables Ui, i = 1, . . . ,M are created.

Finally, from each set of variables Ui and a fitted function gi, such that gi(Ui) =M(X) =

Y , the Sobol’ indices of the underlying variable Xi are calculated.

Another approach, proposed by Caniou (2012) and the one pursued in this thesis, is to

set up an HDMR assuming independence between the variables. In this case the HDMR

in Eq. (5) is still a unique functional decomposition of the model. After the HDMR is set

up, the importance of Xi can again be defined as the covariance betweenMi(xi) and Y

and the term can be split up as in Eq. (7). However, since the HDMR will be applied on

samples of correlated variables, the statement of zero covariance between the different

terms does not hold anymore. In this case, the second term in Eq. (7) is not zero and

there are two contributions to Si. These two summands were proposed by Li et al. (2010)

as the uncorrelative (or structural) and correlative importance indices of Xi.
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Analysing this method, Caniou (2012) realised that the second term (Y −Mi(xi)) in-

cludes terms Mu(xu), where i ∈ u. Covariance between Mi(xi) and Mu is not only

due to correlation but can also be due to the fact that u contains i. For this reason, he

proposes to split the covariance term up into an interactive and correlative term. As a

result of this extension, the first order index now reads:

Si = SU
i + SI

i + SC
i , (26)

where SU
i , SI

i and SC
i represent the uncorrelative, interactive and correlative index of Xi

respectively. They are defined as:

SU
i =

Var[Mi(xi)]

Var[Y ]
, (27)

SI
i =

Cov[Mi(xi),
∑

i∈uMu(x)]

Var[Y ]
(28)

and:

SC
i =

Cov[Mi(xi),
∑

i/∈vMv(x)]

Var[Y ]
. (29)

where {Mu,Mv} ∈ (Y −Mi) and u∩v = ∅. This split aims to separate the effects of Xi

as detailed as possible. The interactive index SI
i includes the structural influence of Xi

inMi(xi) and
∑

i∈uMu(x) as well as correlation effects between the terms. Thus, some

confusion between interactive and correlative influence of Xi remains. Since for total

indices, such lower order indices are summed up, this confusion only grows stronger. For

this reason, the definition of proper total ANCOVA indices remains open.

2.5 Direct decomposition of variance and MCS estimation

The Sobol’ indices introduced in Sections 2.2 and 2.3 are formulated for independent

inputs only. The introduction of correlation brings the need for a new definition of im-

portance indices. Since there exists no unique HDMR for dependent variables (see Sec-

tion 2.4), it seems reasonable to generalise the Sobol’ indices based on the formulation as

expectations given in Section 2.3. Kucherenko et al. (2012) proposed to define sensitivity

indices using the direct decomposition of variance with the law of total variance. If the

input variables X are divided into two complementary subsets Xu and X∼u, the total

variance is assigned as the following sum (Cramer and Kamps, 2017):

Var[Y ] = Varu[E∼u[Y |Xu]] + Eu[Var∼u[Y |Xu]] . (30)

As seen in Section 2.3, the first summand is the closed index of subset u. Thus, the second

term has to represent the total index of subset ∼u. For u = i and normalized by Var[Y ]

one ends up with Eq. (21). The first order and total indices are again formulated as in
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Eq.s (22) and (24):

Si =
Vari[E∼i[Y |Xi]]

Var[Y ]
. (31)

ST
i =

E∼i[Vari[Y |X∼i]]
Var[Y ]

. (32)

They are formally the same definitions as im the independent case, however their estima-

tion through Monte Carlo estimation becomes more complex. Because of dependence,

fixing Xi to a certain value will change the distribution of the variables correlated to Xi.

For a given Xi = x∗i , the other variables X∼i must be sampled conditionally, producing

the sample X̂∼i. The averaged value of the model runs M(x∗i , X̂∼i) is E∼i[Y |Xi = x∗i ].

This is the new, adjusted inner loop for Kucherenko’s indices and the difference to the

classical Sobol’ indices. This procedure is repeated for different values of Xi, forming the

outer loop, and the variance of the expectations is calculated. Normalizing by the total

variance results in the first order index Si.

Analogously, when X∼i are fixed to certain values x∗∼i, the remaining variable Xi has to

be sampled conditionally, producing X̂i. The variation of M(X̂i,x
∗
∼i) is averaged over

different values of x∗∼i and normalized by Var[Y ], resulting in the total index ST
i . The

steps of calculation are the same as for the Sobol’ indices, but the samples have to be

set up conditionally. For arbitrary marginal distributions and copulas this is not a trivial

matter.

2.6 Optimisation of the double loop MCS estimation

In practice, it is expensive, in terms of computation time to run the computational models

hundreds of millions of times in an MC double loop. The precision of the estimations

improves for increasing loop sizes and can produce highly varying results for smaller

loop sizes. In order to shorten computation time, Kucherenko et al. (2012) replaces the

inner loop by an estimator and therefore only runs “one loop”. This method leads to

accurate results for a sample size of N = 213 = 8192. This is a considerable improvement

over the double loop approach with (Nil · Nol + Nvar) samples, where Nil is the size of

the inner loop, Nol is the size of the outer loop and Nvar is the amount of samples used

for the estimation of the total variance.

The optimisation used in the context of this thesis, is to substitute an HDMR for the actual

model. Those are usually evaluable way more efficiently. To do this, the HDMR can be

set up, as for the ANCOVA indices, for independent variables and then used to calculate

the model outputs of the conditional samples. The accuracy of the HDMR evaluations

depends on the amount of samples used for the experimental design. If still the double

loop approach is taken, the MCS estimation of the sensitivity indices continues to depend

on the loop sizes, but the calculations are done much faster. Notably, the HDMR is an
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approximation of the actual model. The goal is to get a good predictor with only a

relatively small amount of model runs of the actual model. The accuracy of the HDMR can

be measured in various ways. The value used in this thesis is the relative generalisation

error:

εgen =
E[(M(X)−MHDMR(X))2]

Var[M(X)]
. (33)

The difference between the actual model output and the one from the surrogate is

squared to get positive numbers and then averaged over many samples. This expecta-

tion is normalized by the variance of the actual model, which is also a quadratic value. If

the relative generalisation error goes towards zero, the model provides good predictions.

To get a good model, the experimental design has to be sufficiently large, which depends

on the model complexity. Values are presented in Section 3.6.

2.7 Interpretation issues

As mentioned in Section 2.2, the Sobol’ indices represent a share of the total variance

caused by the respective variable or subset of variables. The first order indices only in-

clude structural influence of Xi in the modelM(x) whereas the total indices additionally

include all interaction effects of said variable. In case variable Xi interacts with other

variables, the total index ST
i is larger than the first order index Si.

The application of the Sobol’ indices will be shown for the following example taken from

Sudret and Marelli (2016). The object of interest is a basic structural element, the simply

supported beam (see Figure 1). For a homogeneous beam with Young’s modulus E,

length L and a rectangular cross-section of width b and height h, the midspan deflection

V under a uniform load p can be calculated as follows:

V =
5

32

pL4

E bh3
. (34)

Figure 1: Simply supported beam under uniform load

The input variables are considered independent and are lognormally distributed Xi ∼
LN (λi, ζi), i ∈ {b, h, L,E, p} with means and standard deviations shown in Table 2.

UQLab allows for a quick and easy calculation of the Sobol’ indices if the model and

the input parameters are provided. The Sobol’ indices are shown in the last two columns

of Table 2. The expected value of the deflection V is 0.150 mm and the total variance is

2.44 · 10−3 mm2.
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Table 2: Mean and standard deviations of the input variables as well as the Sobol’ indices

Variable Mean µ Std. deviation σ First order index Si Total index ST
I

b 0.15 m 7.5 mm 0.0263 0.0295

h 0.3 m 15 mm 0.2456 0.2645

L 5 m 50 mm 0.0137 0.0190

E 30’000 MPa 4’500 MPa 0.2438 0.2608

p 0.01 MN/m 0.002 MN/m 0.4325 0.4564

Using these indices, the input variables can be sorted by their importance. In this exam-

ple, the first order and total indices of a variable have the same rank. The load p is the

most important parameter with nearly half of the output variance based on its variation.

The Young’s modulus E and the height h of the beam are about equally important, each

contributing about a quarter of the output variance. The width b and length L of the

beam are almost non-influential to the system’s variance. Suppose the goal is to reduce

the variance of the deflection in order to decrease the probability of reaching the service

limit state. According to the Sobol’ indices, reducing the variance of p should influence

the output variance the most. If the standard deviation of p can be decreased by 15% to

0.0017 MN/m, the total variance drops to 2.14 · 10−3 mm2, a decrease of about 8.5%. The

same decrease of standard deviation for selected other variables results in a total variance

of 2.24 · 10−3 mm2 for E and 2.42 · 10−3 mm2 for L. This shows that the variables with

higher Sobol’ indices have a stronger influence on the model variance. The variables with

small indices have a negligible effect and can be set to a constant value to simplify the

model without great impact on the result.

In contrast to the Sobol’ indices, the interpretation of Kucherenko’s and Caniou’s indices

(see Table 3) is not obvious. What do certain values mean? Can Kucherenko’s total

indices be smaller than first order indices? Can ANCOVA indices be negative? If so, why

Such questions are unanswered yet, although there is much potential for further insight

into how dependence influences total variance. And specifically for the two investigated

approaches, there is more to explore, including: do the two approaches yield the same

values? If not, why not, since they did so for the uncorrelated case? And will variables

be ranked in the same order by both indices? A better understanding of the indices

can lead to an overall better understanding of the computational model and its variables.

Such knowledge allows for more precise allocation of resources when aiming for variance

reduction. Through application of the two approaches on different model functions and

the discussion of the results in Section 4 answers to some of those questions or new

impulses for further work should be found.
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Table 3: Methods leading to variance-based importance indices for correlated variables

Method Indices of Xi Requirements

ANCOVA

SU
i = Var[Mi(xi)]

Var[Y ]

SI
i =

Cov[Mi(xi),
∑
i∈uMu(x)]

Var[Y ]

SC
i =

Cov[Mi(xi),
∑
i/∈vMv(x)]

Var[Y ]

HDMR of the investigated
model

Direct Decomposition
Si = Vari[E∼i[Y |Xi]]

Var[Y ]

ST
i = E∼i[Vari[Y |X∼i]]

Var[Y ]

Knowledge about conditional
distributions and possibility
to sample from them
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3 Implementation and Validation

3.1 Overview

The methods for correlated variables (see Sections 2.4 and 2.5) were implemented into

UQLab (Marelli and Sudret, 2014), a software developed at ETH Zürich. UQLab is a

suitable tool to easily perform different tasks of uncertainty quantification such as prob-

abilistic input modelling, polynomial chaos expansion (PCE), reliability analysis and sen-

sitivity analysis. So far, sensitivity analyses can only be performed for independent input

variables. Nevertheless, this software provides many useful features and the methods

implemented within the scope of this master’s thesis should eventually be included into

UQLab. For these reasons MATLAB with the UQLab software was used in this thesis.

3.2 Direct decomposition of variance

The general formulation of the Kucherenko indices is the same as for the Sobol’ indices.

However, as seen in Section 2.5, the difference lies in the samples, from which the expec-

tations and variances are calculated. Due to correlation, fixing one variable to a certain

value will influence the distribution of the remaining ones. Therefore, they have to be

sampled conditionally. It is not obvious, how an arbitrary joint distribution of variables

with any marginal distribution types would be influenced by fixing one variable to a

value. As mentioned in the introduction, in this work dependence will be modelled us-

ing the marginal distributions of the random variables and a Gaussian copula. Using the

Nataf transform (Lebrun and Dutfoy, 2009), the distributions can be transformed into

standard normal space. There, a joint Gaussian distribution with covariance matrix ΣG

can be conditioned to sample the remaining variables, if one (or more) is fixed to a cer-

tain value x∗i (resp. x∗u). Because a Gaussian copula is applied, its parameter matrix

ΣC = ΣG = Σ. It is assumed that all the inputs with distribution type and moments,

as well as the correlation matrix between the inputs Σ are provided. Based on this, the

following two conditional sampling algorithms were developed and implemented.

3.2.1 Conditioning on one variable

For the first order index of Xi the model M(X) = Y has to be evaluated on samples

where X∼i are conditioned on Xi = x∗i :

Si =
Vari[E∼i[Y |Xi]]

Var[Y ]
. (35)

The variable Xi is sampled Nol times, where Nol is the amount of outer loop samples.

Then, each of the realisations x∗i is transformed into standard normal space, resulting
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in z∗i , where its influence on the joint distribution of Z∼i = Φ−1(FX∼i(X∼i)) (i.e. X∼i

in normal space) can be determined. Remember that Z = (Zi,Z∼i) has a multivariate

zero-mean joint Gaussian distribution, meaning µ = 0 and a given correlation matrix Σ.

For Zi = z∗i the distribution parameters are modified and the variables Ẑ∼i are sampled

conditionally according to those, the “ˆ” circumflex accent (hat) symbolizing the condi-

tional nature of the distribution. Such a sample combined with z∗i forms a conditional

sample Z|x∗
i
. At this point, one inner loop is completed. The amount of sample points is

depicted by Nil. This procedure is repeated for different values of x∗i , forming the outer

loop. Notably, the sample Z|x∗
i

is still in standard space. The transformation into the ac-

tual distributions happens separately: each variable Zj is transformed from N (0, 1) into

FXj (xj). The algorithm is summarised as follows:

1. Generate Nol samples of Xi ∼ FXi(xi) from the marginal distribution. This is the

outer loop sample for the double loop Monte Carlo estimation.

For each variable Xi, i = 1, . . . ,M :

2. Transform each realisation Xi = x∗i into normal space:

z∗i = Φ−1(FXi(x
∗
i )) . (36)

3. Since a Gaussian Copula is applied, the other inputs can now be sampled with the

conditional distribution:

Ẑ∼i ∼ N (µZ∼i + ΣiΣ
−1
ii (z∗i − µZi) , Σ∼i∼i −ΣiΣ

−1
ii ΣT

i ) . (37)

where Σi is the i-th column vector of Σ without σ2i , Σ∼i∼i is the ((M − 1)× (M −
1)) covariance matrix of all variables except Xi and Σii is the variance of Xi (in

standard normal space equal to 1). Since Z∼i and Zi are in the normal space, their

expected values are 0. Eq. (37) can then be simplified into:

Ẑ∼i ∼ N (Σiz
∗
i , Σ∼i∼i −ΣiΣ

T
i ) . (38)

Interestingly, setting Xi = x∗i does condition both the mean and the variance of

X∼i. However, the conditioned variance does not depend on the value of the con-

ditioning variable, only the mean does. Changing the mean of the normal distribu-

tion will simply shift the distribution curve along the input axis. Using this fact in

combination with Eq. (38) one can write the conditional variable as:

ẑ∼i = Σiz
∗
i + ẑ0∼i , (39)

where Ẑ0
∼i ∼ N (0 , Σ∼i∼i −ΣiΣ

T
i ) .

4. Combining z∗i and a sample of Ẑ∼i delivers a conditional sample for Xi = x∗i in
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normal space:

Z|x∗
i

=



ẑ11 · · · z∗i · · · ẑ1M

...
. . .

...
...

...

ẑk1 · · · z∗i · · · ẑkM

...
...

...
. . .

...

ẑNil1 · · · z∗i · · · ẑNilM


.

where Nil is the amount of conditional samples in the inner loop.

5. Each random variable is separately transformed back into its marginal distribution

space:

xj|x∗
i

= F−1Xj
(Φ(zj)), j = 1, . . . ,M . (40)

6. The conditional sample for Xi = x∗i stands. The procedure is repeated for all

realisations of Xi and consequently also for each random variable.

Using Eq. (39) allows one to reducethe sampling time. Instead of producing a new con-

ditional sample for each realisation of Xi (i.e. Nol conditional samples), only one sample

ẑ0∼i is produced with a mean equal to 0 and then shifted for each realisation by Σiz
∗
i ,

where z∗i = Φ−1(FXi(x
∗
i )). The implemented MATLAB function to sample conditioned on

one variable is called getKUCHsamp1.m. It produces a (Nol ×M) cell-array. At each

position (i, j) a sample is stored with X∼j sampled conditioned on Xj = xij , being the

i-th point of a sample of Xj ∼ FXj (xj).

3.2.2 Conditioning on all variables except one

To compute the total index of variable Xi, the model has to be evaluated on samples with

Xi conditional on X∼i = x∗∼i:

ST
i =

E∼i[Vari[Y |X∼i]]
Var[Y ]

. (41)

For unconditioned variables, it does not matter if they are sampled from their joint dis-

tribution FX and then transformed into normal space or sampled from NM (0,Σ) right

away. For this reason, in this algorithm Z∼i are sampled in Gaussian space. For each

realisation Z∼i = z∗∼i, the remaining variable Ẑi can then be sampled conditionally

(Kucherenko et al., 2012). The realisation z∗∼i combined with a sample of Ẑi forms a

conditional sample in the standard normal space. That is the inner loop. This is repeated

for each realisation of Z∼i, forming the outer loop. As before, the transformations from

normal into the actual distribution is done for each variable separately. The algorithm is

summarised as follows:
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1. Generate Nol samples of Z in the standard normal space with zero-mean and co-

variance matrix Σ:

Z ∼ NM (0,Σ) . (42)

For each variable Zi, i = 1, . . . ,M :

2. For each realisation of the other variables Z∼i = z∗∼i, the chosen variable can be

conditionally sampled with:

Ẑi ∼ N (µZi + Σ∼iΣ
−1
∼i∼i(z

∗
∼i − µZ∼i) , Σii −Σ∼iΣ

−1
∼i∼iΣ

T
∼i) . (43)

where Σ∼i is the i-th row vector of Σ without σ2i , Σ∼i∼i is the ((M − 1)× (M − 1))

covariance matrix of all variables except Zi and Σii is the variance of Zi (in standard

space equal to 1). Since Z∼i and the unconditioned Zi are in the standard normal

space with zero-mean, their expected values are 0. Eq. (43) can be rewritten as:

Ẑi ∼ N (Σ∼iΣ
−1
∼i∼iz

∗
∼i , 1−Σ∼iΣ

−1
∼i∼iΣ

T
∼i) . (44)

Again using the fact that only the mean depends on the conditioning values, the

variable can be expressed as a sum:

ẑi = Σ∼iΣ
−1
∼i∼iz

∗
∼i + ẑ0i , (45)

where Ẑ0
i ∼ N (0 , 1−Σ∼iΣ

−1
∼i∼iΣ

T
∼i) .

3. Combining z∗∼i and a sample of Ẑi delivers the conditional sample for X∼i = x∗∼i =

F−1X∼i
(ΦM−1(z∗∼i)) in the normal space:

Z|x∗∼i =



z∗1 · · · z∗i−1 ẑi1 z∗i+1 · · · z∗M

...
...

...
...

...
. . .

...

z∗1 · · · z∗i−1 ẑik z∗i+1 · · · z∗M

...
. . .

...
...

...
...

...

z∗1 · · · z∗i−1 ẑiNil z∗i+1 · · · z∗M


.

4. Each column j of this sample is now transformed into the respective marginal dis-

tribution of Xj:

xj|x∗∼i
= F−1Xj

(Φ(zj)), j = 1, . . . ,M . (46)

In this algorithm, the same trick as for the first algorithm is applied: instead of sampling

the conditioned variable Ẑi for every realisation of the outer loop (Nol times), Ẑ0
i is

sampled once with zero mean and the conditioned correlation matrix. The conditional

September 20, 2018 - 20 -



Global Sensitivity Analysis with Dependent Inputs

mean for each realisation of Z∼i is then added to this sample, producing all outer loop

samples in standard space. Similar to the function used to sample conditional on one

variable, getKUCHsamp2.m produces a (Nol×M) cell-array. This time, at each position

(i, j) a sample is stored with Xj conditioned on X∼j = x∗∼j , being the i-th realisation of

X∼j in the outer loop.

3.3 ANCOVA

As seen in Section 2.4, the ANCOVA indices are calculated based on the components of

an HDMR of the actual model. However, for correlated input variables, there does not

exist a unique HDMR. Caniou (2012) circumvents this issue by setting up the HDMR for

independent variables and then just using it as a structural representation of the model.

This approach is followed. A PCE is set up for independent variables and used as HDMR

of the actual model. A PCE is a projection of the model response onto polynomials, that

are orthonormal to each other with respect to the marginal distributions. Therefore, a

PCE is unique for independent variables (Xiu, 2010) and defined by the marginal distri-

butions of the variables and the coefficients and the indices (degrees) of the polynomials.

To compute the ANCOVA indices, the HDMR’s component functions fitting the descrip-

tions in Section 2.4 have to be isolated. This can be done by analysing the indices α.

The following notation will be used. The subset wi contains the indices of polynomials

solely containing Xi (αi > 0 and αj 6=i = 0), that together make up Mi(xi). Subset ui

contains the indices of polynomials, that contain Xi (αi > 0) and some other variable

(
∑

j 6=i αj > 0). Finally, subset vi includes all other polynomial indices, i.e. the indices

of all polynomials that do not include Xi (αi = 0). Table 4 shows a scheme of the three

subsets for i = 1. Each index subset (w, u and v) and the corresponding coefficients form

a new custom PCE. Those are used to calculate the variances and covariances needed for

the indices. The following list summarises the procedure to calculate the indices:

1. Create one sample X I from the marginal distributions: F I
X =

M∏
i=1

FXi(xi)

and one sample XC from the correlated distr.: FX = C[FX1(x1), . . . , FXM (xM )]

2. Build a PCE from the independent sample xI andM(xI) = yI → MPCE and cal-

culate its output variance with the correlated sample Var[yPCE ] = Var[MPCE(XC)]

For each variable Xi, i = 1, . . . ,M :

3. Identify the α-subsets wi, ui and vi (for an example see Table 4)

4. Build new custom PCE’s for each subset: MPCE
wi ,MPCE

ui andMPCE
vi

and calculate Var[MPCE
wi (XC)], Cov[MPCE

wi (XC),MPCE
ui (XC)] and

Cov[MPCE
wi (XC),MPCE

vi (XC)] from the correlated sample.
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Table 4: Subsets w1, u1 and v1 of α.

α X1 X2 . . . . . . XM

1 0 0 . . . 0

w1
... 0 . . . . . . 0
5 0 . . . . . . 0
α1 > 0 αj>1 = 0

1 0 2 . . . 2

u1
... 1 5 . . . . . .

3 4 . . . . . . 1
α1 > 0 per row:

∑M
j=2 αj > 0

0 1 5 . . . . . .

v1 0 . . . . . . . . . . . .

0 . . . . . . . . . . . .

α1 = 0

5. Obtain the sensitivity indices SU
i , SI

i and SC
i of Xi by dividing the respective terms

by Var[yPCE ]

3.4 Validation: Direct decomposition

The essential parts of the present implementation of Kucherenko’s approach are the sam-

pling methods explained in Section 3.2. Once the conditioned samples are set up, the cal-

culation of the indices consists of ascertaining their expected values or variances, which

is a rather straightforward matter compared to the conditioning. For this reason, the im-

plemented sampling algorithms are validated. This is done by comparing the distribution

of a sample from the code to the distribution of selected points from a large sample.

3.4.1 Conditioning on one variable

Running the MATLAB code getKUCHsamp1.m produces a cell-array containing the con-

ditioned samples (see also Section 3.2.1). One of those samples (j, i), conditioned on

Xi = x∗i , is chosen and the distributions of the conditioned variables are plotted as his-

tograms. The reference sample is set up as follows. A large sample with 106 points of X

is obtained from the joint probability distribution FX(X). From this large sample only

the points with xi close to the reference value x∗i , i.e. with 0.99x∗i < xi < 1.01x∗i , are

selected, thereby “conditioning” the sample on Xi ≈ x∗i . From this sample, the distribu-

tions of the variables X∼i are plotted for comparison. Below are comparisons for three
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variables X1 ∼ N (10, 2), X2 ∼ N (20, 2) and X3 ∼ N (30, 2) and different cases of linear

correlations between them.

Case 1: Positive correlation between X1 and X2 and no correlation between X1 and

X3: In this first case, the variables X1 and X3 are not correlated while X1 and X2 have

strong positive correlation ρ12 = 0.7. The distributions of X2 and X3 are conditioned on

X1 = 12.11. Figure 2 shows the histograms of the conditioned samples and their statistic

moments.

(a) Conditioned distribution of X2 (b) Conditioned distribution of X3

Figure 2: Distributions of X2 and X3 conditioned on X1 = 12.11 from implemented code
getKUCHsamp1.m (blue) and reference (red) with distribution parameters.

The value of X1, on which was conditioned, lies above its mean µ1 = 10. As a result, it

is to be expected, that the positively correlated X2 will also tend to lie above its mean.

This condition is met as shown in Figure 2a: the mean of the conditioned sample is at

21.46 and thereby above the mean µ2 = 20. The change in standard deviation is harder to

estimate. Nevertheless, it can be predicted that the standard deviation should decrease,

since X2 is now restricted to a certain area by X1. This is also the case: the standard

deviation decreased from 2 to 1.43. Moreover, no matter the conditioning value of X1,

the standard deviations of X2 and X3 are constant at the values presented in the plots,

which is a correct feature as mentioned in Section 3.2.1. The histograms of the samples

from getKUCHsamp1.m (blue) fit the references (red) well, they lay right on top of

each other. The distribution of X3 in Figure 2b still matches its marginal µ3 = 30, σ3 = 2.

Since there is no correlation, conditioning on any value of X1 should not influence the

distribution of X3 and, in fact, it does not.

Case 2: Negative correlation between X1 and X2 and positive correlation between

X2 and X3: In this case, X2 is correlated negatively to X1, ρ12 = −0.8, and positively
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to X3, ρ23 = 0.4. The distributions of X2 and X3 are conditioned on X1 = 8.02. Figure 3

shows the conditioned samples as histograms with their moments.

(a) Conditioned distribution of X2 (b) Conditioned distribution of X3

Figure 3: Distributions of X2 and X3 conditioned on X1 = 8.02 from implemented code
getKUCHsamp1.m (blue) and reference (red) with distribution parameters.

The conditioning value 8.02 of X1 lies below its mean µ1 = 10. The negatively correlated

X2 should therefore tend to lie above its mean µ2 = 20 and its standard deviation should

be decreased by the conditioning. As Figure 3a shows, the produced data meets these

criteria: the mean of the conditioned X2 is 21.6 and its standard deviation 1.20. The

distribution of X3 (see Figure 3b) is unaltered by the conditioning on X1: the mean and

standard deviation still are at their original values. This behaviour is to be expected,

since X1 and X3 are not correlated, even tough both are correlated to X2. Table 5

shows more conditioning values of X1 with the corresponding moments from the code-

generated sample and the reference samples of X2 and X3. No matter the conditioning

value of X1, the standard deviation is always the same. The values from the implemented

code match the reference values well.

3.4.2 Conditioning on all variables except one

The second developed MATLAB sampling code getKUCHsamp2.m produces samples

where one of the variables is conditioned on all the others (see also Section 3.2.2). The

conditioning on more than one variable is not as trivial as the conditioning on one. Nev-

ertheless, some predictions can be made and a reference sample shows if the produced

samples are reasonable. The same variables as in Section 3.4.1 are used but this time

X1 is conditioned on X2 and X3 for different values and cases of correlation. The refer-

ence sample is enlarged to 107 points since the reduction through conditioning on two

variables will decrease the number of selected samples more drastically.
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Table 5: Moments of X2 and X3 for different conditioning values of X1 for ρ12 = −0.8
and ρ23=0.4

Code generated Reference

Conditioning value

of X1

mean std. mean std.

µ2 = 20.2 σ2 = 1.21 µ2 = 20.2 σ2 = 1.20
9.69

µ3 = 30.0 σ3 = 2.00 µ3 = 30.0 σ3 = 2.00

µ2 = 18.8 σ2 = 1.21 µ2 = 18.8 σ2 = 1.20
11.5

µ3 = 30.0 σ3 = 2.00 µ3 = 30.0 σ3 = 2.00

µ2 = 19.9 σ2 = 1.21 µ2 = 19.9 σ2 = 1.20
10.1

µ3 = 30.0 σ3 = 2.00 µ3 = 30.0 σ3 = 2.00

µ2 = 19.4 σ2 = 1.21 µ2 = 19.4 σ2 = 1.20
10.7

µ3 = 30.0 σ3 = 2.00 µ3 = 30.0 σ3 = 2.00
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Case 1: Positive correlation between X1 and X2 and no correlation between X1 and

X3 In this case, X1 is only correlated to X2 with ρ12 = 0.7. The distribution of X1 is

conditioned on X2 = 23.27 and X3 = 29.12. Figure 4 shows the results.

Figure 4: Distribution of X1 conditioned on X2 = 23.11 and X3 = 28.80 from imple-
mented code getKUCHsamp2.m (blue) and reference (red) with distribution parame-
ters.

The conditioning value of X2 lies above its mean whereas the one of X3 lies below its

own one. However, since only X2 is correlated (positively) to X1, only the former should

have influence. Figure 4 shows that X1 does in fact tend to be below its mean µ1 = 10.

Moreover, the standard deviation is decreased to about 1.4−1.5. The samples from the

code (blue) coincide with the reference from the large sample (red).

Case 2: Positive correlation between X1 and X2 and negative correlation between

X1 and X3 In this second case, X1 is conditioned on X2 and X3 while being correlated

to both. The conditioning values are X2 = 17.82 and X3 = 30.70 and the correlation

coefficients are ρ12 = 0.7 and ρ13 = −0.3. The results are shown in Figure 5.

This time, the conditioning value of X2 lies below its mean and the one of X3 lies above

its own one. Since X2 is correlated to X1 more strongly, it has a stronger influence and

X1 tends to lie below its mean, too, with a conditioned mean around 8.7. Naturally,

the standard distribution is reduced as well to about 1.3. The values from the code

(blue) match the reference (red) derived from the large sample well. Table 6 shows

more conditioning values of X2 and X3 with the corresponding moments from the code-

generated sample and the reference samples of X1. Notably, the standard deviation is

constant, no matter the conditioning values and the moments of conditional samples

match the reference values well.

Overall, the samples from the implemented code show the expected tendencies and fit the

reference well. The mean is shifted in the supposed direction and the standard deviation

takes on the same value when conditioned on X1, no matter the conditioning value.
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Figure 5: Distribution of X1 conditioned on X2 = 17.82 and X3 = 30.70 from imple-
mented code getKUCHsamp2.m (blue) and reference (red) with distribution parame-
ters.

The distribution parameters are apparently altered correctly by the codes. Therefore, the

codes are considered validated.

3.5 Validation: ANCOVA

The validation of the ANCOVA method is done based on the resulting indices. The al-

gorithm from Section 3.3 is applied on an example given in Caniou (2012) and then

compared with his results. The used mathematical model is depicted in Eq. (47), where

all variables are distributed Xi ∼ N (0.5, 1), i = 1, . . . , 5. A Gaussian Copula with the

linear correlation matrix in Eq. (48) is used.

Y =M(X) = X1 +X2 +X3 +X4 +X5 (47)

ρ =



1 0.6 0.2 0 0

0.6 1 0 0 0

0.2 0 1 0 0

0 0 0 1 0.2

0 0 0 0.2 1


(48)

The model is simple. It is additive, only introducing structural contributions from all

variables but no interaction. The linear correlation matrix is set up so as to create two

independent groups of variables. X1 is strongly correlated toX2 and weakly toX3. Those

two variables themselves are only correlated toX1. X4 andX5 are correlated weakly. The
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Table 6: Moments of X1 for different conditioning values of X2 and X3 for ρ12 = 0.7 and
ρ13 = −0.3

Code generated Reference

Conditioning values

X2 X3

mean std. mean std.

17.5 33.1 µ1 = 7.23 σ1 = 1.30 µ1 = 7.57 σ1 = 1.36

21.1 28.8 µ1 = 11.1 σ1 = 1.30 µ1 = 11.0 σ1 = 1.38

19.6 26.5 µ1 = 10.8 σ1 = 1.30 µ1 = 10.6 σ1 = 1.36

22.4 27.9 µ1 = 12.3 σ1 = 1.30 µ1 = 12.0 σ1 = 1.38

results from the reference Caniou (2012) are shown in Table 7a and the ones produced

by the developed MATLAB-code in Table 7b. Since there does not exist any interaction in

the model, the interactive indices of all variables SI
i are all equal to 0 and not listed in

the tables.

Variables Si SU
i SC

i

X1 0.24 0.13 0.11
X2 0.24 0.13 0.11
X3 0.19 0.13 0.06
X4 0.16 0.13 0.03
X5 0.16 0.13 0.03
Sum 1.00 0.65 0.03

(a) Indices from the reference thesis
(Caniou, 2012)

Variables Si SU
i SC

i

X1 0.26 0.14 0.12
X2 0.23 0.14 0.09
X3 0.17 0.14 0.03
X4 0.17 0.14 0.03
X5 0.17 0.14 0.03
Sum 1.00 0.70 0.30

(b) Indices calculated by the code

Table 7: ANCOVA indices for additive model with 5 variables.

Clearly, the tables show different indices. Nevertheless, they agree in two points: firstly,

the uncorrelated contribution, measured by SU
i , is equal for all variables and secondly,

X4 and X5 are overall equally important to the variance of the model. But the reference

indices attribute the same importance to X1 and X2 while the computed indices show X1

as the most important variable. Additionally, the reference presentsX3 as more important

than X4 and X5. However, the computed indices are the same for X3, X4 and X5. Those

differences seem to prove the code wrong.
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Form the intuition, all variables should have the same uncorrelated contribution. Thus,

the ranking of the variables must be based on SC
i , which is based on covariances. Since

all variables have the same marginal variance, this directly translates to the amount of

correlation a variable has. X1 correlates the most with X2 and X3 and should therefore

be the most important variable. Second most important should be X2 having a linear

correlation coefficient ρ12 = 0.6. Those two are followed by all other variables with equal

indices because they all correlate with one other variable with ρ = 0.2. The implemented

algorithm produces values that meet this prior guess. Since there is no clear argumenta-

tion on the reasonableness of the values in Caniou (2012) and the results produced by

the developed algorithm meet the expectations, the code is considered validated. This

example is picked up again in Section 4, with more argumentation for the author’s values.

Since the ANCOVA method uses a PCE as surrogate model, one has to ensure it is ac-

curate enough. Therefore, the experimental design has to be sufficiently large. For the

simple models, 200 model runs were used, since the computational cost was negligible.

In the following Section 3.6 the needed experimental design for a complex model will

be determined, thereby proving the used size for the simple models as adequate or even

excessive.

3.6 Double loop MCS estimation using PCE

The estimation of the Kucherenko indices via a double loop MCS can be improved by

replacing the actual model by an HDMR (see Section 2.6), which decreases the compu-

tation time considerably. Since the ANCOVA approach uses a PCE instead of the actual

model to separate specific terms, the same model can be used for this estimation. In order

to determine the needed amount of samples to get a good predictor, a PCE is set up for

increasing sizes of experimental designs. For every PCE the relative generalisation error

in Eq. (33) is calculated for a validation set of correlated samples. If the error is smaller

than 0.5% = 5× 10−3, the sample size is considered sufficiently large.

The computation time is not a major issue for the simple models in Sections 4.2 - 4.5

nor for the Ishigami function in Section 4.7. However, the truss model in Section 4.8 is

computationally much more expensive. The calculation of the Kucherenko indices took

approximately 4.5 hours for loop sizes of 1,000, resulting in 1,000,000 model runs per

index. However, tests on simpler models showed, that this loop size is not sufficient and

the resulting indices can strongly vary. Therefore, this model is to be replaced by a PCE.

The model code calculates the midspan deflection of the truss in Figure 17 and has ten

different input variables. Six of them, the point loads, are considered dependent (see

Eq. (76)). Figure 6 shows the relative generalisation error for experimental designs of

size 10 to 400 and a validation set of 10,000 points.

It can be seen that already for a small amount of model runs for the experimental design,
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Figure 6: Relative generalisation error of the PCE of the truss model for increasing exper-
imental design size.

the error gets very small. With about 200 samples, the error is around 2 × 10−3 and

therefore small enough. Consequently, for the PCE of the truss model an experimental

design with 200 samples is used.
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4 Results and Discussion

4.1 Procedure

In this section the implemented methods are applied on different mathematical mod-

els of increasing complexity. Low complexity models in Sections 4.2 - 4.5 should allow

to understand the effect of changes only in structural, correlation or interaction parts.

This understanding should eventually be used to analyse more complex models in Sec-

tions 4.7 and 4.8. The simple models start with a projector, that gives out one of the input

variables. The additive models introduce more structural components and are used to re-

produce the results from the references the approaches are taken from. The interactive

model and the Ishigami function eventually bring in interactions between the variables,

thereby including all effects separable by the available sensitivity indices. Finally, the

truss model simulates an application of the theory on an engineering problem and in or-

der to reduce computation time, a surrogate model is used. The results of the models are

analysed in the respective sections and discussed twice in Sections 4.6 and 4.9.

To clearly distinguish the indices resulting from different methods, only the classical

Sobol’ indices are denoted as Si and ST
i . The indices from the direct decomposition

(Kucherenko et al., 2012) are denoted as Ki and KT
i and the ones resulting from AN-

COVA (Caniou, 2012) as Ai = AU
i + AI

i + AC
i . In the cases of no correlation, the Sobol’

indices are identified through post-processing of the PCE of the model, set up on a exper-

imental design of 200 samples. For the calculation of the Kucherenko indices, both the

inner and the outer loop have a length of 104. For the ANCOVA indices also 200 samples

are used (see Section 3.6) for the experimental design of the PCE and 106 samples for the

estimation.

4.2 Projector

The first function is the projector in Eq. (49). It takes X = (X1, X2, X3) and simply

returns X1. The marginal distributions of the input variables are Xi ∼ N (0, 1), i = 1, 2, 3.

The sensitivity indices are calculated for different correlations between the variables. For

no correlation also the Sobol’ indices are calculated as reference. To model dependence,

a Gaussian copula is used. Since the marginal distributions are all Gaussian as well, the

linear correlation coefficients are identical to the parameters of the copula.

Y =M(X) = X1 (49)

Case 1 No correlation: In a first step, no correlation is assumed. In this case the

Sobol’ indices are calculated to serve as reference values for the Kucherenko and ANCOVA
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Table 8: Projector Case 1: Uncorrelated sensitivity indices

Si ST
i Ki KT

i Ai = AU
i

X1 1.00 1.00 1.00 1.00 1.00
X2 0.00 0.00 0.00 0.00 0.00
X3 0.00 0.00 0.00 0.00 0.00

indices. The results are shown in Table 8.

ρ =


1 0 0

0 1 0

0 0 1

 (50)

The Kucherenko and ANCOVA indices do indeed yield the same importance allocation as

the Sobol’ indices. Variable X1 is the only contributing variable. Since there is neither

interaction nor correlation, its total index is equal to the first order index.

Case 2 Varying correlation between X1 and X2: Now, to isolate the influence of

correlation between X1 and X2, the linear correlation coefficient ρ12 is varied from -1 to

1, whileX3 stays independent (see Eq. (51)). The resulting indices are shown in Figure 7.

ρ =


1 ρ12 0

ρ12 1 0

0 0 1

 − 1 < ρ12 < 1 (51)

Figure 7a shows the Kucherenko indices of the three variables for a change in ρ12. They

are always positive and the total index of a variable is everywhere smaller or equal to

its first order index. At zero covariance, the first order indices meet the corresponding

total indices, since there is no interaction between the variables and at this point no

correlation either. Unsurprisingly, the first order and total effect of X3 are always at 0,

reflecting the fact thatX3 does not have any influence on the variance of the model, which

is correct. Additionally, the first order index of X1 always stays at 1, since a change in X1

results in the same amount of change in Y . The other curves allow for more interesting

observations. Through correlation, X2 gains influence on Y . It does not matter if the

correlation is positive or negative because only the variance of the actually influencing

variable X1 is important and the total variance stays constant at Var[Y ] = Var[X1] = 1.

At the extremes ρ12 = ±1, X2 is as important as X1, since they behave exactly alike. KT
1
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Figure 7: Projector Case 2: Sensitivity indices for varying linear correlation between X1

and X2

decreases with increasing absolute value of correlation at the same rate as K2 increases

and reaches 0 at the extremes. For perfect correlation this is to be expected based on the

analytical formulas in Section 2.3. KT
2 always stays at zero because if the other variables

X1 and X3 are fixed to a value, a change in X2 will not influence Y .

The ANCOVA indices in Figure 7b show different aspects. X1 is the only variable influ-

encing the variance of the outcome according to these indices. This is due to the ANCOVA

indices being based on a structural representation of the model for zero correlation. In

the case of the projector, only X1 has a structural, independent influence. Its uncorrela-

tive index AU
1 is therefore always equal to 1. Since there are no component functions of

the other variables (i.e. they are zero), there is no covariance between them and other

component functions and the indices are all 0.

Case 3 Positive correlation between X1 and X2 and varying between X1 and X3:

In this case, the third variable is added to the system by correlating it to X1 as shown in

Eq. (52). The correlation between X1 and X2 is fixed at 0.5. In order to keep X2 and

X3 uncorrelated and the correlation matrix positive definite, ρ13 is only varied between

−0.85 and 0.85. The resulting indices are shown in Figure 8.

ρ =


1 0.5 ρ13

0.5 1 0

ρ13 0 1

 − 0.85 < ρ13 < 0.85 (52)

As can be seen in Figure 8, all indices are positive and the total indices are smaller or

equal to the corresponding first order indices. The first order index of X1 is again equal
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Figure 8: Projector Case 3: Sensitivity indices for varying linear correlation between X1

and X3 and constant correlation ρ12 = 0.5

to 1 for all correlation values due to the same reason as before (see Case 2). However,

at zero correlation ρ13, the first order indices of X1 and X2 are not equal to their total

indices because those variables are still correlated. This constant correlation between

X1 and X2 leads to K2 being constant at 0.25. The increase in correlation |ρ13| leads,

similarly to before, to an increase of K3 and a decrease of KT
1 of the same amount. For

|ρ13| > 0.5 X3 is more important for the total variance than X2 which seems reasonable

because its correlation with X1 is stronger than the one of X2.

The ANCOVA indices in Figure 8b show the same as for Case 1. For variables without

independent, structural contribution, the component functions will be zero and the vari-

ables will have no influence. AU
1 (and with it the sum of the indices A1) is constant at 1

and the other indices stay at zero.

Case 4 Positive correlation between X1 and X2 and varying between X2 and X3:

In this last case of the projector model, ρ12 is again fixed at 0.5, but X3 is correlated to

X2 (see Eq. (53)). The results are shown in Figure 9.

ρ =


1 0.5 0

0.5 1 ρ23

0 ρ23 1

 − 0.85 < ρ23 < 0.85 (53)

Figure 9a shows, as expected, that X3 does not have any influence on the total variance

since it is uncorrelated to X1. The curve of KT
1 behaves like in Case 1 excepts it starts

lower due to the correlation ρ12 = 0.5. K2 stays constant at 0.25, as it did in Case 3.
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Figure 9: Projector Case 4: Sensitivity indices for varying linear correlation between X1

and X3 and constant correlation ρ12 = 0.5

The ANCOVA indices in Figure 9b do not produce new insight compared to the other

cases.

4.3 Additive Model 1

In order to introduce structural influence from more than one variable, the additive mod-

els from Kucherenko et al. (2012) (Test case 1. Linear Model) and Caniou (2012) (Equal
structural contribution of correlated parameters) are used. In this section, the model from

Caniou (2012) is analysed, while the one from Kucherenko et al. (2012) is analysed in

the next Section 4.4.

The model in Eq. (54) has 5 input variables Xi, i = 1, . . . , 5, which all have marginal

distributions N (0.5, 1). In the following, cases of linear correlation given in the reference

thesis will be applied. Since a Gaussian copula is applied and the marginal distributions

are all Gaussian as well, the linear correlation coefficients are identical to the parameters

of the copula.

Y =M(X) = X1 +X2 +X3 +X4 +X5 (54)

Case 1 No correlation: First, no correlation between any of the variables is assumed.

Table 9 shows the sensitivity indices resulting from each method.

The methods all yield the same indices. Notably, all variables contribute 1/5 to the models

variance, since they all have the same marginal variance and have equal structural roles.

There does not exist interaction nor correlation.
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Table 9: Additive Model 1 Case 1: uncorrelated sensitivity indices

Si ST
i Ki KT

i Ai AU
i AI

i AC
i

X1 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0
X2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0
X3 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0
X4 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0
X5 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0

Table 10: Additive Model 1 Case 2: Sensitivity indices for correlation

Ki KT
i Ai AU

i AI
i AC

i

X1 0.47 0.09 0.26 0.14 0.0 0.11
X2 0.37 0.09 0.23 0.14 0.0 0.09
X3 0.21 0.14 0.17 0.14 0.0 0.03
X4 0.21 0.14 0.17 0.14 0.0 0.03
X5 0.21 0.14 0.17 0.14 0.0 0.03

Case 2 Positive correlation: Second, the correlation is set equal to the example in the

reference (see Eq. (55)). This case was already used in the validation of the code for the

ANCOVA indices in Section 3.5. Table 10 shows the Kucherenko and ANCOVA indices.

ρ =



1 0.6 0.2 0 0

0.6 1 0 0 0

0.2 0 1 0 0

0 0 0 1 0.2

0 0 0 0.2 1


(55)

The first order Kucherenko indices Ki lead to the following ranking of the variables:

X1 is the most important variable with a sensitivity index of 0.47. It is followed by

variable X2 with K2 = 0.37 and finally by variables X3, X4 and X5, which all get a first

order index of 0.21. Notably, those numbers do add up to more than 1. Additionally to

the structural contribution, Kucherenko’s first order index also increases with correlation

effects. However, the total index decreases with growing correlation. This effect can be

observed in Table 10: the total indices of X1 and X2 are smaller than the ones of X3, X4

and X5, which are identical. It is known from the case of independence, that the total

Sobol’ index of a variable is larger, if it has strong interactions. However, in this model,

no interactions are apparent. In this case, the ranking of the variables according to the

first order index is reasonable.
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The ANCOVA indices Ai lead to the same ranking of variables. The meaning of the

values was already discussed in Section 3.5: the structural contribution is the same for all

variables, but the correlative contributions differ depending on how strongly correlated

a variable is. The PCE of the model is set up assuming independence. As a result it will

look similar to:

MHDMR(X) = X1 +X2 +X3 +X4 +X5 =

5∑
i=1

MHDMR
i (Xi). (56)

The total variance is calculated using this model with a sample of correlated variables.

The variance can therefore be decomposed as:

Var[MHDMR(X)] = Var[X1 +X2 +X3 +X4 +X5]. (57)

Eq. (63) in the next section shows how to decompose this variance for the case of 3

variables. The variance of the sum of 5 variables will be decomposed analogously:

Var[MHDMR(X)] =
5∑

i=1

Var[Xi] + 2
5∑

1=i<j

Cov[Xi, Xj ]. (58)

For the case at hand this yields Var[Y ] = 5 · 1 + 2 · (0.6 + 0.2 + 0.2) = 7. The uncorrelated

indices are calculated by dividing Var[MHDMR
i (xi)] by the total variance. For the model in

Eq. (56) this results in the marginal variances divided by the total variance. One obtains

1/7 ≈ 0.14 for each variable. The value of AC
1 is derived in the following:

AC
1 =

Cov[X1, X2 +X3 +X4 +X5]

Var[Y ]
=

0.8

6
≈ 0.13 , (59)

where:

Cov[X1, X2 +X3 +X4 +X5] = E[(X1 − E[X1])(

5∑
i=2

Xi − E[

5∑
i=2

Xi])] =

= E[
5∑

i=2

(X1 − E[X1])(Xi − E[Xi])] =
5∑

i=2

E[(X1 − E[X1])(Xi − E[Xi])] =

=
5∑

i=2

Cov[X1, Xi] = Cov[X1, X2] + Cov[X1, X3] = ρ12σ1σ2 + ρ13σ1σ3.

(60)

The MC estimation matches the analytical value. Overall, the ANCOVA indices allow

for a more detailed interpretation of the first order indices. Additionally, since there

does not exist any interaction, the sum of the first order indices equals 1, making them

interpretable as shares of the total variance, in contrast to the Kucherenko indices.
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4.4 Additive Model 2

In order to introduce structural influence from more than one variable, the additive mod-

els from Kucherenko et al. (2012) (Test case 1. Linear model) and Caniou (2012) (Equal
structural contribution of independent / correlated parameters) are used. In this section,

the model from Kucherenko et al. (2012) in Eq. (61) is analysed.

This model has 3 input variables, of which X1 and X2 are marginally distributed N (0, 1)

and X3 is marginally distributed N (0, 2). As in the reference paper, X1 is independent

and the linear correlation between X2 and X3 will be varied from −1 to 1 (see Eq. (62)).

Again, since a Gaussian copula is applied on Gaussian marginals, the linear correlation

coefficients are equal to the copula parameters.

Y =M(X) = X1 +X2 +X3 (61)

ρ =


1 0 0

0 1 ρ23

0 ρ23 1

 − 1 < ρ23 < 1 (62)
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Figure 10: Additive Model 2: Sensitivity indices for different values of linear correlation
between X2 and X3

Figure 10 shows the resulting sensitivity indices. The Kucherenko indices in Figure 10a

are always positive and match the ones in the reference paper Kucherenko et al. (2012).

At zero correlation the total indices meet the corresponding first order indices. However,

the indices K1 = KT
1 and K2 = KT

2 take values around 0.167 whereas K3 = KT
3 lies

around 0.667. This is due to the larger marginal variance of X3. The total variance of the
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model can be decomposed as follows:

Var[X1 +X2 +X3] = Var[X1] + Var[X2] + Var[X3] + 2 Cov[X1, X2]+

+2 Cov[X1, X3] + 2 Cov[X2, X3]
(63)

At zero correlation, the covariance between the variables vanishes. The total variance

becomes Var[Y ] = Var[X1] + Var[X2] + Var[X3] = 12 + 12 + 22 = 1 + 1 + 4 = 6. Hence, for

zero correlation the variance share of X3 is Var[X3]/Var[Y ] = 4/6 ≈ 0.667 and 4 times

larger than the ones of X1 and X2 with each 1/6 ≈ 0.167. At the extremes ρ23 = ±1

the total indices of the correlated variables KT
2 & KT

3 equal zero, as expected. The

first order indices, though, take on different values at the extremes. The values can

be explained using Eq.s (63) and (1). For ρ23 = −1 the total variance reads Var[Y ] =

Var[X1]+Var[X2]+Var[X3]+Cov[X2, X3] = 12+12+22+2 ·(−1) ·1 ·2 = 1+1+4−4 = 2.

One thing to note here is that the total variance decreases due to negative correlation.

Another thing is, that 1/2 of the variance is due to X1 and the other half due to X2 and

X3, explaining them all being at 0.5 for ρ23 = −1. At the other extreme ρ23 = 1, the

same decomposition gives Var[Y ] = 12 + 12 + 22 + 2 · 1 · 1 · 2 = 1 + 1 + 4 + 4 = 10.

Notably, the positive correlation leads to an increase in total variance. Now 1/10 of it is

due to X1 and 9/10 are due to X2 and X3, as shown in Figure 10a. At both extremes

one could ask, why X2 and X3 do not each have half of their combined effect, meaning

0.25 each at ρ23 = −1 and 0.45 at ρ23 = 1. This is due to the Kucherenko indices

allocating the full correlative effects to each of the correlated variables. Additionally, at

such extreme correlation values, the variables basically act like only one random variable

X23 which contributes half of the total variance. The interval −0.8 ≤ ρ23 ≤ 0 stands

out because here KT
i ≥ Ki, i = 2, 3 unlike anywhere else. Furthermore, KT

2 and KT
3

both peak between −0.5 and −0.4 while K2 reaches its minimum. Overall, KT
2 behaves

similarly to KT
3 , except its values are 4 times smaller, the same difference in scale the

variables X2 and X3 have in variance (σ22 = 1, σ23 = 4). In this area −0.5 < ρ23 < −0.4,

presumably, the variance of X2 gets counteracted by the variance of X3, since σ23 = 2σ2.

As a consequence, the first order index ofX2 drops to zero. At the same time, KT
3 exceeds

K3 due to this “interaction” with X2. For this model with these specific marginals and

correlations, the extreme point lies here. From here, KT
i , i = 1, 2 drops again. Finally,

KT
1 = K1 for all values of ρ23, since X1 does not have interactions nor correlation with

the other two variables. Its decrease from ρ23 = −1 to ρ23 = 1 is due to growth of total

variance, resulting in a smaller share for X1’s constant variance.

The ANCOVA indices yield a seemingly dissimilar plot (see Figure 10b). Please note the

different scaling of the y-Axis in the two plots for increased readability. Nevertheless,

there are two similarities. The uncorrelative index AU
1 (and with it the first order index

A1) show a similar curve as K1 = KT
1 . Moreover, at zero correlation the same first order

indices are achieved with both approaches. At ρ23 = 0 all correlative indices (AC
1 , AC

2 and

AC
3 ) are zero, as they should be. In fact, AC

1 is zero everywhere since it is not correlated to
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another variable. X2 and X3 only being correlated with each other share the same curve

of their correlative index. Also, all interactive indices are zero, depicting the expected,

since there is no interaction in the current model. The uncorrelative indices seem to

behave curiously at first sight. To understand them, a polynomial HDMR of the current

model is used. It is assumed that MHDMR = X1 + X2 + X3. Using the definition of the

uncorrelative indices (Eq. (27)), one can formulate the uncorrelative index of variable

X3:

AU
3 =

Var[MHDMR
3 (X3)]

Var[Y ]
=

Var[X3]

Var[Y ]
(64)

The variance of X3 is known from its marginal distribution and the total variance se-

lected values of ρ23 was derived above. The result is AU
3 = 4/2 = 2 for ρ23 = −1,

AU
3 = 4/6 ≈ 0.667 for ρ23 = 0 and AU

3 = 4/10 = 0.4 for ρ23 = 1. These are the same

values as in Figure 10b. The remaining question is for an explanation of the behaviour

of the correlative indices AC
2 and AC

3 . This can be explained using their definition in

Eq. (29). For variable X3 the numerator is the covariance between MHDMR
3 (X3) = X3

and Σi/∈vMHDMR
v (Xv) = X1 +X2. Such a covariance can be separated as follows:

Cov[X3, X1 +X2] = Cov[X3, X1] + Cov[X3, X2] (65)

In the case at hand, there only exists correlation (and therefore covariance) between X2

and X3. To get the correlative index, the covariance has to be normalized by the output

variance. Doing this, one obtains AC
3 = (−1)·2·1/2 = −1 for ρ23 = −1, AC

3 = 0·2·1/6 = 0

for ρ23 = 0 and AC
3 = 1 ·2 ·1/10 = 0.2 for ρ23 = 1. These are also the values in Figure 10b.

Finally, the first order indices A1, A2 and A3 represent the sum of the different influences

of the respective variable. The overall curve trend of spreading towards ρ23 = −1 and

compacting towards ρ23 = 1 can be explained by the larger values of the total variance at

positive correlation, to which the covariance terms are normalized. It is also interesting

to see that the correlative indices of X2 and X3 are identical. The fact that X2 has no first

order effect at ρ23 = −0.5 is also displayed.

4.5 Interactive Model

The model in Eq. (66) introduces interaction on a level of low complexity. X1 and X2 are

multiplied with each other and X3 is added to the product. The marginal distributions of

the variables are Xi ∼ N (0.5, 1), i = 1, 2, 3 in order to not have zero mean. This is im-

portant because the ANCOVA indices are based on structural contribution. A distribution

of X1 with zero mean would cause the structural contribution of X2 to be zero, since it is

weighted by the mean of its multiplier X1. This model shows the behaviour of combined

correlation and interaction. It is again tested for different cases of linear correlation with

a Gaussian copula.

Y =M(X) = X1X2 +X3 (66)
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Table 11: Interactive Model Case 1: uncorrelated sensitivity indices

Si ST
i Ki KT

i Ai AU
i AI

i AC
i

X1 0.1 0.5 0.1 0.5 0.1 0.1 0.0 0.0
X2 0.1 0.5 0.1 0.5 0.1 0.1 0.0 0.0
X3 0.4 0.4 0.4 0.4 0.4 0.4 0.0 0.0

To make estimations and explore the development of the indices, the total variance will

be derived analytically. For this model a variance decomposition can be done as follows:

Var[Y ] = Var[X1X2 +X3] = Var[X1X2] + Var[X3] + 2Cov[X1X2, X3]. (67)

Case 1 No correlation: In order to get an understanding of this model, first the

uncorrelated case will be investigated. The sensitivity indices are calculated the same

way as for the last model and displayed in Table 11.

The first order indices derived from the methods for correlated variables Ki and Ai agree

with the Sobol’ indices Si. Variable X3 structurally contributes 40% to the total variance

and thereby the most. X1 and X2 each only contribute 10% structurally, but their inter-

action, measured by ST
i − Si = KT

i − Ki = 0.4, i = 1, 2, contributes 40%, as much as

X3. Including their interaction, X1 and X2 are more important than X3. The ANCOVA

indices Ai = AU
i do not yield more insight on the importance on the variables. However,

AI
i = 0, i = 1, 2 reminds of the fact, that the interactive index only comes into existence

through correlation. The values in Table 11 can also be explained using Eq. (67). In case

of independence, the first order index of X3 (equalling the total index) reads:

A3 =
Var[X3]

Var[Y ]
=

1

(1 · 1 + 1 · 0.52 + 1 · 0.52) + 1
=

1

2.5
= 0.4 (68)

Case 2 Varying correlation between X1 and X2: In this case the effect of correlating

interactive variables is investigated. Therefore, X1 and X2 are correlated, whereas X3

stays independent (see Eq. (69)). The resulting Kucherenko and ANCOVA indices are

shown in Figure 11.

ρ =


1 ρ12 0

ρ12 1 0

0 0 1

 − 1 < ρ12 < 1 (69)

The Kucherenko indices in Figure 11a show that for all values of correlation between X1

and X2, the curves of K1 and K2 and the ones of KT
1 and KT

2 match perfectly. Since
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Figure 11: Interactive Model Case 2: Sensitivity indices for different values of linear
correlation between X1 and X2

in this case, X3 has neither interactions nor correlation, its total index always equals its

first order index. The first order index depicts the structural contribution of a variable.

Since the means of X1 and X2 as well as their structural contribution are the same, it is

unsurprising that their first order indices are equal. With this in mind and adding the fact,

that X1 and X2 only interact and correlate with each other, the equality of total indices

becomes obvious. The total indices of X1 and X2 are zero at |ρ12| = 1, since fixing X2

and X3 to certain values determines the value of X1. As a consequence, the conditional

samples contain constant values and, therefore, the model evaluations are constant as

well, the variance is zero. The same concept applies for X2. The total indices KT
1 and KT

2

raise to their Sobol’ counterparts at ρ12 = 0, where they are larger than their first order

indices, as explained in Case 1. For increasing |ρ12|, the total indices decrease while the

first order indices increase. Notably, the point were the values become identical is not the

same for ρ12 → 1 and ρ12 → −1. This is due to the total variance not changing equally for

negative and positive correlation because covariance plays a role as shown in Eq. (??).

For the case at hand with an independentX3 and varying ρ12, one obtains a total variance

of Var[Y ] = Var[X1X2] + Var[X3], where Var[X1X2] = 2 ·0.52 ·ρ12 + 0.52 + 0.52 + 12 +ρ212.

As a result, one gets the total variance as Var[Y ] = (ρ212+0.5ρ12+1.5)+1, which will take

different values for positive or negative values of ρ12 because of the linear term 0.5ρ12. At

the negative extreme ρ12 = −1 the total variance is Var[Y ] = 2+1 = 3: the contribution of

X1 and X2 (2/3) is double the one of X3 (1/3). At the other extreme ρ12 = 1, the variance

is Var[Y ] = 3 + 1 = 4: X1 and X2 contribute 3/4 of the variance and the rest comes from

X3. Interestingly, for certain negative values of ρ12, X3 is allegedly more important than

X1 and X2. Interactive and correlative effects of X1 and X2 seemingly counteract each

other. Additionally, the fact that K1 = K2 = 2 and at ρ12 = −1, KT
1 = KT

2 = 0

and K1 + K3 = 1 leads to the assumption, that at the extremes K1 = K2 include all

effects, structural, correlation and interaction. It seems that from ρ12 = 0 to |ρ12| = 1,
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Kucherenko’s first order index also starts including the interaction effects.

A first glance at the ANCOVA indices in Figure 11b reveals that X3 is more important than

the other variables. This is presumably due to the fact, that in the HDMR of the model

X1 and X2 are weighted by each others means (µ1 = µ2 = 0.5) whereas X3 gets double

the structural influence with a coefficient of 1. Overall, A3 behaves similar to K3 and

the first order indices of all three variables match the Sobol’ indices at zero correlation.

Looking at the indices in detail, one realises that some are constantly zero, namely AI
3,

AC
3 and, more interestingly, AI

1 and AI
2. A look at the actual values in the results yields,

that AI
1 and AI

2 are not 0 but extremely small, even negligible. The covariance between

the terms including X1 and the ones including X1 and X2 is just very small. In contrast,

the covariance between MHDMR
1 (X1) and MHDMR

2 (X2) is of considerable size and there-

fore displayed as AC
1 resp. AC

2 of equal value in Figure 7b. The values of A1 and A2 at

ρ12 = −1 are noteworthy. The two indices AU
i and AC

i cancel out for i = 1, 2, leading

to an assumption, that only X3 influences the model variance on ”first order” level, ne-

glecting interaction. This seems to contradict the Kucherenko indices completely, which

tell that the first order effects of X1 and X2 are dominant. There are two reasons. One

was mentioned before: Kucherenko’s first order indices include interaction effects if cor-

relation is present. The other lies in the HDMR: as mentioned, for the present model,

X1 and X2 are weighted by each others means in their first order component functions.

For ρ12 = −1, those two terms cancel out and only the interaction term stays, which not

respected in the ANCOVA analysis.

Case 3 Varying correlation between X1 and X3: In this case X1 correlates with

X3 and interacts with X2 at the same time. The indices for varying ρ13 are shown in

Figure 12.

ρ =


1 0 ρ13

0 1 0

ρ13 0 1

 − 1 < ρ13 < 1 (70)

The Kucherenko indices of X1 and X3 in Figure 12a are very similar to the ones of X2

and X3 from the Additive Model 2. The reason for this similarity is obvious: in both

cases there is a sum of two correlated variables. The smaller values of K3 and KT
3 arise

from the smaller marginal variance for this case. The total indices of X1 and X2 are

larger than the first order indices due to the interaction between them. K3 = KT
3 for

ρ13 = 0. X3 contributes 40% of the total variance at this point, X1 and X2 each 10% and

their interaction 40%. The total variance is obtained as Var[Y ] = Var[X1X2] + Var[X3] =

(0.52 · 12 + 0.52 · 12 + 12 · 12) + 12 = 1.5 + 1 = 2.5, also proving that X3 contributes 40%.
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Figure 12: Interactive Model Case 3: Sensitivity indices for different values of linear
correlation between X1 and X3

For an arbitrary ρ13 the total variance is obtained as Var[Y ] = Var[X1X2] + Var[X3] +

2E[X2]Cov[X1, X3] = 1.5 + 1 + 2 ·0.5ρ13 = 1.5 + 1 +ρ13. This shows that Var[Y ] decreases

for negative correlation. At ρ13 = −1, the total indices of the (extremely) correlated

variables decrease to zero, whereas the first order indices all meet slightly below 0.2:

about 20% of the total variance is due to X1 and X3 and the remaining 80% are due

to X2 and its interaction with X1. The extrema at correlation values of −0.5 and −0.3

presumably arise from the same circumstances as in Section 4.4. The similarities of the

situations is obvious: in both cases these peaks happen with a sum of two correlated

variables.

The ANCOVA indices in Figure 12b show a similar curve for the first order index of

the independent X2, only consisting of AU
2 . Once again it is noted, that AI

2 being zero

does not imply, that X2 has no interaction effects. AU
1 behaves exactly like AU

2 . But the

contribution of correlation, measured by AC
1 , alters the curve of A1. The largely negative

terms towards ρ13 = −1 once again arise from growing negative covariance and shrinking

total variance.

Case 4 Varying correlation between X1 and X2 and positive correlation between

X1 and X3: In the third case of the interactive model X1 is linked to X3 by constant

correlation ρ13 = 0.5 and to X1 by varying correlation −0.85 < ρ12 < 0.85. The variables

September 20, 2018 - 44 -



Global Sensitivity Analysis with Dependent Inputs

X2 and X3 remain uncorrelated.

ρ =


1 ρ12 0.5

ρ12 1 0

0.5 0 1

 − 0.85 < ρ12 < 0.85 (71)
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Figure 13: Interactive Model Case 4: Sensitivity indices for different values of linear
correlation between X1 and X2

The Kucherenko indices K2 and KT
2 in Figure 13a behave similarly to Case 2, where ρ12

also varied between −1 and 1. The indices of X1 are similar as well, but the constant

correlation ρ13 = 0.5 alters both its indices. In essence, K1 lies higher up and KT
1 is

lowered to a degree, that the effect of interaction with X2 does not suffice to make up

the decrease due to correlation. The constant correlation between X1 and X3 also lowers

KT
3 to run below K3. The trends in the extremes |ρ12| = ±1 can easily be explained. The

extreme correlation exists between the multiplicands X1 and X2, increasing the variance

of the product Var[X1X2] and therefore the total variance Var[Y ]. Since X1 and X2

contribute more to the total variance at the extremes their first order indices increase.

However, for negative correlation, the product X1X2 is likely to be counteracted by an

X3 of the opposite sign, therefore decreasing the variance of the overall outcome.

Also the ANCOVA indices in Figure 13 resemble the ones from Case 2. In the case at

hand, X3 gains a non-zero correlative index AC
3 due to constant correlation to X1. The

slight alteration is due to the change in the total variance for different values of ρ12. The

interactive index is still constantly at zero, resulting in a first order index A3 = AU
3 +AC

3 ,

that is larger than before. Like in the related case, the interactive indices are zero, or just

negligibly small. The correlative index AC
1 lies comparably higher since it now includes

correlation to X3, AC
2 shows the same values as in the related Case 2. The behaviour of

September 20, 2018 - 45 -



Global Sensitivity Analysis with Dependent Inputs

the uncorrelated indices is the same. The resulting first order indices now lie at different

values with respect to their Kucherenko counterparts.

Case 5 Varying correlation between X1 and X3 and positive correlation between

X1 and X2:

ρ =


1 0.5 ρ13

0.5 1 0

ρ13 0 1

 − 0.85 < ρ13 < 0.85 (72)
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Figure 14: Interactive Model Case 5: Sensitivity indices for different values of linear
correlation between X1 and X3

As in the previous case, the Kucherenko indices in Figure 14a resemble the ones from an

already investigated case, this time Case 3. Index K1 lies higher due to correlation and

KT
1 is lowered, the same explanation applies as in Case 4. Nevertheless, for correlation

values between −0.6 and −0.1 the total index lies above the first order index, indicating

a stronger effect of the interaction than the correlation. K2 lies notably higher due to

the constant correlation to X1 whereas its total index falls below it indicating stronger

correlation effects for X2. The values at the extremes can again be explained by assuming

the behaviour of the total variance. For |ρ13| → 1, a positive product X1X2 is more likely

to be added to a positive X3. In contrast, for negative correlation, a negative product

X1X2 is likely to be added to a positive X3 and vice versa. Thereby the total variance is

decreased and the constantly correlated X2 gains the most influence.

The ANCOVA indices of X3 in Figure 14b are almost equal to the ones in Case 3, differ-

ences are most likely due to a shift in the total variance Var[Y ]. The uncorrelated indices

of X1 and X2 are also similar to before. Also, all interactive indices are zero. However,

due to the constant correlation to X1, AC
2 is now non-zero and the resulting A2 is larger,
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displaying the fact, that X2 gained influence through correlation with X1. The same ap-

plies for X1: due to the constant correlation ρ12 = 0.5 its correlative index AC
1 now lies

above AC
3 .

4.6 Discussion of the low complexity models

The models in Sections 4.2 - 4.5 show several properties of the two sensitivity mea-

sures under scrutiny. The projector model reveals fundamental differences between the

ANCOVA and Kucherenko indices. On the one hand, the ANCOVA indices favour the in-

dependent, structural contributions of the variables. A variable that does not contribute

in this way is regarded as unimportant for the total variance. If the model itself does

not change in terms of structure, interactions and the variables keep their dependence

structure, the ANCOVA indices stay the same. On the other hand, the Kucherenko in-

dices represent the apparent influence of variables. As shown by the projector model,

depending on correlation with X1, the variance of X2 was coupled with the total vari-

ance, giving the appearance of influence. For the case of ρ12 = 1, K2 is as large as K1 but

since Var[Y ] = Var[X1], a reduction of Var[X2] does not reduce the total variance. Nev-

ertheless, independent variables receive identical first order indices from both methods,

even if correlation between other variables is present in the model (see X1 in Figure 10,

X3 in Figure 11 and X2 in Figure 12).

In principle, interactions will increase the total index KT
i whereas correlation increases

the first order index Ki and decreases the total index at the same time. These observa-

tions enable one to explain several behaviours in the Kucherenko plots above. However,

in additive models the total index can exceed the first order index in presence of cor-

relation (see Figures 10a and 12a). Such unusually high values of Kucherenko indices

happen often for ρ slightly smaller than 0. Kucherenko et al. (2012) offers analytical

expressions of the indices for the model in Eq. (61). A proper explanation in terms of

correlation and interaction was attempted in Section 4.4. It is assumed by the author of

this thesis, that correlation causes an “additive interaction” effect between variables.

The ANCOVA indices offer a detailed split of the first order indices. Notably, in case

of correlation, they do not behave like their Kucherenko counterparts. One reason is

that negative linear correlation leads to negative covariance and consequently negative

values of AC
i . Those counteract (by definition) positive values of AU

i . Another reason is

that due to the setup of the PCE and the definition of the ANCOVA indices, for models

with hardly any interaction effects, the ANCOVA first order indices always add up to one

(see Section 4.3 and 4.4). Also important to note is that the interactive indices AI
i are

not to be confused with higher order Sobol’ indices. For zero correlation, those terms

do not exist (see Table 11). In presence of correlation, those terms depict the covariance

betweenMi(xi) and
∑

i∈uMu(Xu), resulting in a “first order interaction and correlation
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coefficient” that can be very small (see Section 4.5 Case 2). Finally, the sum of the effects

Ai = AU
i +AI

i +AC
i must not be looked at isolated, the benefit of these indices lies in the

split of information they provide.

4.7 Ishigami Function

As a further step in complexity, the Ishigami function in Eq. (73) is tested. This function

is a benchmark application example in sensitivity analysis, since it includes strongly non-

linear, non-monotonic terms, multiple variables, two of which interacting, and different

coefficients for the addends. The coefficients are chosen according to Kucherenko et al.

(2012) to be a = 7 and b = 0.1. The variables are all uniformly distributed between

−π and π: Xi ∼ U(−π, π), i = 1, 2, 3. The same dependence as in the reference paper

is applied, namely the linear correlation ρ13 is varied from −1 to 1 through a Gaussian

copula (see Eq. (74)). In this case, where the marginal distributions are not Gaussian,

the linear correlation matrix does not equal the copula parameters anymore. To go from

one to the other, a transform has to be applied. For different values of copula parameters,

X1 and X3 were sampled and their linear correlation coefficient was computed. Using

linear interpolation, the transformation function is built. As can be seen in Figure 15, the

two correlation values are very similar.

Y =M(X) = sin(X1) + a sin2(X2) + bX4
3 sin(X1) (73)

ρ =


1 0 ρ13

0 1 0

ρ13 0 1

 − 1 < ρ13 < 1 (74)

The Kucherenko indices in Figure 16a match the values in Kucherenko et al. (2012). It

can be seen that K2 equals KT
2 for all values of ρ13. This is to be expected because X2

does not have interaction nor correlation, only structural influence. At zero correlation

the indices equal their Sobol’ equivalents, with K1 at 0.3, K3 at 0 and KT
1 and KT

3 larger

than the according first order indices due to interaction. Interestingly, the total indices of

X1 and X3 dive below the respective first order indices at the same value of |ρ13| = 0.6.

At this point the correlation is stronger than the interaction effect. The more or less

constant value of K1 indicates that the first order index of X1 is not affected strongly by

correlation. In contrast, the first order effect of X3 is negligible for ρ13 = 0 and grows

stronger for increasing |ρ13|. At the extremes |ρ13| = 1, but practically everywhere, X2

influences the variance of Y more than X1 or X3. In fact, here X1 and X2 contribute 1/3

of the model variance, while X2 causes 2/3. This is due to the high coefficient the term
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Figure 15: Relationship between the linear correlation coefficient and the Gaussian cop-
ula parameter for uniformly distributed marginals
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Figure 16: Ishigami function: Sensitivity indices for different values of linear correlation
between X1 and X3

sin(X2) is multiplied by. Nevertheless, for the interval −0.33 < ρ13 < 0.33 X1 has the

largest influence on the output variance.

The ANCOVA indices in Figure 16b show the same behaviour of the first order index of

X2, which is represented by AU
2 (and therefore A2). Also, the first order index of X1

is very similar to the one from Kucherenko but split up into different components. One

can see that the uncorrelated index of X1 grows for an increase in |ρ13|. The increase

of AU
1 and AU

2 for growing correlation |ρ13| → 1 leads to the assumption, that the total

variance decreases, consequently enlarging the ratio
Var[MHDMR

i (Xi)]

Var[Y ]
, i = 1, 2. This is

indeed the case: for |ρ13| = 1 one obtains Var[Y ] = 9.5, while for ρ13 = 0 one obtains

Var[Y ] = 13.7. The interactive effect index AI
1, which also includes the correlation effect

between X1 and X3, is strongest for extreme correlation values but mostly close to zero.

Overall, the variation in AU
1 and AI

1 more or less cancel out and the first order index of
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X1 stays constant at 1/3. The indices of X3 are constantly at zero, displaying the fact,

that it has no independent, structural influence, since the term including X3 is weighted

by µ1 = 0.

4.8 Structural truss model

As an application of the methods, an FEM model of a truss structure was used. The

description of the geometry and the input variables is shown in Figure 17, where the

properties of the bars in the lower and upper chord (E1, A1) are assumed different from

the diagonal bars (E2, A2). The code is a MATLAB-based finite-element solver calculates

the midspan deflection u. The model and the loads with their distributions and parame-

ters are already implemented into UQLab and are used unaltered for the set up of the PCE

for ANCOVA and the double loop for Kucherenko’s indices. There exist 10 input variables

(Lee and Kwak, 2006; Blatman and Sudret, 2011):

• the Young’s moduli of the two types of bars in Pa:

{E1, E2} ∼ LN (2.1 · 1011, 2.1 · 1010) ,

• the cross sectional areas in m2: {A1, A2} ∼ LN (2.0 · 10−3, 2.0 · 10−4)

• and the six loads Pi, i = 1, . . . , 6 in N : {Pi} ∼ G(5.0 · 104, 7.5 · 103), i = 1, . . . , 6 .

Figure 17: Situation of the truss loaded by P1 − P6

Case 1 No correlation First the sensitivity analysis is done for no correlation between

the variables, to get a idea of the variance contributions. The Sobol’ indices are displayed

in Table 12.

It is clear that the properties of the chords (E1, A1) are the most important with indices

Si = 37%, whereas the web elements hardly influence the variance of the midspan deflec-

tion. Moreover, the loads that are closer to the midspan contribute more to its variance.

Still, the central loads P3 and P4 only contribute 7.7%. Since Si = ST
i , i = 1, . . . , 10,

interactions between variables seem not to have great influence on the variance of the

midspan deflection.

Case 2 Correlated loads In reality, point loads do not exist. A load is normally applied

on a certain area or, in the two-dimensional case, on a width. However, the truss model
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only considers point loads on the given nodes. In order to combine the two (distributed

loads in reality with point loads in the FEM model) the loads are correlated. As a result, a

high load on one node will imply tendentially higher loads on close nodes. The important

parameter in this coupling is the distance between the nodes. The given correlation

values are assumed to be the Gaussian copula’s parameters and not linear correlations

between the Gumbel distributed load variables. In fact, a numerical analysis on the two

correlation parameters (see Figure 18) has shown, that for positive correlation values the

both measurements are virtually identical. Since the chosen correlation coefficients are

positive, they are set to be the Gaussian copula’s parameters without transformation. The

correlation matrix is set up using an exponential correlation kernel, to ensure a positive

definite correlation matrix. The correlation of the two loads at the nodes i and j is given

by:

ρij = e−
dij
λ , (75)

where dij is the distance between the nodes and λ is a correlation length. With dij = 1 ·n,

where n is the amount of nodes from i to j, and λ = 3 the correlation matrix of the loads

reads:

ρ =



1 0.72 0.51 0.37 0.26 0.19

0.72 1 0.72 0.51 0.37 0.26

0.51 0.72 1 0.72 0.51 0.37

0.37 0.51 0.72 1 0.72 0.51

0.26 0.37 0.51 0.72 1 0.72

0.19 0.26 0.37 0.51 0.72 1


, (76)

giving a correlation coefficient of 72% for neighbouring nodes, which is assumed to be

reasonable.

As mentioned in Section 3.6, the FEM’s code evaluation time for the double loop of

lengths 103 (totally 106 model evaluations) is 4.5 hours. In order to improve the estima-

tion and keep the evaluation time within realistic bounds, a PCE is set up on 200 samples

and used as cheap-to-evaluate structural surrogate. To give a reference, the time needed

for the set up of such a PCE and 1,000,000 model runs is about 170 seconds. This is a

considerable reduction of computation time.

The estimation of the ANCOVA indices is, as for the other models, based on evaluations

on 106 samples. For the Kucherenko indices also the same loop sizes as for the other

models, twice 104, are applied. The calculation took 1.5 hours and the resulting indices

are presented in Table 12.

The Kucherenko indices distribute importance differently in this case. While the material

properties still get about the same indices, the loads gained a lot of importance through

correlation. The central loads now have first order indices over 50% and even the out-
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Table 12: Sensitivity indices of the truss model. Sobol’ indices for Case 1 without corre-
lation and Kucherenko and ANCOVA indices for Case 2 with correlated loads.

Independent case Dependent case

Variables Si ST
i Ki KT

i Ai AU
i AI

i AC
i

E1 0.368 0.373 0.351 0.365 0.243 0.243 0 0

E2 0.012 0.012 0.013 0.013 0.008 0.008 0 0

A1 0.366 0.372 0.371 0.380 0.243 0.243 0 0

A2 0.012 0.012 0.013 0.013 0.008 0.008 0 0

P1 0.005 0.005 0.247 0.003 0.023 0.003 0 0.012

P2 0.037 0.038 0.431 0.012 0.084 0.025 0 0.060

P3 0.077 0.077 0.567 0.026 0.139 0.051 0 0.088

P4 0.076 0.077 0.568 0.027 0.138 0.051 0 0.088

P5 0.036 0.036 0.430 0.012 0.083 0.024 0 0.059

P6 0.005 0.005 0.259 0.002 0.023 0.003 0 0.020

ermost loads get about 25% each. Those are much higher numbers than before. The

smaller total indices of the loads also indicate a strong presence of correlation. Since the

Sobol’ indices suggest little to no interaction effects in the model, the first order indices

can be regarded as a good measurement of importance. However, since the total indices

get significantly enlarged by correlation, their sum is obtained as
∑

iKi = 3.25. The

indices do definitely not represent shares of the total variance anymore.

The ANCOVA indices show a similar picture in terms of ranking of the variables. The

loads closer to the midspan contribute more, but overall the loads have higher indices

than in the uncorrelated case. However, the properties of the chords still seem domi-

nant for the variance of the deflection. Notably, the uncorrelated indices AU
i show values

similar to the uncorrelated ones, highlighting that additional importance arises from the

added correlation measured in AC
i . The interactive effects are negligible. It was already

observed that interactions hardly influence the variance and even if there does exist some

small interaction, the covariance needed for AC
i is often negligibly small (compare Sec-

tion 4.5). Lastly, there is a slight but consistent change observable in the uncorrelated

indices: they are all smaller than their Sobol’ counterparts. Since there are no consid-

erable interaction effects, the sum of the ANCOVA indices should result in 1, as already

discussed in Section 4.6. Since the first order indices of the loads get larger, the others

have to compensate this by getting smaller. The sum
∑

iAi is in fact very close to one.
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Figure 18: Relationship between the linear correlation coefficient and the Gaussian cop-
ula parameter for Gumbel distributed marginals

4.9 Discussion

This section is an extension of the discussion started in Section 4.6. The Ishigami func-

tion in Section 4.7 is an additional step in complexity compared to the Sections 4.2 - 4.5.

Strong non-linearity and interactions coupled with dependence do not allow for analyti-

cal derivations of the partial variances and covariances. But the trends witnessed earlier

are present as well. If interactions exist and the correlation is weak |ρ| → 0, Kucherenko’s

total index is larger than the corresponding first order index. At some point, the correla-

tion effect exceeds the interaction effect and KT
i falls below the Ki. This phenomenon is

observed for positive and negative values of correlation. The Ishigami function even dis-

plays some interactive index AI
1, which is rare to see. Interestingly the index is negative

for both positive and negative values of correlation. Comparing the two plots, the similar

behaviour of K2 and A2 can be seen.

The truss model in Section 4.8 with ten input variables of various marginal distributions

serves as an application of the methods on a real computational code. Two important

things are to note here. First, complex computational codes take a long time to evaluate.

The time needed can quickly exceed realistic time spans available for an analysis. The

exploitation of a surrogate model via PCE provides a way to calculate the double loop

Monte Carlo estimation of Kucherenko’s indices with sufficient accuracy but in compara-

bly no time. Second, respecting dependence may lead to different allocation of sensitivity

importance. The significance can be easily demonstrated by putting the example into

context.

Imagine the truss is the structural system of an old bridge over a small river in a rural

area. As part of the renovation of the road, the safety of the bridge is assessed. The local
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construction office produces an FEM code of the structural system with measurements of

the input variables such as in the previous section. It turns out that the expected midspan

deflection is not too large. However, the variance caused by the uncertainties in the inputs

may lead to an excess of the set limit and suspended load of the river might get stuck.

In order to decrease the variance, a global sensitivity analysis is performed. They use a

software to get the Sobol’ indices, notably for independent loads. It turns out, that the

main sources of variance are the uncertainties in the material properties. Manipulating

the loads would have been feasible, but since it has apparently no strong effect, this

is not an option. Instead, two possibilities remain: either the material properties are

standardised by replacing or reinforcing elements or tearing the bridge down and build

a new one. Either way, the measure is expensive, cumbersome and the bridge might be a

construction site for some time.

If the GSA would have been done for dependent loads, the results would be different.

Remember how and why correlation was set up. In fact, it is a more realistic representa-

tion of the loads. For either, the Kucherenko or ANCOVA indices, the significance of the

loads would become apparent. A reduction of the load variance would, in fact, lead to

a decrease of the total variance. Moreover, this is easy to accomplish by allowing only

one direction to drive at the time. Because dependence is considered and included in the

analysis an effective but much cheaper measure to reach the goal has been found.

Another question that needs to be answered at this point, is which priorisation is now

correct. Kucherenko’s indices elect the central loads as most important, whereas the

ANCOVA indices still select the material properties. In a quick study, once the variance of

P3 and once the variance ofA1 were decreased by 50%. The decrease of the sectional area

variance lead in fact to a greater decrease of the total variance. This indicates that the

balancing of the ANCOVA indices leads to a correct ranking of the indices. Kucherenko

indices of correlated variables might exceed the ones of independent, but factually more

important variables.

September 20, 2018 - 54 -



Global Sensitivity Analysis with Dependent Inputs

5 Conclusion and Outlook

The development and application of computational models has become crucial in academia

and industry. They allow the explanation of phenomena in mathematical terms and are

used to make predictions. However, in practice every variable in a mathematical formula

represents an event with an expectation value and a variance. As a result, the output of

the mathematical model is also tainted with uncertainties. The goal of global sensitivity

analysis is, on one hand, to simplify those models by fixing unimportant variables that

do not influence the variance of the model output and, on the other hand, to find the

important variables for the total variance, in order to reduce it. For models with inde-

pendent input variables, well established sensitivity measures are the Sobol’ indices Si
and ST

i . Those so-called sensitivity indices are commonly interpreted as follows: a large

first order index indicates a strong structural influence of the corresponding variable on

the total variance. If a variable interacts with other variables within the model, its total

index increases and exceeds the first order index. The total index is never smaller than

the first order index since it is the sum of the first order index and higher order indices.

All of those are ratios of variances and therefore must be positive. In order to reduce the

total variance, it is usually rewarding to reduce the variance of the one variable with the

largest total index.

In the context of this thesis another effect comes into play, namely dependence between

input variables. There exist various approaches to handle this situation, all leading to dif-

ferent indices, that are sometimes hard to interpret. Kucherenko et al. (2012) and Caniou

(2012) both formulated generalisations of the Sobol’ indices for dependent inputs. The

first formulates them as expectation values. Those can be computed in a double loop or

with an estimator for the inner loop and, consequently, just one loop. The second utilises

an HDMR set up for the case of independence to modify the ANOVA to work for depen-

dent inputs, resulting in the so-called ANCOVA. In case of independence, both methods

yield the Sobol’ indices. Those methods have been implemented into MATLAB using the

UQLab software, which was developed at the ETH Zurich, and validated.

In Section 4 the two methods are applied on mathematical models of increasing complex-

ity and different cases of dependence, which is modelled by correlation between variables

and a Gaussian copula. Using low complexity models, the occurring effects are isolated

and the changes in the indices can be explained and understood. Following, the methods

are applied on a more complex function and an FEM code of a truss, simulating a real life

application of the methods. In the discussions, the behaviour of the indices is analysed

and explained as far as possible. The ANCOVA indices Ai are based on independent,

structural contributions of the variables in the HDMR and are formulated for first order

effects, which they split up into uncorrelative, interactive and correlative contributions.

The uncorrelated index AU
i represents the structural role of the variable in the model.
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The interactive index AI
i is a “first order interaction” measure, that for the investigated

models mostly stayed small. It must not be mistaken for an effective interaction measure

such as higher order Sobol’ indices. The correlative index AC
i measures the influence of

a variable on terms it is not included in, thus only by correlation. The indices AI
i and AC

i

are calculated through covariance of specific terms, which results in negative terms for

negative correlation. For models where interaction effects have no influence on the total

variance, the ANCOVA indices add up to 1.

The Kucherenko indices Ki and KT
i represent apparent influences of variables on the

total variance. Even variables without structural role or effective influence on the model

output can be attributed importance through correlation with an influencing variable.

The first order index increases with correlation, whereas the total index decreases. As

long as the total index is larger than the corresponding first order index, the effect of

interaction is stronger than the one of correlation. The case of correlated interactive

variables is interesting. Kucherenko’s indices interpret |ρ| → 1 as an increase of the

first order and decrease of the interactive effects of the correlated interacting variables,

whereas the ANCOVA indices split the effects up, which can sometimes sum up to 0.

It seems as if Kucherenko’s first order index does not allow for a clear split between

interaction and correlation effects, especially for stronger correlation.

The discussion of the truss shows that neglecting dependence can lead to wrong or just

inefficient and costly decisions. It is essential to include dependence, if present, in a

sensitivity analysis. It has to be noted, that the example of the truss was simplified by the

fact that there were no strong interaction effects on the total variance. Interaction effects

are hard to measure for both investigated methods. The total Kucherenko indices KT
i

only inform about the ratio of interaction to correlation effect, whereas the interactive

ANCOVA index AC
i is an interaction effect on first order basis and fails to detect even

strong interaction effects in many cases. At this point, the comparison of the Sobol indices

ST
i − Si still informs the best about present interaction effects. The optimal strategy

proposed by the author is to calculate the Sobol’ and the ANCOVA indices. The first

inform about interaction effects, while the latter can quantify and split up the present

correlation effects. The exploitation of higher order ANCOVA indices to get information

on interaction effects suggests itself at this point.

Global sensitivity analysis, especially with dependent inputs, will undoubtedly only find

broader application, if the calculation and interpretation of the indices is approachable

and clearly defined. This thesis aims to make a step into this direction. Another crucial

obstacle is computation time and therefore cost. The ANCOVA method is set up for an

HDMR and provides fast results for little amounts of model runs. The estimation of

Kucherenko’s indices through the Monte Carlo double loop is computationally extremely

expensive and in general not feasible. In order to bring down this cost the same HDMR

as for the ANCOVA can be used as structural surrogate of the actual model and combined
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with the double loop. The investigation and understanding for multiple dependence

cases for the models was prioritized to the implementation of the Kucherenko estimator.

Nevertheless, the calculation of accurate index estimates is still considerably faster. In the

context of this thesis, polynomial chaos expansions of the models were used since they

are available in UQLab.

Looking ahead, there are many possibilities. For one, Kucherenko’s estimator of the inner

loop can be implemented and compared to the HDMR double loop method. Whichever

method is chosen, both ways to calculate sensitivity indices for dependent input variables

should be implemented into UQLab to make them accessible to more UQ analysts and

researchers. Additionally, the search for a better handling of dependence in sensitivity

analysis continues. The Shapley values (Owen, 2013; Iooss and Prieur, 2017) provide one

possibility, the mentioned approach by Mara et al. (2015) using the Rosenblatt transform

another. The exploitation of higher order ANCOVA indices is also interesting since they

might add information on interaction effects. Overall, this field at the border between

mathematics and engineering still leaves much to be improved and discovered.
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thesis, Université Blaise Pascal, Clermont-Ferrand.

Chastaings, G., F. Gamboa, and C. Prieur (2012). Generalized Hoeffding-Sobol decom-

position for dependent variables – application to sensitivity analysis. Electronic Journal
of Statistics 6, 2420–2448.

Cramer, E. and U. Kamps (2017). Grundlagen der Wahrscheinlichkeitsrechnung und Statis-
tik. Springer Spektrum, 4th edition.

Ferretti, F., A. Saltelli, and S. Tarantola (2016). Trends in sensitivity analysis practice in

the last decade. Science of the Total Environment 568, 666–670.

Homma, T. and A. Saltelli (1996). Importance measures in global sensitivity analysis of

non linear models. Reliab. Eng. Sys. Safety 52, 1–17.
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Pascal, Clermont-Ferrand, France. Habilitation à diriger des recherches, 173 pages.
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