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            The design processes of aerospace vehicles (e.g., supersonic aircraft, reusable launch 
vehicles, blended wing body airplanes) enable the handling of uncertainties (e.g., modeling 
uncertainties, environmental variabilities) directly in a coupled framework. This offers the possibility 
to estimate the impact of these uncertainties on the overall vehicle performance (e.g., consumed 
fuel, covered range). One of the key steps of this kind of approaches is relative to the uncertainty 
propagation techniques. These methods are often computationally intensive and an active research 
field consists in developing uncertainty propagation approaches while limiting the associated 
computational cost. Classical approaches used for uncertainty propagation are suited for scalar 
output variables (for instance lift or drag coefficients). Within the context of aerospace vehicles, 
some quantities of interest (e.g., temperature, pressure) are not scalar but consist of fields 
distributed all over the vehicle surfaces (over the mesh vertices).  

 

Figure 1 : pressure field for a reusable launch vehicle (ONERA project HERACLES) 

Being able to estimate uncertainty measure over a field is very valuable for the design of 
aerospace vehicles. For instance, determining a quantile of temperature field over some specific 
surfaces (e.g., canards, wings) would help to design appropriate thermal protections for a winged 
reusable launch vehicle. When the quantities of interest are fields, uncertainty propagation 
techniques are more challenging due to the dimensionality of the problem (aleatory field over a 
mesh) and some barriers need to be alleviated. 

In this PhD thesis, different research tracks will be investigated, by coupling machine 
learning, model order reduction (e.g. Karhunen-Loeve decomposition [4]) and surrogate models 
(e.g., polynomial chaos [5,6], Gaussian process [7]). However, the usual uncertainty propagation 
techniques require a large amount of data (generation of fields for numerous uncertainty 
realizations) which is impossible to get in practice due to the computational cost of the simulation 
codes (e.g., Computational Fluid Dynamics, Finite Element Analysis). Moreover, to limit the 
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computational cost of the design process of aerospace vehicles, engineers usually have to choose 
between different models for the involved physical phenomena resulting in a trade-off between 
computational cost and accuracy of the model (fidelity). Therefore, a low-fidelity model will have a 
limited accuracy but a low computational cost whereas a high-fidelity model will have a high 
precision but a large computational cost. An active research field consists in developing multi-fidelity 
techniques that aggregate different models of different fidelities to limit the associated computational 
cost while providing an accurate prediction of the exact high-fidelity model.  

In this PhD thesis, the objective is to develop a new methodology that combines multi-fidelity 
techniques [7,8], uncertainty propagation approaches and machine learning methods. Recently, in 
the literature [7,8,9,10], different approaches combining model order reduction (Rank revealing QR 
decomposition, Karhunen-Loeve) and multi-fidelity surrogate models have been proposed but 
without investigation of a strategy to control the error associated to these approximations in the 
uncertainty propagation. Therefore, one of the key elements not investigated in the literature will 
consist in defining « active learning » methodologies. These latter are adaptive techniques for 
machine learning to refine the multi-fidelity surrogate model to control the accuracy of the 
uncertainty propagation over a field while handling the associated computational cost.  

Following existing works at ONERA [1,2,3], a deep review in the literature of the most suited 
uncertainty propagation techniques over a field with respect to the new problematic of multi-fidelity 
will be carried out. Then, the objective of the PhD thesis will be to define new methodologies using 
machine learning to create a multi-fidelity surrogate model for the propagation of uncertainty over a 
field. Application case will cover aerospace vehicle design such as reusable launch vehicles. 
 
For that purpose, the PhD thesis will follow these steps:  

• State of the art of uncertainty propagation techniques for field output using machine learning 
with an application to multi-fidelity, 

• Development and implementation of a multi-fidelity strategy for uncertainty propagation over 
a field, 

• Application of the proposed methodology on the design process on aerospace vehicles. 
 

This thesis is in collaboration with R. Le Riche (CNRS) and B. Sudret (ETH Zürich). 
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