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Abstract

In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the
required computational time to assess the specific absorption rate (SAR) characterizing the human exposure
to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can
request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be
analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is
surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design
of experiments. Considering a sparse representation of the polynomial chaos expansions using least-angle
regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use
the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross
validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model.
The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and
then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell
device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a
classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances
than the two other approaches. A significant accuracy improvement is observed compared to the ordinary
Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an
optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed
on the LARS-Kriging-PC model of the fetus exposure problem.

Keywords: polynomial chaos expansions, Kriging, least-angle regression, dosimetry, specific absorption
rate

1. Introduction

The wireless communications are nowadays intensively used, in spite of these heavy usages the risk
perception about possible health impacts of the exposure to electromagnetic fields (EMF) is still important.
Monitoring the exposure is therefore a key question for local authorities and health protection agencies,
as well as manufacturers and network providers. Protection standards have been designed to ensure the
compliance of wireless devices to the existing protection limits. To achieve this objective, worst case scenarios
are used, but they are not suitable to assess comprehensively the real exposure induced by wireless devices
that are nowadays used in versatile ways.

Over the last 20 years, large efforts have been carried out to improve dosimetry and in particular by
developing computational methods. As an example, the numerical method known as Finite-Difference Time-
Domain approach (FDTD), that does not requires any matrix inversion, [1] has proven efficient to calculate
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the Specific Absorption Rate (SAR) that characterizes the absorption of waves by a human body or a part
of it (e.g. the brain) [2, 3, 4]. Despite the large effort carried out for the reduction of the computation time,
the numerical SAR analysis remains a computationally expensive procedure. Moreover, the increasingly
versatile use of wireless technologies motivates the analysis of the influence of the input parameters variability
(e.g. position and type of sources) on the SAR computation. Consequently uncertainty quantification in
dosimetry is a true challenge and uncertainty propagation techniques as well as computer experiments have
become important topics, as in several other disciplines of engineering and natural sciences. In this paper
the exposure induced by a 3G femtocell device is estimated for a numerical model of a pregnant woman
developed in two collaborative projects called FEMONUM and FETUS [5, 6]. The challenge here is to study
the influence of the uncertainty on the position of the femtocell device position in the room space onto the
fetus exposure.

Because computer simulation in dosimetry is time consuming, the uncertainty propagation issue cannot
be addressed by a classical approach such as crude Monte Carlo simulation. Thus, more advanced statistical
methods have to be resorted to. Surrogate models (a.k.a. metamodels) have emerged in the last decade
as powerful statistical methods that allow one to emulate the output of a complex computational model.
Of great interest here are the so-called polynomial chaos expansion [7, 8, 9] and Kriging (a.k.a. Gaussian
process modeling) [10, 11, 12].

On the one hand, the polynomial chaos (PC) theory has originally been introduced by Wiener in the
case of Gaussian random input variables as the finite-dimensional Wiener polynomial chaos [13]. The output
in PC theory is explicitly expressed in a suitable space with a basis constituted of multivariate Hermite
polynomials that are orthogonal with respect to the joint probability measure of random input variables.
This expansion was later extended to other types of random variables with different basis polynomials [14, 15]
leading to the so-called generalized polynomial chaos expansions (gPCE). A major work has been achieved in
the direction of the so called intrusive methods and more particularly the spectral stochastic finite elements
method [7, 16] that uses a combination of the Karhunen-Loeve expansion with the finite element method
(FEM) for physical systems modeled by elliptic linear boundary-value problems. As an alternative, non-
intrusive methods appeared in this domain which rely upon solving a number of deterministic problems
with different values of the model input vector. In this non-intrusive scope, two approaches are classically
distinguished:

• The projection method [17, 18] that uses the orthogonality of the polynomial basis to compute the
coefficients by Monte-Carlo simulation or quadrature.

• The regression method [8, 19] that is based on the least-square minimization of the error between the
model output and its approximation.

In the regression approach, several kind of truncation schemes of the PC expansion have been studied. A
classic full truncation has been studied in [20], that has the drawback to require a dramatically increasing
number of model evaluations when the dimensionality (i.e. the number of input parameters in the model)
increases. To circumvent this issue, some sparse representations of the truncation have been studied in
[8, 9] in order to reduce the computational cost. Particularly, in [9], the least-angle regression (LARS)
[21] algorithm is employed to keep in the truncation only the most influential polynomials. Similar sparse
representations have been recently obtained using compressive sampling algorithms [22, 23]

On the other hand, the universal Kriging theory has been introduced by Matheron [24] in the field of
geostatistics as a tool to interpolate discrete data considered as points of a random field trajectory. Later,
this approach has been widely used in computer experiment domain [25, 10, 11, 12], sequential design of
experiments [26, 27, 28] and global optimization [29]. Because of the lack of a priori knowledge about the
output, the Kriging model is often used in its basic configuration known as ordinary Kriging.

It is important to point out that the research communities developing polynomial chaos expansions
and Kriging models are essentially different. To our knowledge, no formal link has been established so far
between these procedures. In this respect, this paper proposes to combine the least-angle regression (LARS)
[21] selection algorithm used in a polynomial chaos basis [9] and universal Kriging to obtain a new family
of optimized surrogate models. This approach has similarities with the so-called blind-Kriging approach
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Figure 1: Numerical anatomical model of a 26-week-pregnant woman

developed in [30] but differs by the selection algorithm and the use of a polynomial chaos basis. The paper
is organized as follows: in Section 2, the exposure assessment methodology is introduced, and the numerical
anatomical model in which the SAR is computed is presented. In Section 3 we summarize both polynomial
chaos expansion and universal Kriging approaches. In Section 4, we introduce our hybrid method which is a
combination of the two previous ones. In Section 5, we apply the proposed approach to analytical examples
and finally to the case study of a fetus exposure to EMF.

2. Exposure assessment

2.1. Exposure quantification and anatomical models
The human exposure is quantified by using the Specific Absorption Rate (SAR) expressed in W/kg:

SAR =
σE2

2ρ
(1)

In this equation σ is the conductivity of human tissue and ρ is its mass density. E is the modulus of the
electric field induced in the tissue. In this paper, the exposure assessment of a pregnant woman model at the
26th week of amenorrhea (WA) is performed. The fetus model was built from the segmentation of ante-natal
images [5]. Then the obtained fetus model was inserted in a Deformable Synthetic Woman (DSW) which is
initially based on a homogeneous woman model with additional basic tissues such as skin, fat, muscle and
bones. This pregnant woman model was then deformed using a deformation software [31] in order to give
her a seated position and the arms raised as if she was typing on a computer keyboard (see Figure 1).

2.2. Incident Field
Let us consider a voxelized domain D ⊂ R3 which contains the anatomical model of the pregnant woman

Dpw, of the fetus Df and the surrounding air Da, such that Da
⋃Df

⋃Dpw = D. The electromagnetic
field (EMF) is computed within D over a time interval [0, T ] using the Finite-Difference Time-Domain
numerical method (FDTD) which has been intensively used in the past and has shown its efficiency for the
EMF computation [1, 2, 3, 4]. In this study, T = 1.5 · 10−8s and the time step used in the finite-difference
algorithm is ∆T = 3.75·10−12s ensuring the convergence of the explicite scheme of the numerical method. To
avoid spurious reflection at the boundary ∂D of the domain D, a perfectly matched layer (PML) [32] is used.
In this paper, the EMF source is a femtocell device. Femtocells are wireless access points offering reduced
radio coverage in 3G and 4G frequency bands. These devices are designed to operate in the vicinity of users
(distance of few meters). A photography of the femtocell device used in this paper and its internal view are
presented in Figure 2. Basically, this source would have to be modeled inside the domain D. However, being
at a few meters distances from the anatomical model, the computation time and the memory request which
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Figure 2: External and internal viexs of the considered femtocell device.

are already important may become impracticable because of the resulting huge size of D. To circumvent
this issue, let us define a domain Dhb called Huygens Box such as Dpw ⊂ Dhb ⊂ D. Using the equivalence
principle [33, 34], equivalent EMF sources are computed on the boundaries of the Huygens Box ∂Dhb as the
result of the spherical wave theory [35] that is used to express the EMF emitted by the femtocell device in
whole free space by Eq. (2) and Eq. (3):

E(r, θ, φ) =
k√
η

2∑

s=1

∞∑

n=1

n∑

m=−n
QsmnF smn(r, θ, φ) (2)

H(r, θ, φ) = −ik√η
2∑

s=1

∞∑

n=1

n∑

m=−n
QsmnF 3−s,m,n(r, θ, φ) (3)

where E(r, θ, φ) and H(r, θ, φ) are the electric and magnetic field vectors expressed in the spherical coor-
dinates system (r being the radius between the antenna and the computation point, θ the elevation angle
and φ the azimut angle), k and η are respectively the propagation constant and the specific admittance,
Qsmn and F smn are the coefficient and spherical wave function (or spherical mode) of index s, order m
and degree n. Spherical modes constitute an orthogonal basis of the EMF space. For a given antenna,
these equations provide a formulation that fully characterizes the EMF emitted by the antenna in whole
free space. In practice, the sums in Eq. (2) and Eq. (3) will always be truncated following empirical rules
detailed in [35] such that the number of retained modes is large enough for ensuring convergence. Using
the near-field measurements methodology described in [35], coefficients Qsmn have been measured for the
3G femtocell antenna at the frequency 2100 MHz. As explained before, with this description of the emitted
EMF, the equivalent sources of the Huygens Box Dhb may be computed through the equivalence principle
[33, 34]. Then the size of the domain D and thus the computational time can be considerably reduced (i.e.
approximately the same size than Dpw and Dhb). Despite the gain achieved by using this methodology, a
single simulation remains time-consuming and can take up to 2 hours on a parallelized GPU architecture.

Finally, the output is the whole-fetus-body SAR which is obtained by dividing the total absorbed power
in Df by the total mass of tissues within Df :

WFBSAR =
Pabs(Df )

M(Df )
=

∑
v∈Df

σ(v)E(v)2

2
∑
v∈Df

ρ(v)
(4)

v representing a voxel of the domain D, and E(v), ρ(v), σ(v) being the electric-field modulus, the mass
density and the conductivity computed in v, respectively.

2.3. Uncertainty propagation issues
Assessing the fetus exposure, the challenge is to evaluate the influence of the uncertain location of

the femtocell device in the space onto the whole-fetus-body SAR. Thus, four input parameters potentially
influencing the output are defined (see Figure 3):
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Figure 3: Geometrical input parameters for the uncertainty quantification related to the fetus exposure.

• The three cylindrical coordinates, namely r, φ, z, which describe the spatial location of the antenna
in a system centered on the pregnant-woman body.

• The rotation angle α of the antenna with respect to the vertical axis.

In this analysis, the input parameters are considered as independent. The challenge is here to propagate the
uncertainty in these input parameters through the physical model Huygens Box/FDTD and to analyze the
influence of the latter onto the output variable (whole-fetus-body SAR). As explained in the introduction,
crude Monte Carlo simulation is impracticable to manage the uncertainty propagation issue because of the
high computational cost of a single SAR simulation. Consequently, building a surrogate model for the whole
fetus body SAR from a limited number of model evaluations seems to be an appropriate approach to address
the uncertainty propagation issue.

3. Surrogate modelling

Let us consider M input parameters x = {x1, ..., xM}T ∈ RM linked to a scalar output variable y (the
whole body fetus SAR in the present exposure background) by the deterministic relationship y = f(x)
where f denotes the computational model considered as a blackbox. The function f here corresponds to
the result of a FDTD simulation that computes the SAR depending on a particular configuration of the
femtocell antenna position. Let X ⊂ RM be the space of the input parameters.

3.1. Universal Kriging
The Universal Kriging theory introduced by Matheron [24] in the field of geostatistics considers the

deterministic output y = f(x) as a realization of a stationary Gaussian process Y (x). By denoting Y (x, ω)
a realization of the process Y (x) where ω belongs to the underlying probabilistic space Ω, we obtain the
following formulation:

Y (x, ω) =
P−1∑

k=0

βkψk(x) + Z(x, ω) x ∈ X, ω ∈ Ω (5)

In the above equation ψ = {ψk, k = 0...P − 1} is a collection of regression functions, β = {βk, k = 0...P − 1}
are the regression coefficients and Z is a Gaussian process [10, 11] indexed by x ∈ X. This Gaussian process
is fully characterized by its mean value and its covariance function:

E(Z(x)) = 0 ∀x ∈ X (6)
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C(x,x′) = σ2R(x− x′) ∀{x,x′} ∈ X2 (7)

Here σ2 is the constant variance of the process and R is the so-called autocorrelation function. In the Kriging
theory, this autocorrelation function models the dependence structure between values of the stochastic pro-
cess at different points and its functional form is assumed to be known. Classically, one uses componentwise
anisotropic autocorrelation functions depending on the distance between two points x and x′ ∈ X, that is
relevant when the input parameters have differently strong influences on the output variable. In this paper,
the well-known Gaussian autocorrelation function defined in Eq. (8) is used.

R(x− x′,θ) = exp

(
−

M∑

i=1

( |xi − x′i|
θi

)2
)

(8)

where θ = {θ1, ..., θM} is a vector of correlation lengths that has to be determined. Such an autocorrelation
function ensures that the associated trajectories of the Gaussian process are infinitely differentiable [12],
which is a suitable feature in our case, since the whole-fetus-body SAR evolution depending on spatial
parameters is a very regular phenomenon.

Let us consider a design of experiments of N observations X =
{(
x(1), f(x(1))

)
...
(
x(N), f(x(N))

)}
.

Under the assumptions of the universal Kriging theory, the best linear unbiased predictor (BLUP) for the
output variable Ŷ (x) is defined by:

m̂Ŷ (x) = ψ(x)T β̂ + r(x)
T
R−1(y −Ψβ̂) (9)

where ψ(x) = {ψ0(x), ..., ψP−1(x)}T and β̂ = {β̂0(x), ..., β̂P−1(x)}T are respectively the vectors of the re-
gression functions and estimates of the regression coefficients, r(x) = {R(x−x(1),θ), ..., R(x−x(N),θ)}T is
the correlation vector between x and the points of the design of experiments,R = {R(x(i)−x(j),θ)}1<=i,j<=N

is the correlation matrix of the design of experiments, y = {f(x(1)), ..., f(x(N))}T is the response at the
corresponding points of the experimental design and Ψ = {ψ(x(1)), ...ψ(x(N))}T is the matrix of the regres-
sion functions computed onto the design of experiments. In the formulation of Eq. (9), β̂ is the generalized
least-square estimator:

β̂ = (ΨTR−1Ψ)−1ΨTR−1y (10)

Note that if the regression function ensemble is only constituted of the a constant term, the Kriging model
is called Ordinary Kriging (OK). Moreover, the Kriging theory provides an uncertainty interval to this
estimator of the output variable. Indeed, in Eq. (5), the model error being modeled by a Gaussian process,
the BLUP is itself the mean of a Gaussian process of variance s2

Ŷ
(x):

s2
Ŷ

(x) = σ2

(
1− r(x)

T
R−1r(x) +

(
F TR−1r(x)−ψ(x)

)T
(ΨTR−1Ψ)−1

(
F TR−1r(x)−ψ(x)

))
(11)

The accuracy of a Kriging model is based on the accurate estimation of the hyperparameters θ of its
autocorrelation function. In this paper, the hyperparameters are estimated using the maximum likelihood
approach [11]. Let us recall the likelihood expression of y with respect to its multivariate normal distribution:

L(y|β, σ2,θ) =
1

((2πσ2)N [detR(θ)])1/2
exp

[
− 1

2σ2
(y − Fβ)TR(θ)−1(y − Fβ)

]
(12)

One can show that the simplification of the negative log-likelihood function − log(L) using the estimator
of Eq. (10) leads to an expression that only depends on the hyperparameters θ [36]. Eventually the mini-
mization of this negative log-likelihood function (i.e. the maximization of the likelihood) is reduced to the
minimization of a simpler expression called the reduced likelihood function:

ψ(θ) = σ̂2(θ)[detR(θ)]1/N (13)
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where:
σ̂2(θ) =

1

N
[y −Ψβ̂(θ)]TR−1[θ)(y −Ψβ̂(θ)] (14)

and N is the number of input points. The estimation of θ is therefore defined by the global minimization
of this reduced likelihood function. In this paper, this global optimization problem is treated with the
BOXMIN algorithm of the DACE Matlab toolbox [37] which is a kind of multivariate dichotomy algorithm.
It is important to notice that this optimization algorithm is quite simple, thus its performances can decrease
with increasing number of input parameters M .

The Kriging model has several interesting properties. If the autocorrelation function is continuous, the
BLUP has a prediction variance that tends to zero for all x ∈ X when the number of observation points tends
to infinity [38]. Then, the BLUP interpolates the observations at the points of the design of experiments
and the output stochastic process is Gaussian at each point x conditionally to the observed points:

Y (x)|y ∼ N
(
m̂Ŷ (x), s2

Ŷ
(x)
)

(15)

However, the universal Kriging model can be difficult to build due to the lack of knowledge about relevant
regression functions ψ(x) = [ψ0(x), ..., ψP−1(x)]T . In the literature [39], elaborated regression functions are
used for a Kriging model when one has an a priori knowledge about the evolution of the output variable. For
instance, for some cases, physical laws can provide some assumption about the shape of the output variable.
But without this a priori knowledge, the preferred solution is generally to keep only a constant term and to
build an ordinary Kriging model.

3.2. Polynomial chaos expansions
In the polynomial chaos theory, the uncertainty affecting the input vector x leads to its representation

by a random vector X with prescribed probability density function (PDF) pX(x) in a probability space
(RM ,BM ,PX), BM being the Borel σ-algebra of the event space RM and PX being its probability measure.
Consequently, the output variable is also affected by uncertainty and is denoted by Y = f(X). In the
sequel, Y is assumed to have finite variance and it therefore belongs to the Hilbert space L2(RM ,BM ,PX)
of PX -square integrable functionals of X with respect to the inner product:

E(ψ(X)φ(X)) =

∫

X
ψ(x)φ(x)pX(x)dx (16)

For the sake of simplicity, the input parameters are supposed to be independent, i.e.:

pX(x) =

M∏

i=1

pXi(xi) (17)

where pXi(xi) is the marginal PDF of the random input variable Xi. As Y has finite variance, one can show
that it can be expanded onto an orthogonal polynomial basis [16]. One method to obtain such a basis is to
use multivariate polynomials. The so-called polynomial chaos expansion (PCE) is defined as follows:

Y =
∑

α∈NM

βαψα(X) (18)

Here α = {α1...αM} is the multi-index, βα’s are deterministic coefficients to be computed and ψα’s are mul-
tivariate orthonormal polynomials. The independence of input parameters allows us to construct these mul-
tivariate polynomials as a tensorization of univariate orthonormal polynomials with respect to the marginal
PDFs. Originally, this expansion was formulated for standard normal input parameters with Hermite poly-
nomials [13, 7]. However the same formulation is possible for other types of input PDFs [14] which is known
as generalized PCE. For instance, in the case of uniform PDFs for input parameters in [-1,1], the orthog-
onal polynomials are multivariate Legendre polynomials: considering the orthonormal family of univariate
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Legendre polynomials of degree k :{Lk, k ∈ N} with respect to the uniform PDF [40], the corresponding
multivariate polynomial is obtained by the following tensorization:

ψα (x) =

M∏

i=1

Lαi(xi) (19)

The coefficients of the expansion in Eq. (18) can be computed using stochastic Galerkin techniques [7] or
so-called non-intrusive methods [41]. The projection method belongs to the latter category [17, 20]. This
latter uses he property of orthogonality of the basis polynomials. The principle is to project the expansion
on the subspace defined by the polynomial corresponding to the coefficient βα of interest by using the scalar
product defined in Eq. (16). Estimating the βα’s boils down to an integral computation. In pratice, this
approach implies a high computational cost because the integral calculation needs quadrature schemes based
on Monte Carlo or quasi-Monte Carlo simulations or Gaussian quadrature rules. The second main approach
of estimating the βα’s is the regression approach proposed in [19] based on early ideas by Isukapalli [42]. In
this case, the principle is to truncate the expansion in Eq. (18) to a finite series with polynomials belonging
to an multi-index set A ⊂ NM :

Y =
∑

α∈A
βαψα(X) + ε (20)

where βα’s are approximated as proposed in Eq. (21):

{β̂α,α ∈ A} = arg min
βα∈R

E

[
(
∑

α∈A
βαψα(X)− Y )2

]
(21)

Considering a given design of experiments of N input points with corresponding output values X ={(
x(1), f(x(1))

)
...
(
x(N), f(x(N))

)}
and approximating the expectation in Eq. (21) with these points, the

coefficients of the P = card(A) polynomials kept in the truncation are computed using the ordinary least-
square (OLS) estimator:

β̂ = (ΨTΨ)−1ΨTy (22)

In the latter equation β̂ = {β̂α(0) , ..., β̂α(P−1)}T is the vector of the estimated deterministic coefficients,
Ψ = {ψα(j)(x(i))}1≤i≤N,0≤j≤P−1 is the matrix of polynomials computed at the design points, and y =
{f(x(1)), ..., f(x(N))}T is the response of the original computational model at the corresponding points.
This method requires to define a level of truncation and an iterative design of experiments led by the quality
of the obtained surrogate model. Indeed, for a given design of experiment of N observations, the least-
square resolution suggests that the number P of polynomials kept in the truncation is lower than N and
must be low enough to ensure the well-conditioning of the information matrix [8]. Consequently, for a given
model built from the N -observation design of experiments that requires more polynomials in the truncation
because of its non satisfactory quality, the design of experiments size has to be increased.

Among the possible truncations, the standard one is the full PC truncation [20]. Considering a given
degree p, it consists in keeping in the truncation the polynomials corresponding to the multi-index set
A = {α ∈ NM , |α| ≤ p}, where |α| =

∑M
i=1 αi is the total degree of polynomial ψα. In this case, the

number of polynomials in the truncation is equal to:

P =

(
M + p

p

)
(23)

Here, P increases polynomially with both the degree p of the truncation and the number of input parameters
M . Consequently, the number N of simulation points in the design of experiments can quickly become
impracticable for a high degree p. To address this problem, the truncation scheme can by optimized using
the least-angle regression (LARS) method [9, 21]. This method initially developed in [21] allows one to
create a truncation in which the selected polynomials are those with the most significant impact on the
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model response, i.e. the polynomials that yield the best fit of the metamodel. Consequently, this truncation
provides a sparse representation of the polynomial chaos expansion (Eq. (18)). The selection of polynomials
is iterative and at each step, the current model is extended depending on the correlation of polynomials with
the residual. With this approach, each step of the selection method provides a new extended possible sparse
basis constituted of the most influential polynomials. In the LARS theory, the output is centered and the
predictors are centered and normalized over the input space. Consequently the polynomial of total degree
p = 0 (i.e. the constant term) cannot be part of the selection set. In practice this polynomial is removed
from the selection set and added at the end of the LARS algorithm as the first selected polynomial. The
LARS algorithm is detailed below:

1. Choose a degree p of a full PC truncation that provides a set of P − 1 polynomials according to
Eq. (23).

2. Set the coefficients βα(1) , ..., βα(P−1) to 0 and the initial residual vector r(0) = y.
3. Select the predictor (here a polynomial) ψα(j1) the most correlated with y.
4. Move the coefficient βα(j1) in the direction of the predictor ψα(j1) until the current residual r(1) =

y − β̂α(j1)ψα(j1)(X ) is equally correlated with ψα(j1) and another predictor ψα(j2) .
5. Select this second predictor ψα(j2) and define u(2) as the unit vector bisecting ψα(j1) and ψα(j2) .
6. For k from 3 to min(P,N − 2):

(a) Move β = {βα(j1) , ..., βα(jk−1)} in the direction of u(k−1) until the current residual r(k−1) is
equally correlated with u(k−1) and another predictor ψα(jk) .

(b) Select this additional predictor ψα(jk) and define u(k) as the unit vector bisecting u(k−1) and
ψα(jk) .

7. Add the polynomial ψα(0) of total degree p = 0 to the selected polynomials.

Consequently we obtained L = min(P,N −2) +1 possible basis {ψα(0) , ψα(j1) , ..., ψα(jk)} with k ∈ J1, LK.
The benefit is here to choose P ≥ N − 1 to be able to get polynomials of higher degree and build a sparse
truncation at a time. Then, for each possible basis, the PC coefficients is obtained by computing the least-
square coefficients of the selected polynomials according to the so-called LARS-OLS hybrid method [21].
The LARS algorithm has here only a selection function and is not used to estimate the PC coefficients. As
shown in [21], this method always increases the empirical fit R2. This methodology is the one employed in
[9]. Note that, in contrast with universal Kriging, the polynomial chaos metamodel does not interpolate at
the simulation points.

3.3. Model validation and quality assessment
3.3.1. Quality assessment

In both methods presented above, meta-models are built from designs of experiments. In such approaches,
it is fundamental to assess the quality of the computed surrogate models in order to see how accurate they
are. To extract a global quality from the built metamodels, the following so-called generalization error is
considered:

Err = E
[(
f(X)− f̂(X)

)2]
(24)

where f is the original physical model, f̂ is the predictor provided by the metamodel (the PC truncation or
the best linear unbiased predictor provided by Kriging), X is the random vector defined in Section 3.2 and
E is the expectation operator.

When considering universal Kriging, a classic estimator of this generalization error is the IMSE (Inte-
grated Mean Square Error) [27, 10]:

IMSE =

∫

X
s2y(x)pX(x)dx (25)
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When considering polynomial chaos expansions, a first intuitive estimator is the empirical mean-square error
(MSE) at the simulation points. For the following experimental designX =

{(
x(1), f(x(1))

)
...
(
x(N), f(x(N))

)}

of size N , this empirical MSE reads:

MSE =
1

N

N∑

i=1

(
f(x(i))− f̂(x(i))

)2
(26)

In case of designs of experiments of small size, this MSE estimator is likely to largely underestimate the
actual generalization error. Moreover, these estimators can not be used for both metamodeling techniques
(since Kriging is an interpolator, Eq. (26) would provide a zero value). Thus it will not be used to compare
both method performances.

In this paper, in order to override the underestimation issue and to be able to compare both universal
Kriging and polynomial chaos performances, the Leave-one-out cross-validation technique (LOOCV) is used.
LOOCV is a frequently used method in machine learning to assess the quality of a metamodel and/or to
select the best metamodel among several ones. To perform LOOCV, one point x(i) is taken out of the design
of experiments and the metamodel f̂ (−i) is computed from the design of experiments X \ {(x(i), f(x(i))

)
}.

Then, one can calculate the prediction error at x(i):

∆(i) = f(x(i))− f̂ (−i)(x(i)) (27)

After computing ∆(i) for all x(i) in the design of experiments, the generalization error can be estimated by
the so-called Leave-one-out error (a.k.a predicted residual sum of squares (PRESS)):

ErrLOO =
1

N

N∑

i=1

∆(i)2 (28)

Even if this estimator may be a bit optimistic compared to the actual generalization error, it is much better
than a classical empirical mean-square error and it can be used to assess the generalization capacity of both
universal Kriging and polynomial chaos expansions. If the ErrLOO estimator seems costly to compute,
analytical expressions of this error exist for universal Kriging [43] and polynomial chaos [8] that reduce the
computational cost of this cross validation. For an easier interpretation of this LOO error, a determination
coefficient Q2 can be extracted from it (which is the equivalent of the classic R2 coefficient of the mean-square
error):

Q2 = 1− ErrLOO
σ̂2
y

(29)

where σ̂2
y is the estimated variance of the output variable. Thus, the closer Q2 is to 1, the better is the

generalization capacity of the metamodel.

3.3.2. Model selection
Besides assessing the quality of the predictor, the LOOCV can be used as a model selection approach.

For example, it can be used for the optimization of hyperparameters of universal Kriging autocorrelation
functions instead of the maximum likelihood method [11, 44]. When considering polynomial chaos expan-
sions, LOOCV is used to select the number of LARS polynomials on the truncation that provides the most
accurate metamodel [8]. At each iteration of the LARS algorithm, a LOOCV is performed on the current
truncated polynomial chaos model to evaluate its accuracy. At the last iteration of the algorithm (when all
polynomials in the candidate basis have been used or after N iterations, N being the size of the experimental
design) one selects the model with the highest Q2 among all assessed models, i.e. the best model in terms
of generalization capacity.
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4. Combination of polynomial chaos expansions and universal Kriging

This section introduces a surrogate modeling technique, called LARS-Kriging-PC modeling, that uses
the polynomials selected by the LARS algorithm as regression functions in the universal Kriging formulation
of Eq. (5). As previously explained for universal Kriging, the choice of the regression functions is often based
on an a priori knowledge of the physical evolution of the output variable depending on the input parameters.
Most of the time, only the constant term corresponding to the polynomial of total degree p = 0 is kept as a
regression function to make the Gaussian process evolve around the estimated mean of the output variable
(ordinary Kriging). We propose here to use the generalization capacity of the polynomial chaos expansions
and the ability of the LARS to select the most relevant sparse set of polynomials to build up an optimal
universal Kriging approximation. The purpose of the method is to select polynomials that bring the most
relevant information to the Kriging model. Thus the Gaussian process has to model the residual of the
regression part. The algorithm used to build such a metamodel in this paper is the following:

1. First, build an initial design of experiments of prescribed size and define a target accuracy t;
2. Perform the LARS algorithm using a candidate set of polynomials;
3. Within each step of the LARS algorithm, build the universal Kriging model with the current basis of

polynomials;
4. Perform a LOOCV on each built surrogate model to assess their accuracy.
5. Select the model with the highest capacity of generalization, i.e. the one yielding the highest Q2;
6. If Q2 < t, increase the design of experiments by adding new samples and repeat the algorithm from

the second step.

In this paper, the Latin Hypercube sampling (LHS) method [45] is used to build the initial design of ex-
periments. Then, to enrich the design of experiments, the nested Latin Hypercube sampling technique is
used. The principle of this technique introduced in [46] is to complement an existing LHS design in such a
way that the resulting design keeps its LHS configuration, at least approximately. The benefit of the NLHS
technique in the present situation is to allow one to add new samples in the initial LHS by preserving the
uniformity of the LHS. Indeed the size of a LHS design has to be selected a priori because this sampling is
based on a grid. The NLHS will replace the initial grid by a new one corresponding to the new total number
of points. The new points will be randomly added in empty possible spaces keeping the LHS configuration
of the design. For more details, see [46, 8].

Note that the first chosen LARS polynomial is always polynomial of total degree p = 0. Thus the ordinary
Kriging is the first evaluated model in the algorithm presented above. Consequently, if no polynomial bring
enough relevant generalization capacity to the universal-Kriging approximation, the chosen model will be
the ordinary-Kriging one.

5. Application to analytical examples and fetus exposure

This section is dedicated to the validation of the introduced approach. First, LARS-Kriging-PC, or-
dinary Kriging and classic LARS-PC are applied to three benchmark functions in order to illustrate the
performances of the proposed approach compared to other surrogate modeling techniques. Then, the same
techniques are applied and compared to the fetus exposure data.

As the benchmark functions are fast to evaluate, the accuracy of the metamodels in these cases will be
assessed, using Nm = 100, 000 Monte Carlo simulation points, by the following relative mean-square error:

MSEr =

∑Nm

i=1

(
f(x(i))− f̂(x(i))

)2

∑Nm

i=1

(
f(x(i))− µ̂y

)2 (30)

where µ̂y is the estimated mean of the output variable. As far as the application to fetus exposure is
concerned, the relative error from the LOOCV will be used:

εr =
ErrLOO
σ̂2
y

(31)
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5.1. Sensitivity analysis
From the obtained metamodel, a sensitivity analysis can also be conducted. Thus, the total Sobol’ indices

[47, 48] will be computed from the best linear unbiased predictor of the LARS-Kriging-PC metamodel for
the fetus exposure problem in order to quantify the part of the total response variance that is explained by
each of the input parameters. The Sobol’ indices are computed using the so-called Sobol’ decomposition of
f(x):

f(x1, ..., xM ) = f0 +

M∑

i=1

fi(xi) +
∑

1≤i<j≤M
fij(xi, xj) + ...+ f1,2,...,M (x1, ..., xM ) (32)

In the latter equation, f0 is a constant that corresponds to the mean of the output and each summand
fi1,...,is(xi1 , ..., xis) has the following property:

∫ 1

0

fi1,...,is(xi1 , ..., xis)dxik = 0 k ∈ J1, sK (33)

Eq. (33) ensures the orthogonality of the summands to each other. Considering the random input vector X
of independent uniform input parameters with Xi ∼ U(0, 1), the so-called total variance D reads:

D = V ar(f(X)) =

∫

X
f2(x)dx− f20 (34)

By integrating Eq. (32), the total variance can thus be decomposed into partial variances:

D =

M∑

i=1

Di +
∑

1≤i<j≤M
Dij + ...+D1,2,...,M (35)

Then the Sobol’ indices can be defined:
Si1,...,is =

Di1,...,is

D
(36)

The first order indices Si aim at giving the influence of each parameter taken alone whereas the so-called
total Sobol’ indices STi aim at assessing the total effect of an input parameter. The total indices read:

STi
=
∑

Ii
Di1,...,is (37)

where
Ii = {(i1, ..., is) : ∃k, k ∈ J1, sK, ik = i} (38)

These total and first Sobol’ indices will be computed for the fetus exposure problem using Monte Carlo
simulations as detailed in [47].

5.2. First analytical example: the Ishigami function
The Ishigami function, widely used for benchmarking in global sensitivity analysis [49], is a function

depending on three input parameters {x1, x2, x3} and is expressed as:

f(x) = sinx1 + 7 sin2 x2 + 0.1x43 sinx1 (39)

The input parameters are independent and have uniform distributions over [−π, π]. The initial LHS design
of experiments consists of 40 points that are augmented by the nested LHS technique until 160 points. The
classical LARS-polynomial chaos (PC), the ordinary Kriging and the new LARS-Kriging-PC approaches are
applied. This analysis is replicated 50 times in order to assess the statistical uncertainty, and boxplots of
the errors are shown in Figure 4. The validation error (Eq. (30)) is computed using 100,000 Monte Carlo
simulation points for each surrogate modeling technique and the different numbers of points in the LHS.
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Figure 4: Comparison of LARS-PC, LARS-Kriging-PC, and ordinary Kriging metamodeling approaches for 50 different inital
LHS of 40 points augmented until 160 points by the NLHS technique for the Ishigami function.

Input parameter Range
x1 [0.05; 0.15]
x2 [100; 50000]
x3 [63070; 115600]
x4 [990; 1110]
x5 [63.1; 116]
x6 [700; 820]
x7 [1120; 1680]
x8 [9855; 12045]

Table 1: Range of the input parameters of the Borehole function

Figure 4 shows the results with boxplots presenting the median error, the quartile error values and the
extreme error values of the 50 independent runs. As shown in this figure, the proposed LARS-Kriging-PC
approach performs better, in terms of median value, than the two other approaches. The performance
difference is apparently more significant between LARS-Kriging-PC and ordinary Kriging than between
LARS-Kriging-PC and LARS-PC. However, for a small sample size (i.e. 40 points) the ordinary Kriging
seems to be the least scattered method in terms of performance.

5.3. Second analytical example: the Borehole function
The Borehole function is a benchmark function used for emulation and prediction tests [50, 51]. This

function has 8 input parameters and initially models the water flow through a borehole by the equation:

f(x) =
2πx3(x4 − x6)

ln(x2/x1)
(

1 + 2x7x3

ln(x2/x1)x2
1x8

+ x3

x5

) (40)

All input parameters are modeled by independent uniform variables whose range is given in Table 1. The
same study as for the Ishigami function is conducted to illustrate the performance of the proposed approach
in for this second function. Results are presented in Figure 5.

As in the previous example, the proposed LARS-Kriging-PC approach performs better than the two
other techniques in terms of median value. However, for 50 points, it can be noticed that several values
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Figure 5: Comparison of LARS-PC, LARS-Kriging-PC, and ordinary Kriging metamodeling approaches for 50 different inital
LHS of 50 points augmented until 200 points by the NLHS technique for the Borehole function.

considered as outliers by the boxplot routine provide higher errors than the ordinary Kriging. This can be
due to a bad optimization of the hyperparameters of the universal Kriging model. Indeed, the DACE toolbox
used in this study [37] provides a basic optimization algorithm that can generate suboptimal solutions in
high dimension. Another explanation may be that these high errors are due to an overestimation of the
generalization capacity of the LARS-Kriging-PC by the LOOCV selection. This would select a suboptimal
set of functions for the deterministic part of the universal Kriging. This phenomenon is not encountered
for a higher number of points where the LARS-Kriging-PC is always more efficient than the two other
techniques. The prediction improvement seems to be more important for the smaller number of points when
comparing LARS-Kriging-PC and LARS-PC. As in the Ishigami function, the ordinary Kriging seems to be
the technique, the performance of which is the least scattered throughout the runs.

5.4. Higher dimension example: the Sobol function
The performance of the proposed approach is now tested with a higher dimension problem. The consid-

ered benchmark example is here the Sobol function of dimension 20 whose the expression is:

f(x) =

20∏

i=1

|4xi − 2|+ ci
1 + ci

x ∈ [0, 1]20 (41)

where
ci = {1, 2, 5, 10, 20, 50, 100, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500} (42)

The same study as in the two above analytical examples is conducted for this higher dimension function.
The results are shown in Figure 6. These results confirm the optimal aspect of the LARS-Kriging-PC
methodology. Indeed the LARS-Kriging-PC significantly overperforms the ordinary Kriging and have at
least the same performance than the classical LARS-PC. The sparsity of the Sobol function, that has a few
variables more influential than the others, appears to be well captured by the LARS algorithm. Consequently
the Kriging model achieves better performances than the ordinary Kriging. Furthermore, for 400 points,
some cases of LARS-Kriging-PC shown as outliers appear to perform better than the two other approaches.
It appears in this paper that the performances of the LARS-Kriging-PC are dependent on the problem. With
a problem where LARS-PC and ordinary Kriging have poor performances, the LARS-Kriging-PC might have
also poor performances and this lack of accuracy would be corrected by the addition of new points. But
from an applicative point of view, the use of this approach ensures to have optimal performances regarding
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Figure 6: Comparison of LARS-PC, LARS-Kriging-PC, and ordinary Kriging metamodeling approaches for 50 different inital
LHS of 100 points augmented until 400 points by the NLHS technique for the Sobol function.

Input parameter Range
r [1; 3] meters
φ [0, 360] degrees
z [−0.75, 1.75] meters
α [0, 360] degrees

Table 2: Range of the input parameters of the fetus-exposure problem

the two other methods. And because of the fact that ordinary Kriging and LARS-PC are two quite different
meta-modeling techniques that might have different performances depending on the problem, the optimality
of the LARS-Kriging-PC is a strong advantage allowing the user to obtain better performances or at least
the best of the two.

5.5. Application to the Fetus exposure problem
The LARS-Kriging-PC is now applied to the fetus-exposure problem defined in Section 2. The purpose

is to assess the influence of the input parameters defined in Section 2.3 on the output variable under
consideration, namely the whole fetus-body SAR defined in Eq. (4). The EMF source which is a femtocell
device is located in a room. Then we assume that, inside the perimeter of the room, all relative positions
of the anatomical model and the femtocell device have equal chance to occur. Consequently, the 4 input
parameters are assumed to follow uniform PDFs whose the ranges are listed in Table 2. These parameters
are assumed to be independent. The origin of the coordinate system is located at the center of the FDTD
domain. The initial design of experiments consists of a LHS of 50 points that is increased with the NLHS
technique by 50 and 100 until 200 points for accuracy needs. As in the previous section, the classic LARS-
PC, the ordinary Kriging and the LARS-Kriging-PC are applied on these experimental designs. The relative
error obtained from the LOOCV defined in Eq. 31 is computed for these models. Figure 7 presents the results
and shows that the LARS-Kriging-PC performs much better than the ordinary Kriging in terms of relative
error. It can also be noticed that classic LARS-PC and LARS-Kriging-PC have equivalent performances
and generate relative errors around 0.05 for 100 and 200 points in the design of experiments. In order
to assess the relative influence of input parameters onto the output variance of the metamodel, the total
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Figure 7: Comparison of LARS-PC, LARS-Kriging-PC, and ordinary Kriging metamodeling approaches on the fetus exposure
problem using the relative LOO error εr as a function of the number of points of the LHS

Input parameter First-order indice Total indice
r 0.171 0.508
φ 0.389 0.764
z 0.014 0.261
α 0.002 0.131

Table 3: Total and first-order Sobol indices of the input parameters of fetus exposure problem obtained from 1,000,000 MC
simulations of the BLUP of the LARS-Kriging-PC metamodel.

Sobol indices [47] are estimated using Monte Carlo simulations and the LARS-Kriging-PC metamodel are
computed for each input parameter using 1,000,000 Monte Carlo simulations. These total Sobol indices are
presented in Table 3. It shows that the output variance is mainly explained by the input parameters r and
φ. In particular, the most influential variable with respect to the whole-fetus-body SAR is the angle φ which
is the rotation of the femtocell device around the anatomical model. This is partly explained by the fact
that the thickness of pregnant woman tissues between the air and the fetus strongly varies with the rotation
of the device around the pregnant woman and so the power absorbed by the fetus will also strongly vary.
Moreover Table 3 shows a significant difference between first-order and total indices which means that there
are strong interactions between the input parameters. The computation of the higher-order indices shows
that for the second order indices, only the index of the interaction between r and φ is significant and the
indices of order three and four are the ones that constitute the output variance explained by z and α, always
in interaction with r and/or φ.

6. Conclusion

This paper introduces the use of polynomial chaos expansions as regression functions in a universal Krig-
ing model with an application to the estimation of fetus RF exposure from a femtocell using computational
dosimetry. The proposed approach is compared in terms of performances with a classic sparse polynomial
chaos expansion based on the least-angle regression (LARS) algorithm and with an ordinary Kriging model.
The accuracy of the best linear unbiased predictors of the Kriging model and of the polynomial chaos ex-
pansions is estimated by leave-one-out cross validation. The comparison is first performed for benchmark
functions in order to validate the approach (in this case, a large validation set can be used to compute the
error), and then for the study of the influence of input parameters on the whole-fetus-body SAR. For the
fetus-exposure study, the comparison is followed by a sensitivity analysis of the best linear unbiased predictor
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of the LARS-Kriging-PC model. Thus total Sobol indices are computed using Monte Carlo simulations.
As far as the benchmark examples are concerned, the novel LARS-Kriging-PC approach appears to

perform better in terms of median value of the obtained error (the median being computed with respect to
replications of the procedure) than classical LARS-PC expansion and ordinary Kriging. Depending on the
case, the proposed approach provides a significant accuracy improvement compared to the ordinary Kriging
for the Ishigami and the Sobol functions and the LARS-PC expansion for the Borehole function. In any
case, it performs at least as well as the ordinary Kriging or LARS-PC taken separately. Regarding the
fetus exposure problem, LARS-Kriging-PC appears to have the same accuracy as the LARS-PC expansion
but performs much better than the ordinary Kriging model. The sensitivity analysis highlights that the
most influential input parameter is the rotation of the antenna around the pregnant woman followed by the
distance between the anatomical model and the antenna.

The proposed method has been applied to three benchmark functions and a full-scale metamodeling
problem in order to obtain a better global accuracy of the created metamodels. In future investigations, this
approach could be applied to global optimization problems and sequential design of experiments oriented to
the evaluation of quantiles or oriented to reliability analysis [27, 28, 52, 53].

Acknowledgements

This work has been conducted in the framework of the French/Japanese FETUS (http://whist.institut-
telecom.fr/fetus/) project financed by JST (Japan science and technology agency) and ANR (French research
agency).

References

[1] A. Taflove, S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time Domain Method., 3rd Edition,
Artech House, Boston, 2005.

[2] E. Conil, A. Hadjem, A. Gati, M.-f. Wong, J. Wiart, Influence of Plane-Wave Incidence Angle on Whole Body and Local
Exposure at 2100 MHz, IEEE Transactions on Electromagnetic Compatibility 53 (1) (2011) 48–52.

[3] E. Conil, A. Hadjem, F. Lacroux, M. F. Wong, J. Wiart, Variability analysis of SAR from 20MHz to 2.4 GHz for different
adult and child models using finite-difference time-domain, Physics in Medicine and Biology 53 (2008) 1511–1525.

[4] J. Wiart, A. Hadjem, M. F. Wong, I. Bloch, Analysis of RF exposure in the head tissues of children and adults, Physics
in Medicine and Biology 53 (2008) 3681–3695.

[5] L. Bibin, J. Anquez, J. P. De la Plata Alcade, T. Boubekeur, E. D. Angelini, I. Bloch, Whole-Body Pregnant Woman
Modeling by Digital Geometry Processing With Detailed Uterofetal Unit Based on Medical Images, IEEE Transactions
on Biomedical Engineering 57 (10) (2010) 2346–2358.

[6] M. Jala, E. Conil, N. Varsier, J. Wiart, A. Hadjem, E. Moulines, C. Lévy-Leduc, Simplified pregnant woman models for
the fetus exposure assessment, Compte Rendus Physique 14 (2013) 412–417.

[7] R. G. Ghanem, P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Courier Dover Publications, 2003.
[8] G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element

analysis, Probabilistic Engineering Mechanics 25 (2) (2010) 183–197.
[9] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Compu-

tational Physics 230 (6) (2011) 2345–2367.
[10] J. Sacks, S. B. Schiller, W. J. Welch, Design for Computer Experiments, Technometrics 31 (1) (1989) 41–47.
[11] C. E. Rasmussen, C. K. I. Williams, Gaussian processes for machine learning., MIT Press, Cambridge, 2006.
[12] T. Santner, B. Williams, W. Notz, The design and analysis of computer experiments. Springer, Springer Series in Statistics,

2003.
[13] N. Wiener, The Homogeneous Chaos, American Journal of Mathematics 60 (4) (1938) 897–936.
[14] D. Xiu, G. E. M. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal

on Scientific Computing 24 (2) (2002) 619–644.
[15] D. Lucor, G. Karniadakis, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Proba-

bility Measure, SIAM Journal on Scientific Computing 26 (2) (2004) 750–735.
[16] C. Soize, R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability

Measure, SIAM Journal on Scientific Computing 26 (2) (2004) 395–410.
[17] O. P. Le Maitre, M. T. Reagan, H. N. Najm, R. G. Ghanem, O. M. Knio, A Stochastic Projection Method for Fluid Flow,

Journal of Computational Physics 181 (1) (2002) 9–44.
[18] L. Gilli, D. Lathouwers, J. Kloosterman, T. van der Hagen, a.J. Koning, D. Rochman, Uncertainty quantification for

criticality problems using non-intrusive and adaptive Polynomial Chaos techniques, Annals of Nuclear Energy 56 (2013)
71–80.

17



[19] M. Berveiller, B. Sudret, M. Lemaitre, Stochastic finite elements: a non intrusive approach by regression, Eur. J. Comput.
Mech. 15 (1-3) (2006) 81–92.

[20] G. Blatman, B. Sudret, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression
approach, Comptes Rendus Mécanique 336 (6) (2008) 518–523.

[21] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, LEAST ANGLE REGRESSION, The Annals of Statistics 32 (2) (2004)
407–499.

[22] A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, Journal of Computational
Physics 230 (8) (2011) 3015–3034.

[23] J. Peng, J. Hampton, A. Doostan, A weighted l1-minimization approach for sparse polynomial chaos expansions, Journal
of Computational Physics 267 (15) (2014) 92–111.

[24] G. Matheron, Les cahiers du Centre de morphologie mathématique de Fontainebleau, Fascicule 1: Le krigeage universel,
Ecole de Mines de Paris, Fontainebleau, 1969.

[25] J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, Design and Analysis of Computer Experiments, Statistical Science
4 (4) (1989) 409–423.

[26] J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Vasquez, Sequential design of experiments for estimation of a probability
of failure, Statistics and Computing 22 (3) (2011) 773–793.

[27] V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, N.-H. Kim, Adaptive Designs of Experiments for Accurate
Approximation of a Target Region, Journal of Mechanical Design 132 (7) (2010) 071008.

[28] V. Dubourg, B. Sudret, J. Bourinet, Reliability-based design optimization using kriging surrogates and subset simulation,
Struct. Multidisc. Optim. 44 (5) (2011) 673–690.

[29] D. Jones, M. Schonlau, W. Welch, Efficient Global Optimization of expensive black-box functions, Journal of Global
Optimization 13 (4) (1998) 455–492.

[30] V. Joseph, A. Sudjianto, Y. Hung, Blind Kriging: a new method for developing metamodels, ASME Journal of Mechanical
Design 130 (3) (2008) 031102–1–8.

[31] Empire xccel.
URL http://www.empire.de/

[32] J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics
114 (2) (1994) 185–200.

[33] D. Merewether, R. Fisher, F. Smith, On implementing a numeric huygens source scheme in a finite difference program to
illuminate scattering bodies., IEEE Transactions on Nuclear Science 27 (6) (1980) 1829–1833.

[34] R. Holland, J. Williams, Total-field versus scattered field finite difference codes: a comparative assessment., IEEE Trans-
actions on Nuclear Science 30 (6) (1983) 4583–4588.

[35] J. E. Hansen, Spherical Near-Field antenna measurements, Peter Peregrinus Ltd, London, UK, 1988.
[36] A. Marrel, B. Iooss, F. Van Dorpe, E. Volkova, An efficient methodology for modeling complex computer codes with

Gaussian processes., Computaional Statistics & Data Analysis 52 (2008) 4731–4744.
[37] S. Lophaven, H. Nielsen, J. Sondergaard, DACE, A Matlab Kriging Toolbox, Technical University of Denmark, 2002.
[38] E. Vazquez, Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applica-

tions., Ph.D. thesis, Université Paris XI - UFR scientifique d’Orsay (2005).
[39] J. Oakley, Estimating percentiles of uncertain computer code outputs, Journal of the Royal Statistical Society: Series C

(Applied Statistics) 53 (1) (2004) 83–93.
[40] M. Abramovitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,

Dover Publications, New-York, NY, 1972.
[41] B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – Contributions to structural reliability

and stochastic spectral methods, habilitation à diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, France
(2007).

[42] S. Isukapalli, Uncertainty analysis of transport-transformation models, Ph.D. thesis, The State University of New Jersey.
(1999).

[43] O. Dubrule, Cross validation of kriging in a unique neighborhood, Journal of the International Association for Mathematical
Geology 15 (6) (1983) 687–699.

[44] F. Bachoc, Cross Validation and Maximum Likelihood estimation of hyper-parameters of Gaussian processes with model
misspecification, Computational Statistics and Data Analysis 66 (2013) 55–69.

[45] J. S. Park, Optimal Latin-Hypercube designs for computer experiments, Journal of Statistical Planning and Inference 39
(1994) 95–111.

[46] G. Wang, Adaptive response surface method using inherited latin hypercube design points, J. Mech. Des. 125 (2003)
210–220.

[47] I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics
and Computers in Simulation 55 (2001) 271–280.

[48] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety 93 (7)
(2008) 964–979.

[49] A. Saltelli, K. Chan, E. M. Scott, Sensitivity analysis, J Wiley and Sons, 2000.
[50] M. Morris, T. Mitchell, D. Ylvisaker, Bayesian design and analysis of computer experiments: use of derivatives in surface

prediction, Technometrics 35 (3) (1993) 243–255.
[51] S. Xiong, P. Qian, C. Wu, Sequential design and analysis of high-accuracy and low-accuracy computer codes., Technomet-

rics 55 (1) (2013) 37–46.
[52] B. Echard, N. Gayton, M. Lemaire, AK-MCS: An active learning reliability method combining Kriging and Monte Carlo

18



Simulation, Structural Safety 33 (2) (2011) 145–154.
[53] B. Bichon, J. McFarland, S. Mahadevan, Efficient surrogate models for reliability analysis of systems with multiple failure

modes, Reliability Enineering & System Safety 96 (10) (2011) 1386–1395.

19


