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Abstract

Fragility curves are commonly used in civil engineering to estimate
the vulnerability of structures to earthquakes. The probability of fail-
ure associated with a prescribed criterion (e.g. the maximal inter-
storey drift ratio exceeding a prescribed threshold) is represented as a
function of the intensity of the earthquake ground motion (e.g. peak
ground acceleration or spectral acceleration). The classical approach
consists in assuming a lognormal shape of the fragility curves. In this
paper, we introduce two non-parametric approaches to establish the
fragility curves without making any assumption, namely the binned
Monte Carlo simulation approach and kernel density estimation. As
an illustration, we compute the fragility curves of a 3-storey steel
structure, accounting for the nonlinear behavior of the system. The
curves obtained with the proposed approaches are compared with each
other and with those obtained using the classical lognormal assump-
tion. It is shown that the lognormal curves differ significantly from
their non-parametric counterparts

Keywords: earthquake engineering – fragility curves – lognormal
assumption – non-parametric approach – kernel density estimation –
epistemic uncertainty
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1 Introduction

The severe socio-economic consequences of several recent earthquakes high-
light the need for proper seismic risk assessment as a basis for efficient de-
cision making on mitigation actions and disaster planning. To this end, the
probabilistic performance-based earthquake engineering (PBEE) framework
has been developed, which allows explicit evaluation of performance mea-
sures that serve as decision variables (DV) (e.g. monetary losses, casualties,
downtime) accounting for all prevailing uncertainties (e.g. characteristics of
ground motions, structural properties, damage occurrence). The key steps
in the PBEE framework comprise the identification of seismic hazard, eval-
uation of structural response, damage analysis and eventually, consequence
evaluation. In particular, the mean annual frequency of exceedance of a DV
is evaluated as [1, 2, 3]:

λ(DV ) =

∫ ∫ ∫
P (DV |DM) dP (DM |EDP ) dP (EDP |IM) dλ(IM) (1)

in which P (x|y) is the conditional probability of x given y, DM is a damage
measure typically defined according to repair costs (e.g. light, moderate or
severe damage), EDP is an engineering demand parameter obtained from
structural analysis (e.g. force, displacement, drift ratio), IM is an inten-
sity measure characterizing the ground motion severity (e.g. peak ground
acceleration, spectral acceleration) and λ(IM) is the annual frequency of ex-
ceedance of the IM . Determination of the probabilistic model P (EDP |IM)
constitutes a major challenge in the PBEE framework since the earthquake
excitation contributes the most significant part to the uncertainty in the DV .
This step of the analysis is the focus of the present paper.

The conditional probability P (EDP ≥ edp|IM), where edp denotes an
acceptable demand threshold, is commonly represented graphically in the
shape of the so-called demand fragility curves [4]. Thus, a demand fragility
curve represents the probability that an engineering demand parameter ex-
ceeds a prescribed threshold as a function of an intensity measure of the
earthquake motion. For the sake of simplicity, demand fragility curves are
simply denoted fragility curves in the following analysis, which is also typical
in the literature see e.g. [5, 6]. We note however that in other publications the
term fragility is also used for P (DM ≥ dm|IM) and P (DM ≥ dm|EDP ),
i.e. the conditional probability of damage exceeding a threshold dm given
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the intensity measure [7] or the engineering demand parameter [2, 3], respec-
tively.

Originally introduced in the early 1980’s for nuclear safety evaluation [8],
fragility curves are nowadays widely used for multiple purposes, e.g. seismic
loss estimation [9], estimation of the collapse risk of structures in seismic
regions [10], design checking process [11], evaluation of the effectiveness of
retrofit measures [12], etc. It is noteworthy that novel methodological contri-
butions to fragility analysis have been made in recent years, including the de-
velopment of multi-variate fragility functions [13], incorporation of Bayesian
updating [14] and time-dependent fragility curves [15]. However, the classical
fragility curves remain a popular tool in seismic risk assessment and recent
literature is rich with applications on various type of structures, such as ir-
regular buildings [6], underground tunnels [16], a pile-supported wharf [17],
wind turbines [18], nuclear power plant equipments [19]. The estimation of
such curves is the focus of this paper.

Fragility curves are typically classified into four categories according to
the data sources, namely analytical, empirical, judgment-based or hybrid
fragility curves [20]. Analytical fragility curves are derived from data ob-
tained by analyses of structural models. Empirical fragility curves are based
on the observation of earthquake-induced damage reported in post-earthquake
surveys. Judgment-based curves are estimated by expert panels specialized in
the field of earthquake engineering. Hybrid curves are typically obtained by
combining data from different sources. Each category of fragility curves has
its own advantages as well as drawbacks. In this paper, analytical fragility
curves established using data collected from numerical structural analyses
are of interest.

The typical approach to compute analytical fragility curves presumes that
the curves have the shape of a lognormal cumulative distribution function
[21, 22]. This approach is therefore considered parametric. The parameters
of the lognormal distribution are determined either by maximum likelihood
estimation [13, 21, 23] or by fitting a linear probabilistic seismic demand
model in the log-scale [5, 24, 25, 26]. The assumption of lognormal fragility
curves is almost unanimous in the literature due to the computational con-
venience as well as due to the facility for combining such curves with other
elements of the seismic probabilistic risk assessment framework. However,
the validity of such assumption remains questionable.

In the present work, we present two novel non-parametric approaches
to establish the fragility curves without making any assumption, namely
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the binned Monte Carlo simulation (bMCS) and kernel density estimation
(KDE). The main advantage of bMCS over traditional Monce Carlo simula-
tion approaches ([27, 28]) is that it avoids the bias induced by scaling ground
motions to predefined intensity levels. In the KDE approach, we introduce a
statistical methodology for fragility estimation, which also opens new paths
for estimation of multi-dimensional fragility functions. The proposed meth-
ods are subsequently used to investigate the validity of the lognormal assump-
tion in a case study where we develop fragility curves for different thresholds
of the maximum inter-storey drift ratio of an example building structure.
The proposed methodology can be applied in a straightforward manner to
other types of structures or classes of structures or using different failure
criteria.

The computation of fragility curves requires a sufficiently large number
of transient dynamic analysis of the structure under seismic excitations that
are either recorded or synthetic. Due to the lack of recorded signals with
the properties of interest (e.g. earthquake magnitude, duration, etc.), it is
common practice to generate suitable samples of synthetic ground motions
[12, 29].

The paper is organized as follows: in Section 2, the method recently
proposed by [30] to generate synthetic earthquakes, used in the example
in Section 4, is briefly recalled. This method is selected because it allows
to account for uncertainty in the intensity level of the motions for a given
earthquake scenario. The different approaches for establishing the fragility
curves, namely the classical lognormal, bMCS and KDE approaches, are
presented in Section 3. In Section 4, we compute the fragility curves of a
steel frame structure subject to seismic excitations using the aforementioned
approaches and compare the results.

2 Recorded and synthetic ground motions

2.1 Recorded ground motions: notation

Let us consider a recorded earthquake accelerogram a(t), t ∈ [0, T ] where
T is the total duration of the motion. The peak ground acceleration reads:
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PGA = max
t∈[0,T ]

|a(t)|. The Arias intensity Ia is defined by:

Ia =
π

2g

T∫

0

a2(t) dt (2)

Defining the cumulative square acceleration by:

I(t) =
π

2g

t∫

0

a2(τ) dτ , (3)

one defines the time instant tα by:

tα : I(tα) = αIa α ∈ [0, 1] (4)

Remarkable properties of a recorded seismic motion are the duration of the
strong motion phase D5−95 = t95%− t5% and the instant at the middle of the
strong-shaking phase tmid ≡ t45%.

2.2 Simulation of synthetic ground motions

For the sake of completeness, we summarize in this section the parameterized
approach proposed by [30] in order to simulate synthetic ground motions.
The seismic acceleration a(t) is represented as a non-stationary process. Der
Kiureghian and Rezaeian separate the non-stationarity into two components,
namely a spectral and a temporal one, by means of a modulated filtered
Gaussian white noise:

a(t) =
q(t,α)

σh(t)

t∫

0

h [t− τ,λ (τ)]ω(τ) dτ (5)

in which q(t,α) is the deterministic non-negative modulating function, the
integral is the non-stationary response of a linear filter subject to a Gaussian
white noise excitation and σh(t) is the standard deviation of the response
process. The Gaussian white-noise process denoted by ω(τ) will pass through
a filter h [t− τ,λ(τ)] which is selected as the pseudo-acceleration response of

5



a single-degree-of-freedom (SDOF) linear oscillator:

h [t− τ,λ(τ)] = 0 for t < τ

h [t− τ,λ(τ)] =
ωf (τ)√

1− ζ2
f (τ)

exp [−ζf (τ)ωf (τ)(t− τ)] sin
[
ωf (τ)

√
1− ζ2

f (τ)(t− τ)
]

for t ≥ τ
(6)

where λ(τ) = (ωf (τ), ζf (τ)) is the vector of time-varying parameters of the
filter h. Note that ωf (τ) and ζf (τ) are the filter’s natural frequency and
damping ratio at instant τ , respectively. They are related to the evolving
predominant frequency and bandwidth of the ground motion that is to be
represented. The statistical analysis of real signals shows that ζf (τ) may
be taken as a constant (ζf (τ) ≡ ζ) while the predominant frequency varies
approximately linearly in time [31]:

ωf (τ) = ωmid + ω′(τ − tmid) (7)

In Eq. (7) tmid is the instant at which 45% of the Arias intensity Ia is reached,
ωmid = ωf (tmid) is the filter’s frequency at instant tmid and ω′ is the slope of
the linear evolution. After being normalized by the standard deviation σh(t),
the integral in Eq. (5) becomes a unit variance process with time-varying
frequency and constant bandwidth. The non-stationarity in intensity is then
captured by the modulating function q(t,α). This time-modulating function
determines the shape, intensity and duration T of the signal. A Gamma-like
function is typically used [31]:

q(t,α) = α1t
α2−1exp(−α3t) (8)

where α = {α1, α2, α3} is directly related to the energy content of the signal
through the quantities Ia, D5−95 and tmid defined in Section 2.1, see [31]
for details. For computational purposes, the acceleration in Eq. (5) can be
discretized as follows:

â(t) = q(t,α)
n∑

i=1

si (t,λ(ti)) Ui (9)

where the standard normal random variable Ui represents an impulse at

instant ti = i× T

n
, i = 1, . . . , n, (T is the total duration) and si(t,λ(ti)) is
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given by:

si(t,λ(ti)) =
h [t− ti,λ(ti)]√∑i
j=1 h

2 [t− tj,λ(tj)]
(10)

As a summary, the considered seismic generation model consists of three
temporal parameters (α1, α2, α3), three spectral parameters (ωmid, ω

′, ζf ) and
the standard Gaussian random vector U of size n. Note that the full model
proposed by [31] includes some additional parameters that are related to
earthquake and site characteristics, e.g. the type of faulting of the earthquake
(strike-slip fault or reverse fault), the closest distance from the recording site
to the ruptured area and the shear-wave velocity of the top 30 m of the site
soil. A methodology for determining the temporal and spectral parameters
according to earthquake and site characteristics is described in [31]. For the
sake of simplicity, in this paper these parameters are directly generated from
appropriate statistical models.

3 Computation of fragility curves

Fragility curves represent the probability of failure of the system associated
with a specified criterion for a given intensity measure (IM) of the earthquake
motion. Herein probabilities of failure represent probabilities of exceeding
demand limit states. The engineering demand parameter typically used for
buildings is the maximal inter-storey drift ratio ∆, i.e. the maximal difference
of horizontal displacements between consecutive storeys normalized by the
storey height [6]. Thus the fragility curve is cast as follows:

Frag(IM ; δo) = P[∆ ≥ δo|IM ] (11)

in which Frag(IM ; δo) denotes the fragility at the given IM for a pre-
scribed demand threshold δo of the inter-storey drift ratio. In order to
establish the fragility curves, a number N of transient finite element anal-
yses of the structure under consideration are used to provide paired values
{(IMi,∆i) , i = 1, . . . , N}.

3.1 Classical approach

The classical approach to establish fragility curves consists in assuming a
lognormal shape for the curves in Eq. (11). Two techniques are commonly
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used to estimate the parameters of the lognormal fragility curves, namely
maximum likelihood estimation (MLE) and linear regression.

3.1.1 Maximum likelihood estimation:

One assumes that the fragility curves can be written in the following general
form:

F̂rag(IM ; δo) = Φ

(
log IM − logα

β

)
(12)

where Φ (t) =
t∫
−∞

e−u
2/2/
√

2πdu is the standard Gaussian cumulative distri-

bution function (CDF), α is the “median” and β is the “log-standard devi-
ation” of the lognormal curve. [21] proposed the use of maximum likelihood
estimation to determine these parameters as follows: Denote by ω the event
that the demand threshold δo is reached or exceeded. Assume that Y (ω) is a
random variable with Bernoulli distribution, i.e. Y takes the value 1 (resp.
0) with probability Frag(·; δo) (resp. 1 − Frag(·; δo)). Considering a set of
i = 1, . . . , N ground motions, the likelihood function reads:

L (α, β, {IMi, i = 1, . . . , N}) =
N∏

i=1

[Frag(IMi; δo)]
yi [1− Frag(IMi; δo)]

1−yi

(13)
where IMi is the intensity measure of the ith seismic motion and yi represents
a realization of the Bernoulli random variable Y , which takes the value 1 or
0 depending on whether the structure under the ith ground motion sustains
the demand threshold δo or not. The parameters (α, β) are obtained by max-
imizing the likelihood function. In practice, a straightforward optimization
algorithm is applied on the log-likelihood function, i.e. :

{α∗; β∗}T = arg max logL (α, β, {IMi, i = 1, . . . , N}) (14)

3.1.2 Linear regression:

One first assumes a probabilistic seismic demand model which relates a struc-
tural response quantity to an intensity measure of the earthquake motion.
More specifically, the maximal inter-storey drift ∆ is modelled by a lognormal
distribution whose log-mean value is a linear function of log IM :

log ∆ = A log IM +B + ζ Z (15)
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where Z ∼ N (0, 1) is a standard normal variable. Parameters A and B are
determined by means of ordinary least squares estimation in a log-log plot.
This approach is widely applied in the literature, see e.g. [22, 29, 32, 33]
among others. The procedure is based on the assumed linear relationship
between IM and ∆ in the log-scale. Let us denote by ei the residual between
the actual value log ∆ and the value predicted by the linear model: ei =
log ∆i − A log (IMi)−B. Parameter ζ is obtained by:

ζ2 =
N∑

i=1

e2
i / (N − 2) (16)

Eq. (11) rewrites:

F̂rag(IM ; δo) = P [log ∆ ≥ log δo] = 1− P [log ∆ ≤ log δo]

= Φ

(
log IM − (log δo −B) /A

ζ/A

)
(17)

The median and log-standard deviation of the lognormal fragility curve in
Eq. (17) are α = exp [(log δo −B) /A] and β = ζ/A respectively.

The above so-called classical approach is parametric because it imposes
the shape of the fragility curves in Eq. (12) and Eq. (17) which is similar to
a lognormal CDF when considered as a function of IM . In the sequel, we
propose two non-parametric approaches to compute fragility curves without
making such an assumption.

3.2 Binned Monte Carlo simulation

Having at hand a large sample set of pairs {(IMj,∆j) , j = 1, . . . , N}, it
is possible to use a binned Monte Carlo simulation (bMCS) to compute the
fragility curves, as described in the following. Let us consider a given abscissa
IMo. Within a small bin surrounding IMo, say [IMo − h, IMo + h] (see
Figure 1) one assumes that the maximal drift ∆ is linearly related to the
IM . Note that this assumption is exact in the case of linear structures
but would only be an approximation in the nonlinear case. Therefore, the
maximal drift ∆j related to IMj ∈ [IMo − h, IMo + h] is converted into the
drift ∆j(IMo) which is related to a similar input signal having an intensity
measure of IMo as follows:

∆j(IMo) = ∆j
IMo

IMj

(18)
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The fragility curve at IMo is obtained by a crude Monte Carlo estimator:
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∆
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Figure 1: Scaling of ground motions and corresponding responses in the
binned Monte Carlo simulation approach (the bin is enlarged for the sake of
clarity).

F̂rag(IMo) =
Nf (IMo)

Ns (IMo)
(19)

where Nf (IMo) is the number of points in the bin such that ∆j(IMo) > δo
andNs(IMo) is the total number of points that fall into the bin [IMo − h, IMo + h].

The bMCS approach is similar to the incremental dynamic analysis (IDA)
in [34, 35, 36] except that when using IDA, one scales all the ground motions
to the intensity level of interest. Therefore in the IDA approach there are
signals scaled with very large (or very small) scale factors compared to unity
which may lead to a gross approximation of the corresponding responses
[37, 38]. Figure 2 shows the bias ratios induced by the scaling of ground mo-
tions for two different intensity measures. The bias for a certain scale factor
is represented by the ratio of the mean maximal displacement response of a
nonlinear SDOF system subject to the scaled motions to the respective re-
sponse of the system without scaling of the motions. Note that the bias ratio
becomes larger with increasing deviation of the scale factor from unity. In
our approach, Eq. (18) basically represents the scaling of the ground motions
in the vicinity of the intensity level IMo. The vicinity is defined by the bin
width 2h which is chosen so that the scale factors are close to 1 and typically
in the range [0.8, 1.2] as in the application in Section 4. Accordingly, the
bias due to ground motion scaling is negligible.
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(a) Peak ground acceleration
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(b) Spectral displacement
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Figure 2: Bias ratios induced by the scaling of ground motions for two dif-
ferent intensity measures, namely peak ground acceleration and spectral dis-
placement (after [37]).

3.3 Kernel density estimation

The fragility curves defined in Eq. (11) may be reformulated using the con-
ditional probability density function (PDF) f∆|IM as follows:

Frag(a; δo) = P (∆ ≥ δo|IM = a) =

+∞∫

δo

f∆(δ|IM = a) dδ (20)

By definition this conditional PDF is given as:

f∆(δ|IM = a) =
f∆,IM(δ, a)

fIM(a)
(21)

where f∆,IM(·) (resp. fIM(·) ) is the joint distribution of the vector (∆, IM)
(resp. the marginal distribution of IM). If these quantities were known, the
fragility curve in Eq. (20) would be obtained by a mere integration.

In this section we propose to estimate the joint and marginal PDFs from
a sample set {(IMi,∆i) , i = 1, . . . , N} by kernel density estimation (KDE).
For a single random variable X for which a sample set {x1, . . . , xN} is avail-
able, the kernel density estimate of the PDF reads [39]:

f̂X (x) =
1

Nh

N∑

i=1

K

(
x− xi
h

)
(22)

11



where h is the bandwidth parameter and K(·) is the kernel function which
integrates to one. Classical kernel functions are the Epanechnikov, uniform,
normal and triangular functions. The choice of the kernel is known not to
affect strongly the quality of the estimate [39] provided the sample set is
large enough. In case a standard normal PDF is adopted for the kernel, i.e.
K(x) = ϕ(x) ≡ exp [−x2/2] /

√
2π, the kernel density estimate rewrites:

f̂X (x) =
1

Nh

N∑

i=1

ϕ

(
x− xi
h

)
(23)

In contrast, the choice of the bandwidth h is crucial for the kernel density
estimate [40]. An inappropriate value of h can lead to an oversmoothed or
undersmoothed estimated PDF. Eq. (23) is used for estimating the marginal
distribution of the IMs, namely f̂IM(a) from the set of intensity measures
at hand, namely {IMi, i = 1, . . . , N}:

f̂IM(a) =
1

NhIM

N∑

i=1

ϕ

(
a− IM i

hIM

)
(24)

Kernel density estimation may be extended to a random vector X ∈ Rd

given an i.i.d sample {x1, . . . ,xN} [39]:

f̂X (x) =
1

N |H|1/2
N∑

i=1

K
(
H−1/2(x− xi)

)
(25)

in which H is a symmetric positive definite bandwidth matrix whose deter-
minant is denoted by |H|. When a multivariate standard normal kernel is
adopted, the joint distribution estimate becomes:

f̂X (x) =
1

N |H|1/2
N∑

i=1

1

(2π)d/2
exp

[
−1

2
(x− xi)TH−1(x− xi)

]
(26)

where (·)T denotes the transposition. For multivariate problems (i.e. X ∈
Rd), the bandwidth matrix classically belongs to one of the following classes:
spherical, ellipsoidal and full matrix which contains respectively 1, d and
d(d + 1)/2 independent unknown parameters. This matrix H can be com-
puted by means of e.g. plug-in and cross-validation estimators (see [40] for
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details). In the most general case when the correlations between the ran-
dom variables are not known, the full matrix should be used. In this case,
the smoothed cross-validation estimator is the most reliable among the cross-
validation methods [41]. Using Eq. (26) to estimate the joint PDF f̂∆,IM(δ, a)
from the data set {(IMi, ∆i), i = 1, . . . , N} one gets:

f̂∆,IM(δ, a) =
1

2πN |H|1/2
N∑

i=1

exp

[
−1

2

(
δ −∆i

a− IMi

)T

H−1

(
δ −∆i

a− IMi

)]
(27)

The conditional PDF f∆(δ|IM = a) is eventually estimated by pluging
the estimations of the numerator and denominator in Eq. (21). The proposed
estimator of the fragility curve eventually reads:

F̂rag(a; δo) =
hIM

2π |H|1/2

+∞∫
δo

N∑
i=1

exp

[
−1

2

(
δ −∆i

a− IMi

)T

H−1

(
δ −∆i

a− IMi

)]
dδ

N∑
i=1

ϕ

(
a− IMi

hIM

)

(28)
The choice of the bandwidth parameter h and the bandwidth matrix H

plays a crucial role in the estimation of fragility curves, as seen in Eq. (28).
In the above formulation, the same bandwidth is considered for the whole
range of the IM values. However, there are typically few observations cor-
responding to the upper tail of the distribution of IM . This is due to the
fact that the annual frequency of seismic motions with IM values in the
respective range (e.g. PGA exceeding 1g) is low (see e.g. [42]). This is also
the case when synthetic ground motions are used, since these are generated
consistently with the statistical features of recorded motions. Preliminary
investigations have shown that by applying the KDE method on the data in
the original scale, the fragility curves for the higher demand thresholds tend
to be unstable in their upper tails [43]. To reduce effects of the scarcity of ob-
servations at large IM values, we propose the use of KDE in the logarithmic
scale, as described next.

Let us consider two random variables X, Y with positive supports and
their logarithmic transformations U = logX and V = log Y . The proba-
bility contained in a differential area must be invariant under the change of
variables. In the one-dimensional case, this leads to:

fX(x) =

∣∣∣∣
du

dx

∣∣∣∣ fU(U) =

∣∣∣∣
1

x

∣∣∣∣ fU(u) =
1

x
fU(u) (29)
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In the two-dimensional case, one obtains:

fX,Y (x, y) =
1

x y
fU,V (u, v) (30)

Using Equations (29) and (30), one has:

+∞∫

y0

fY (y|X = x) dy =

+∞∫

y0

fX,Y (x, y)

fX(x)
dy =

+∞∫

log y0

1

x y
fU,V (u, v)

1

x
fU(u)

y dv =

+∞∫

log y0

fV (v|U = u) dv

(31)
Accordingly, by considering X = IM and Y = ∆, the fragility curves defined
in Eq. (20) can be estimated in terms of U = log IM and V = log ∆ as:

F̂rag(a; δo) =

+∞∫

δo

f̂∆(δ|IM = a) dδ =

+∞∫

log δo

f̂V (v|U = log a) dv (32)

Note that use of a constant bandwidth in the logarithmic scale is equiv-
alent to the use of a varying bandwidth in the original scale, with larger
bandwidths corresponding to larger values of IM . The resulting fragility
curves are smoother than those obtained by applying KDE with the data in
the original scale.

3.4 Epistemic uncertainty of fragility curves

It is of utmost importance in fragility analysis to investigate the variability
in the estimated curves arising due to epistemic uncertainty. This is because
any fragility curve is always computed based on a limited amount of data,
i.e. a limited number of ground motions and related structural analyses.
Large epistemic uncertainties may affect significantly the total variability
of the seismic risk assessment outcomes. Consequently, characterizing and
propagating epistemic uncertainties in seismic loss estimation has attracted
attention from several researchers [2, 44, 45].

The theoretical approach to determine the variability of an estimator
relies on repeating the estimation with an ensemble of different random
samples. However, this approach is not feasible in earthquake engineering
because of the high computational cost. In this context, the bootstrap resam-
pling technique [46] is deemed appropriate [2]. Given a set of observations
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X = (X1, . . . , Xn) from an unspecified probability distribution F , the boot-
strap method allows estimation of the statistics of a random variable that
depends on both X and F in terms of the observed data X and their em-
pirical distribution.

To estimate statistics of the fragility curves with the bootstrap method,
we first draw M independent random samples with replacement from the
original data set {(IMi,∆i) , i = 1, . . . , N}. These represent the so-called
bootstrap samples. Each bootstrap sample has the same size N as the orig-
inal sample, but the observations are different: in a particular sample, some
of the original observations may appear multiple times while others may be
missing. Next, we compute the fragility curves for each bootstrap sample
using the approaches in Sections 3.1, 3.2 and 3.3. Finally, we perform sta-
tistical analysis of the so-obtained M bootstrap curves. In the subsequent
example illustration, the above procedure is employed to evaluate the median
and 95% confidence intervals of the estimated fragility curves and also, to
assess the variability in the IM value corresponding to a 50% probability of
failure.

In the following, the proposed non-parametric approaches, namely bMCS
and KDE, as well as the classical lognormal approach for estimation of
fragility curves are demonstrated in an example application on a frame struc-
ture. The uncertainty in the estimation of the bMCS- and KDE-based curves
is also investigated.

4 Illustration: steel frame structure

4.1 Problem statement: 3-storey 3-span steel frame

We evaluate the fragility curves of a 3-storey 3-span steel frame structure
with the following dimensions: storey-height H = 3 m, span-length L = 5 m
(see Figure 3). The steel material has nonlinear isotropic hardening behavior
following the uniaxial Giuffre-Menegotto-Pinto steel model as implemented
in the finite element software OpenSees [47]. [5] have shown that uncer-
tainty in the properties of the steel material has a negligible effect on seismic
fragility curves. Therefore, mean material properties are employed in the
subsequent fragility analysis. In particular, the properties considered are
E0 = 210, 000 MPa for the Young’s modulus, fy = 264 MPa for the yield
strength [48, 49] and b = 0.01 for the strain hardening ratio (ratio of the post-
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yield tangent to the initial value). Figure 3 depicts the hysteretic behavior
of the steel material at a section of the frame for an example ground mo-
tion. The structural components are modelled with nonlinear elements with
distributed plasticity along their lengths. The use of fiber sections allows
modelling the plasticity over the element cross-sections [50]. The vertical
load consists of dead-load (from the frame elements as well as the supported
floors), and live load in accordance with Eurocode 1 [51] which result in a
total distributed load on the beams q = 20 kN/m. The preliminary de-
sign is performed using the vertical loads to provide the necessary sections
of columns and beams. The standard European I beams with designation
IPE 300 R and IPE 330 R are chosen respectively for beams and columns.
The dimensions of the sections are depicted in Figure 4. The first two nat-
ural periods (resp. frequencies) of the building obtained by modal analysis
of the corresponding linear model are T1 = 0.42 s and T2 = 0.13 s (resp.
f1 = 2.38 Hz and f2 = 8.33 Hz).
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Figure 3: (Left) Steel frame structure. (Right) Hysteretic behavior of steel
material at section 1-1 when the frame is subject to a particular ground
motion.

The structure is subject to ground motions represented by the acceler-
ation time histories at the ground level. Each ground motion is modelled
by 6 randomized parameters (α1, α2, α3, ωmid, ω

′, ζf ) directly related to the
parameters in Table 1 and a Gaussian input vector U (Eq. (9)). The reader
is referred to [31] for viewing the correlation between these parameters. Note
that in order to obtain a sufficiently wide range of IM , we adapted the
statistics of Ia, D5−95 and tmid presented in [31]. The duration of each syn-
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Figure 4: Cross-sections of beams (h=306 mm, b=147 mm, tw=8,5 mm,
tf=13,7 mm) and columns (h = 336 mm, b=158 mm, tw=9,2 mm,
tf=14,5 mm).

thetic earthquake is computed based on the corresponding set of parameters
(α1, α2, α3) and is used to determine the size of the Gaussian vector U . A
set of four different synthetic ground motions is shown in Figure 5 for the
sake of illustration. The finite element code OpenSees [47] is used to carry
out transient dynamic analyses of the frame for a total of N = 104 synthetic
ground motions.

Numerous IMs can be used to represent the earthquake severity, see
e.g. [52]. Peak ground acceleration (PGA) is a convenient measure that is
straightforward to obtain for a given ground motion and has been tradition-
ally used in attenuation relationships and design codes. However, structural
responses may exhibit large dispersions with respect to PGA, since they
are also highly dependent on other features of earthquake motions, e.g. the
frequency content and the duration of the strong motion phase. Structure-
specific IMs, such as the spectral acceleration Sa, tend to be better corre-
lated with structural responses [52, 53]. In the following, we compute fragility
curves considering both PGA and Sa as IMs. In the present example, Sa
represents Sa(T1) i.e. the spectral acceleration for a SDOF system with pe-
riod equal to the fundamental period T1 of the frame and viscous damping
factor equal 5%.

The engineering demand parameter commonly considered in fragility anal-
ysis of steel buildings is the inter-storey drift ratio (see e.g. [5, 54, 55]). Ac-
cordingly, we herein develop fragility curves for three different thresholds of
the maximum inter-storey drift ratio over the building. To gain insight into
structural performance, we consider the thresholds 0.7%, 1.5% and 2.5%,
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which are associated with different damage states in seismic codes. In par-
ticular, the thresholds 0.7% and 2.5% are recommended by [56] to respec-
tively characterize light damage and moderate damage for steel frames. The
drift threshold 1.5% corresponds to the damage limitation requirement for
buildings with ductile non-structural elements according to [57]. These de-
scriptions only serve as rough damage indicators herein, since in the PBEE
framework the relationship between drift limit and damage is probabilistic.

Table 1: Statistics of parameters used to generate the synthetic ground mo-
tions (adapted from [31]).

Parameter Distribution Support µX σX

Ia Lognormal (0, +∞) 5.613 10.486
D5−95 Beta [5, 20] 10 2
tmid Beta [5, 15] 12 2
ωmid / 2π Gamma (0, +∞) 5.930 3.180

ω′ / 2π
Two-sided
exponen-
tial

[-2, 0.5] -0.089 0.185

ζf Beta [0.02, 1] 0.210 0.150

4.2 Results

As described in Section 3, the lognormal approach consists in assuming that
the fragility curves have the shape of a lognormal CDF and then estimating
the parameters of the distribution. Using the MLE approach, the observed
failures for each drift threshold are modeled as outcomes of a Bernoulli exper-
iment and the parameters of the fragility curves are determined by maximiz-
ing the respective likelihood function. Using the linear regression technique,
the parameters of the lognormal curves are indirectly derived by fitting a
linear model to the paired data (log IM, log ∆). Figure 6 (resp. Figure 7)
depicts the paired data (logPGA, log ∆) (resp. (logSa, log ∆)) and the fit-
ted PSDM using linear regression. The coefficient of determination R2 of the
linear regression model considering PGA (resp. Sa) as an intensity measure
is 0.607 (resp. 0.866). We observe that using Sa as an intensity measure
leads to smaller dispersion i.e. smaller ζ in Eq. (15) as compared to using
PGA. This is expected since Sa is a structure-specific IM . In the bMCS
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Figure 5: Examples of generated synthetic ground motions.

method, the bandwidth h is set equal to 0.2 IMo. The resulting scale fac-
tors vary in the range [0.8, 1.2] yielding a bias ratio of approximately 1 (see
Figure 2). Finally, the KDE approach requires estimation of the bandwidth
parameter and the bandwidth matrix. Using the smoothed cross-validation
estimation implemented in R [58], these are determined as h = 0.1295 and

H =

[
0.0306 0.0246
0.0246 0.0283

]
(resp. h = 0.1441 and H =

[
0.0229 0.0224
0.0224 0.0248

]
) when

PGA (resp. Sa) is considered as IM .
For the two considered IMs and the three drift limits of interest, Ta-

ble 2 lists the medians and log-standard deviations of the lognormal curves
obtained with both the MLE and linear regression (LR) approaches. The me-
dian determines the position where the curve attains the value 0.5, whereas
the log-standard deviation is a measure of the steepness of the curve. The
medians of the KDE-based curves have been computed and are also listed
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in Table 2 for comparison. Larger deviations of the lognormal medians from
the reference KDE-based values are observed at the larger drift thresholds for
both parametric approaches. Note that the MLE approach yields a distinct
log-standard deviation for each drift threshold, whereas a single log-standard
deviation for all drift thresholds is obtained with the linear regression ap-
proach. The standard deviations obtained with MLE may be smaller or
larger than those obtained with linear regression depending on the consid-
ered IM and threshold.

Table 2: Steel frame structure - Parameters of the obtained fragility curves.

PGA Sa
δo Approach Median Log-std Median Log-std

0.7%
MLE 0.6844 g 0.6306 1.2327 g 0.2915
LR 0.7392 g 0.6260 1.3529 g 0.3433

KDE 0.7 g 1.2 g

1.5%
MLE 1.7437 g 0.5194 3.4184 g 0.4327
LR 1.6222 g 0.6260 2.8377 g 0.3433

KDE 1.8 g 3.3 g

2.5%
MLE 2.4958 g 0.4631 6.3357 g 0.3769
LR 2.7472 g 0.6260 4.6621 g 0.3433

KDE 3.0 g 5.6 g

For the three considered drift thresholds, Figure 8 shows the lognor-
mal (with two estimation approaches) and non-parametric (both bMCS- and
KDE-based) fragility curves when PGA is used as IM . One first observes a
remarkable consistency between the curves obtained with the two proposed
non-parametric approaches for all limit states although the algorithms behind
the methods are totally different. This validates the accuracy of the proposed
approaches. For high values of PGA (> 2 g), some noise is observed on the
bMCS curves due to the scarcity of observations in the corresponding inter-
vals. This noise may be reduced by using additional observations in this range
of PGA. Note, however, that the set of synthetic motions used in our analy-
sis has statistical features characterizing the occurrence of actual earthquake
motions (ground motions with large IMs have relatively low probabilities of
occurrence). For the lower threshold (δo = 0.7%), the parametric curves are
in fairly good agreement with the non-parametric curves. For the two higher
thresholds, significant discrepancy is observed between the lognormal curves
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Figure 6: Paired data {(PGAi,∆i) , i = 1, . . . , 104} and linear regression in
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Figure 7: Paired data {(Sai,∆i) , i = 1, . . . , 104} and linear regression in the
logarithmic scale.

and the non-parametric ones. In particular, in the range of high PGA values,
both lognormal curves overestimate the failure probabilities. It is noted that
for δo = 2.5%, the median PGA (leading to 50% probability of exceedance)
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is respectively underestimated by 9% and 17% with the MLE and the linear
regression aproach, respectively.

Figure 9 shows the resulting fragility curves when Sa is used as IM . The
non-parametric curves by bMCS and KDE remain consistent independently
of the limit state. For the two larger thresholds, the lognormal curves exhibit
large variations from the non-parametric curves as well as between each other.
In particular, the curves obtained with MLE underestimate moderate and
large failure probabilities whereas the curves obtained with linear regression
tend to overestimate failure probabilities. For δo = 2.5%, the median PGA is
overestimated by 13% with the MLE approach and is underestimated by 17%
with the linear regression approach. Note that by comparing the absolute
discrepancies, linear regression estimation provides less accurate curves for
Sa than for PGA, although the R2 coefficient of the linear fit is higher
for the former. This is due to the fact that the assumption of normally
distributed errors with constant variance, which is inherent in Eq. (15), is
not valid for Sa, as one observes in Figure 7. Under the assumption of a
unique linear model, the median is overestimated at the lower drift limit and
underestimated at the two larger drift limits.
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Figure 8: Fragility curves by parametric and non-parametric approaches us-
ing PGA as intensity measure. (LR: linear regression; MLE: maximum likeli-
hood estimation; MCS: binned Monte Carlo simulation; KDE: kernel density
estimation)
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Figure 9: Fragility curves by parametric and non-parametric approaches us-
ing Sa as intensity measure. (LR: linear regression; MLE: maximum likeli-
hood estimation; MCS: binned Monte Carlo simulation; KDE: kernel density
estimation)

The previous analysis shows that the two non-parametric approaches,
namely bMCS and KDE, yield consistent fragility curves for both IMs and
for all considered limit states. Using the non-parametric fragility curves as
reference, the accuracy of the lognormal curves is found to depend strongly
on the method for estimating the parameters of the underlying CDF, the
considered IM and the drift threshold of interest. Note that different IMs
have been recommended in literature [53, 59] for structures of different type,
size and material. Accordingly, the accuracy of the lognormal fragility curves
may depend on those factors as well. Possible dependency of the accuracy
of the lognormal curves on the considered response quantity also needs to be
investigated.

4.3 Estimation of epistemic uncertainty by bootstrap
resampling

In the following, we use the bootstrap resampling technique (see Section 3.4)
to investigate the epistemic uncertainty in the fragility curves estimated with
the proposed non-parametric approaches.
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First, we examine the stability of the estimates by comparing those with
the bootstrap medians, and the variability in the estimation by computing
bootstrap confidence intervals. For the two considered IMs and the three
limit states of interest, Figure 10 shows the median bMCS- and KDE-based
fragility curves and the 95% confidence intervals obtained by bootstrap re-
sampling with 100 replications. Figure 10 clearly shows that both the bMCS-
based and the KDE-based median fragility curves obtained with the boot-
strap method do not differ from the curves estimated with the original set
of observations. This shows the stability of the proposed approaches. For
a specified IM and drift limit, the confidence intervals of the bMCS- and
KDE-based curves have similar widths. The interval widths tend to increase
with increasing drift limit and increasing IM value. We note that for a cer-
tain drift limit and failure probability, the confidence intervals for the curves
versus Sa tend to be narrower than for curves versus PGA. This is due to
the higher correlation of structural responses with Sa.

In order to quantify the effect of epistemic uncertainty, one can assess the
variability of the median IM , i.e. the IM value leading to 50% probability of
exceedance. Assuming that the median IM (PGA or Sa) follows a lognormal
distribution [60], the median IM is determined for each bootstrap curve and
the log-standard deviation of the distribution of the median is computed.
Table 3 lists the log-standard deviations of the median IM values for the
same cases as in Figure 10. For the larger threshold δo = 2.5% and PGA as
IM , some curves did not reach probability of exceedance values as high as
50% and thus, results for this case are not shown. One observes in Table 3
that epistemic uncertainty is increasing with increasing threshold δo. For a
certain threshold, using PGA as IM leads to a 4-5 times larger epistemic
uncertainty compared to using Sa. Furthermore, log-standard deviations
of the median IMs are slightly smaller with the KDE approach than with
the bMCS approach. However, in all cases, the log-standard deviations are
small indicating a low level of epistemic uncertainty. This is due to the large
number of ground motions (N = 104) considered in this study.

5 Conclusions

Seismic demand fragility evaluation is one of the basic elements in the frame-
work of performance-based earthquake engineering (PBEE). At present, the
classical lognormal approach is widely used to establish such fragility curves
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Table 3: Log-standard deviation of the median IM

δo Approach PGA Sa

0.7%
bMCS 0.0289 0.0073
KDE 0.0259 0.0052

1.5%
bMCS 0.0658 0.0168
KDE 0.0639 0.0139

2.5%
bMCS 0.0493
KDE 0.0306

mainly due to the fact that the lognormality assumption makes seismic risk
analysis more tractable. The approach consists in assigning the shape of a
lognormal cumulative distribution function to the fragility curves. However,
the validity of this assumption remains an open question.

In this paper, we introduce two non-parametric approaches in order to
examine the validity of the classical lognormal approach, namely the binned
Monte Carlo simulation and the kernel density estimation. The former com-
putes the crude Monte Carlo estimators for small subsets of ground motions
with similar values of a selected intensity measure, while the latter estimates
the conditional probability density function of the structural response given
the ground motion intensity measures using the kernel density estimation
technique. The proposed approaches can be used to compute fragility curves
when the actual shape of these curves is not known as well as to validate
or calibrate parametric fragility curves. Herein, the two non-parametric ap-
proaches are confronted to the classical lognormal approach on the example
of a steel frame subject to synthetic ground motions.

In the case study, the fragility curves are established for three inter-storey
drift-limit levels and two ground motion intensity measures, namely the peak
ground acceleration (PGA) and the spectral acceleration (Sa). The two non-
parametric curves are consistent in all cases which proves the validity of the
proposed techniques. Accordingly, these are used as reference to assess the
accuracy of the lognormal curves. The parameters of the latter are estimated
with two approaches, namely by maximum likelihood estimation and by as-
suming a linear probabilistic seismic demand model in the log-scale. For
the two higher drift-limit levels, large discrepancies are observed between
the non-parametric and the lognormal curves as well as between the two
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(a) Binned Monte Carlo simulation
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(b) Kernel density estimation
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Figure 10: Estimated, mean bootstrap fragility curves and 95% confidence
intervals by binned Monte Carlo simulation and kernel density estimation
approaches. The mean curves and 95% confidence intervals are computed
using bootstrap resampling technique with 100 replications.

lognormal curves, which demonstrates the insufficiency of the parametric ap-
proach. Fragility estimates obtained with the latter may be conservative or
not depending on the estimation approach, the intensity measure and the
drift threshold. When integrated in the PBEE framework, the discrepancies
of the lognormal curves from the “real” non-parametric ones may induce se-
vere errors in the probabilistic consequence estimates that serve as decision
variables for risk mitigation actions.
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In the same case study, the bootstrap resampling technique is employed to
assess effects of epistemic uncertainty in the non-parametric fragility curves.
It is shown that for a certain limit state, epistemic uncertainty is lower for the
case of Sa, which is a structure-specific intensity measure, than for the case
of PGA. In addition, results from bootstrap analysis validate the stability
of the fragility estimates with the proposed non-parametric methods.

Recently, fragility surfaces have emerged as an innovative way to represent
the system’s vulnerability [13] in which one calculates the failure probabil-
ity conditional on two intensity measures of the earthquake motions. The
computation of these surfaces is not straightforward and requires large com-
putational effort. The present study opens new paths for establishing the
fragility surfaces: similarly to the case of fragility curves, one can use ker-
nel density estimation to obtain assumption-free fragility surfaces that are
consistent with the true ones obtained by Monte Carlo simulation.

The computational cost of the two proposed approaches remains signifi-
cant since they are based on rather large Monte Carlo samples. In order to
reduce this cost, alternative approaches may be envisaged. Polynomial chaos
(PC) expansions [61, 62] appear as a promising tool. Based on a smaller
sample set (typically a few hundreds of finite element runs), PC expansion
provides a polynomial approximation that surrogates the structural response.
The feasibility of post-processing PC expansions in order to compute fragility
curves has been shown in [63, 64] in the case a linear structural behavior is
assumed. The extension to nonlinear behavior is currently in progress.

We underline that the proposed non-parametric approaches are essen-
tially applicable to other probabilistic models in the PBEE framework, re-
lating decision variables with structural damage and structural damage with
structural response. Once all the non-parametric probabilistic models are
available, they can be incorporated in the PBEE framework by means of
numerical integration. Then a full seismic risk assessment may be conducted
by avoiding potential inaccuracies introduced from simplifying parametric
assumptions at any step of the analysis. Optimal high-fidelity computa-
tional methods for incorporating non-parametric fragility curves in the PBEE
framework will be investigated in the future.
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