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Abstract

In the field of computer experiments sensitivity analysis aims at quantify-

ing the relative importance of each input parameter (or combinations thereof)

of a computational model with respect to the model output uncertainty. Vari-

ance decomposition methods leading to the well-known Sobol’ indices are rec-

ognized as accurate techniques, at a rather high computational cost though.

The use of polynomial chaos expansions (PCE) to compute Sobol’ indices has

allowed to alleviate the computational burden though. However, when dealing

with large dimensional input vectors, it is good practice to first use screen-

ing methods in order to discard unimportant variables. The derivative-based

global sensitivity measures (DGSM) have been developed recently in this re-

spect. In this paper we show how polynomial chaos expansions may be used to

compute analytically DGSMs as a mere post-processing. This requires the an-

alytical derivation of derivatives of the orthonormal polynomials which enter

PC expansions. Closed-form expressions for Hermite, Legendre and Laguerre

polynomial expansions are given. The efficiency of the approach is illustrated

on two well-known benchmark problems in sensitivity analysis.

Keywords: global sensitivity analysis – derivative-based global sensitivity

measures (DGSM) – Sobol’ indices – polynomial chaos expansions – deriva-

tives of orthogonal polynomials – Morris method
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1 Introduction

Nowadays, the increasing computing power allows one to use numerical mod-

els to simulate or predict the behavior of physical systems in various fields, e.g.

mechanical engineering (Reuter and Liebscher, 2008), civil engineering (Ha-

sofer, 2009), chemistry (Campolongo et al., 2007), etc. The considered systems

usually lead to highly complex models with numerous input factors (possibly

tens to hundreds (Patelli and Pradlwarter, 2010; Sudret and Mai, 2013)) that

are required to represent all the parameters driving the system’s behaviour,

e.g. boundary and initial conditions, material properties, external excitations,

etc. In practice these input factors are often not perfectly known, since they

are obtained from possibly noisy measurements, or simply by expert judg-

ment. In order to take into account the uncertainty, probabilistic approaches

have been developed in the last two decades, in which the model input param-

eters are represented by random variables. Then the input uncertainties are

propagated through the computational model and the distribution, moments

or probability of exceeding prescribed thresholds may be computed (Sudret,

2007; de Rocquigny, 2012).

In this context, sensitivity analysis (SA) examines the sensitivity of the

model output with respect to the input parameters, i.e. how the output vari-

ability is affected by the uncertain input factors (Saltelli et al., 2000, 2004,

2008). The use of SA is common in various fields: engineering (Hasofer, 2009;

Pappenberger et al., 2008; Reuter and Liebscher, 2008; Kala, 2011), chem-

istry Campolongo et al. (2007), nuclear safety Fassò (2013), economy Bor-

gonovo and Peccati (2006), biology Marino et al. (2008), and medicine Abra-

ham et al. (2007), among others. One can traditionally classify SA into local

and global sensitivity analyses. The former aims at assessing the output sen-

sitivity to small input perturbations around a selected reference value, e.g.

the mean value of the input random vector, or the so-called design point in

reliability analysis (Ditlevsen and Madsen, 1996). The latter aims at assessing

the overall or average influence of input parameters onto the output. Local

SA has the disadvantage of being related to a fixed nominal point in the input

space, and the interaction between the inputs is not accounted for Kucherenko
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et al. (2009). In contrast, global SA techniques take into account the input

interactions and are not based on the choice of a reference point but account

for the whole input space, usually at a larger computational cost though.

The most common sensitivity analysis methods found in the literature are

the method of Morris Morris (1991), FAST Cukier et al. (1973, 1978); Mara

(2009) and variance decomposition methods originally investigated in Sobol’

(1993); Sobol (2001); Sobol’ and Kucherenko (2005); Archer et al. (1997);

Saltelli (2002); Saltelli et al. (2010). Usually standard Monte Carlo simulation

(MCS) or quasi Monte Carlo (QMC) techniques are employed for estimating

the sensitivity indices in all these approaches. This requires a large number of

model evaluations though, which becomes unaffordable when complex systems

are investigated. To overcome this problem, metamodels (also called surrogate

models or emulators) are usually used in order to carry out the Monte Carlo

simulation Sathyanarayanamurthy and Chinnam (2009); Zhang and Pandey

(2014). In particular, polynomial chaos expansions (PCE) have been recog-

nized as a versatile tool for building surrogate models and for conducting

reliability and sensitivity analyses, as originally shown in Sudret (2006, 2008);

Blatman and Sudret (2010a). Using PCE, variance-based sensitivity analysis

becomes a mere post-processing of the polynomial coefficients once they have

been computed.

More recently, a new gradient-based technique has been proposed for

screening unimportant factors. The so-called derivative-based global sensi-

tivity measures (DGSM) are shown to be upper bounds of the total Sobol’

indices while being less computationally demanding Sobol’ and Kucherenko

(2009, 2010); Kucherenko et al. (2009); Lamboni et al. (2013). Although

the computational cost of this technique is reduced compared to the variance-

based technique Kucherenko et al. (2009), its practical computation still relies

on sampling techniques, e.g. the Monte Carlo simulation.

In this paper we investigate the potential of polynomial chaos expansions

for computing derivative-based sensitivity indices and allow for an efficient

screening procedure. The paper is organized as follows: the classical deriva-

tion of Sobol’ indices and their link to derivative-based sensitivity indices is

summarized in Section 2. The machinery of polynomial chaos expansions and
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the link with sensitivity analysis is developed in Section 3. The computation

of the DGSM based on PC expansions is then presented in Section 4, in which

an original method for computing the derivatives of orthogonal polynomials

is presented. Finally two numerical tests are carried out in Section 5.

2 Derivative-based global sensitivity mea-

sures

2.1 Variance-based sensitivity measures

Global sensitivity analysis (SA) aims at quantifying the impact of input pa-

rameters onto the output quantities of interest. One input factor is considered

insignificant (unessential) when it has little or no effect on the output vari-

ability. In practice, screening out the insignificant factors allows one to reduce

the dimension of the problem, e.g. by fixing the unessential parameters.

Variance-based SA relies upon the decomposition of the output variance

into contributions of different components, i.e. marginal effects and interac-

tions of input factors. Consider a numerical model Y = M(X) where the

input vector X contains M independent input variables X = {X1, . . . , XM}
with uniform distribution over the unit-hypercube HM and Y is the scalar

output. The Sobol’ decomposition reads Sobol’ (1993):

Y =M(X) =M0 +
M∑

i=1

Mi(Xi) +
∑

1≤i<j≤M
Mi,j(Xi, Xj) + . . .

+M1, ... ,M (X1, . . . , XM )

(1)

in whichM0 = E [M(X)] is a constant term and each summandMi1, ... ,is(Xi1

, . . . , Xis) is a function of the variables {Xi1 , . . . , Xis} , s ≤M . For the sake

of conciseness we introduce the following notation for the subset of indices:

u
def
= {i1, . . . , is} (2)

and denote by Xu the subvector of X that consists of the variables indexed

by u. Using this set notation, Eq. (1) rewrites:

Y
def
= M0 +

∑

u⊂{1, ... ,M}
u6=0

Mu(Xu), (3)

4



in which Mu(Xu) is the summand including the subset of parameters Xu.

According to Sobol’ (1993), a unique decomposition requires the orthogonality

of the summands, i.e.:

E [Mu(Xu)Mv(Xv)] =

∫

HM

Mu(xu)Mv(xv) dx = 0 , u 6= v (4)

In particular each summand shall be of zero mean value. Accordingly the

variance of the response Y =M(X) reads:

D
def
= Var [Y ] =

∑

u⊂{1, ... ,M}
u6=0

Var [Mu(Xu)] . (5)

In this expansion Var [Mu(Xu)] is the contribution of summand Mu(Xu) to

the output variance.

The Sobol’ sensitivity index Su for the subset of variables Xu is defined as

follows Sobol (2001):

Su
def
=
Du

D
=

Var [Mu(Xu)]

D
(6)

The total sensitivity index for subset Xu is given by Sobol (2001):

STu
def
=
DT

u

D
=
∑

v⊃u

Var [Mv(Xv)]

D
(7)

where the sum is extended over all sets v = {j1, . . . , jt} which contains u.

It represents the total amount of uncertainty apportioned to the subset of

variables Xu. For instance, for a single variable Xi, i = 1, . . . ,M the first

order Sobol’ sensitivity index reads:

Si =
Var [Mi(Xi)]

D
, (8)

and the total Sobol’ sensitivity index reads:

STi =
∑

v3i

Var [Mv(Xv)]

D
. (9)

Si and STi respectively represent the sole and total effect of the factor Xi on

the system’s output variability. The smaller STi is, the less important the

factor Xi is. In the case when STi � 1, say STi ≈ 1− 5%, Xi is considered as

unimportant (unessential or insignificant) and may be replaced in the analysis

by a deterministic value.
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In the literature one can find different approaches for computing the total

Sobol’ indices, such as the Monte Carlo simulation (MCS) and the spectral

approach. Sobol’ (1993); Sobol (2001) proposed direct estimation of the sen-

sitivity indices for subsets of variables using only the model evaluations at

specially selected points. The approach relies on computing analytically the

integral representations of Du and DT
u respectively defined in Eq. (6) and

Eq. (7).

Let us denote by u the set that is complementary to u, i.e. X = (Xu,Xu).

Let X and X ′ be vectors of independent uniform variables defined on the

unit hypercube HM and define X ′ = (X
′
u,X

′
u). The partial variance Du is

represented as follows Sobol’ and Kucherenko (2005):

Du =

∫∫
M(x)M(xu,x

′
u) dx dx

′
u −M0

2 (10)

The total variance DT
u is given by Sobol’ and Kucherenko (2005):

DT
u =

1

2

∫∫ [
M(x)−M(x

′
u,xu)

]2
dx dxu (11)

A Monte Carlo algorithm is used to estimate the above integrals. For each

sample point, one generates two M -dimensional samples x = (xu,xu) and

x
′

= (xu
′
,xu

′
). The function is evaluated at three points (xu,xu), (x

′
u,xu)

and (xu,x
′
u). Using N independent sample points, one computes the quanti-

ties of interest D, Du and DT
u by means of the following crude Monte Carlo

estimators:

M0 =
1

N

N∑

i=1

M
(
x(i)
)

(12)

D +M0
2 =

1

N

N∑

i=1

[
M
(
x(i)
)]2

(13)

Du +M0
2 =

1

N

N∑

i=1

M
(
x(i)
)
M
(
x

(i)
u ,x

(i)′

u

)
(14)

DT
u =

1

N

N∑

i=1

1

2

[
M
(
x(i)
)
−M

(
x

(i)′
u ,x

(i)
u

)]2
(15)

The computation of the sensitivity indices by MCS may exhibit reduced ac-

curacy when the mean valueM0 is large. In addition, the computational cost

is prohibitive: in order to compute the sensitivity indices for M parameters,

MCS requires (M + 2)×N model runs, in which N is the number of sample
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points typically chosen equal to 103 − 104 to reach an acceptable accuracy.

Saltelli (2002) suggested a procedure that is more efficient for computing the

first and total sensitivity indices. Sobol’ et al. (2007) modified the MCS pro-

cedure in order to reduce the lack of accuracy. Some other estimators for the

sensitivity indices by MCS may be found in Monod et al. (2006); Janon et al.

(2013).

2.2 Derivative-based sensitivity indices

The total Sobol’ indices may be used for screening purposes. Indeeed a neg-

ligible total Sobol’ index STi means that variable Xi does not contribute to

the output variance, neither directly nor in interaction with orther variables.

In order to avoid the computational burden associated with estimating all

total Sobol’ indices, a new technique based on derivatives has been recently

proposed by Kucherenko et al. (2009).

Derivative-based sensitivity analysis originates from the Morris method

introduced in Morris (1991). The idea is to measure the average of the ele-

mentary effects over the input space. Considering variableXi one first samples

an experimental design (ED) in the input space X =
{
x(1), . . . ,x(N)

}
and

then varies this sample in the ith direction. The elementary effect (EE) is

defined as:

EE
(j)
i =

M(x
(j)
r )−M(x(j))

∆
(16)

in which x(j) =
{
x

(j)
1 , . . . , x

(j)
i , . . . , x

(j)
M

}
is the jth sample point and x

(j)
r ={

x
(j)
1 , . . . , x

(j)
i + ∆, . . . , x

(j)
M

}
is the perturbed sample point in the i-th direc-

tion. The Morris importance measure (Morris factor) is defined as the average

of the EEi’s:

µi =
1

N

N∑

j=1

EE
(j)
i (17)

By definition, the variance σ2
i of the EEs is calculated from:

σ2
i =

1

N − 1

N∑

j=1

(EE
(j)
i − µi)2 (18)

The resulting mean µiand standard deviation σi are usually plotted in a two-

dimensional graph, see Figure 1.
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Figure 1: Morris method: representation of the mean and standard deviation of the

elementary effects

The interpretation of this graph reads as follows: when µi and σi are

jointly small (lower left corner of the plot), the parameter Xi is considered

as unimportant. When µi is large and σi is small (lower right corner) then

Xi is considered as an important parameter, from which the model output

quasi-linearly depends (a zero standard deviation indicates a fully linear re-

lationship). Finally, when σi is also large (upper part of the plot), parameter

Xi is considered as important, and the output depends on this very parameter

in a nonlinear way and/or it interacts with other parameters.

Kucherenko et al. (Kucherenko et al., 2009) generalized the quantities in

Eqs.(17)-(18) as follows:

µi
def
= E

[
∂M
∂xi

(X)

]
=

∫

HM

∂M
∂xi

(x)dx (19)

σ2
i =

∫

HM

[
∂M
∂xi

(x)

]2

dx− µ2
i (20)

provided that
∂M
∂xi

is square-integrable. The interpretation of these measures

is similar as for the original Morris method.
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Because the elementary effects may be positive or negative, they can cancel

each other, which might lead to a misinterpretation of the importance of Xi.

To avoid this, Campolongo et al. (2007) modified the Morris factor as follows:

µ∗i = E
[∣∣∣∣
∂M
∂xi

(X)

∣∣∣∣
]

(21)

Recently, Sobol’ and Kucherenko (2009) introduced a new sensitivity mea-

sure (SM) which is the mean-squared derivative of the model with respect to

Xi:

νi = E

[(
∂M
∂xi

(X)

)2
]

(22)

Sobol’ and Kucherenko (2009) and Lamboni et al. (2013) have established a

link between the νi in Eq. (22) and the total Sobol’ indices in Eq. (9). In case

Xi is a uniform random variable over [0, 1], one gets:

STi ≤ SDGSMi
def
=

νi
π2D

(23)

where SDGSMi is the upper-bound to the total sensitivity index STi and D is

the model output variance. In case of a uniform variable Xi ∼ [ai, bi] this

upper bound scales to:

STi ≤ SDGSMi =
(bi − ai)2

π2

νi
D

(24)

Finally the above results can be extended to other types of distributions. If

Xi ∼ N (ai, bi) is a Gaussian random variable with mean and variance ai and

b2i respectively, one gets:

STi ≤ SDGSMi = bi
2 νi
D

(25)

In the general case, Lamboni et al. (2013) define the upper bound of the total

Sobol’ index of Xi as:

SDGSMi = 4Ci
2 νi
D

(26)

in which Ci = sup
x∈R

min [FXi(x), 1− FXi(x)]

fXi(x)
is the Cheeger constant, FXi is

the cumulative distribution function of Xi and fXi is the probability density

function of Xi.
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3 Polynomial chaos expansions

Let us consider a numerical model Y = M(X) where the input vector X is

composed of M independent random variables X = {Xi, i = 1, . . . ,M} and

Y is the output quantity of interest. Assuming that Y has a finite variance, it

can be represented as follows Ghanem and Spanos (2003); Soize and Ghanem

(2004):

Y =M(X) =
∞∑

j=0

yjφj(X) (27)

in which {φj(X), j = 0, . . . ,∞} form a basis on the space of second order

random variables and yj ’s are the coordinates of Y onto this basis. In case the

basis terms are multivariate orthonormal polynomials of the input variables

X, Eq. (27) is called polynomial chaos expansion.

Assuming that the input vector X has independent components Xi with

prescribed probability distribution functions fXi , one obtains the joint prob-

ability density function:

fX(x) =

M∏

i=1

fXi(xi) (28)

For each Xi, one can construct a family of orthogonal univariate polynomials{
P

(i)
k , k ∈ N

}
with respect to the probability measure PXi(dxi) = fXi(xi)dxi

satifying:

〈P (i)
j , P

(i)
k 〉

def
= E

[
P

(i)
j (Xi)P

(i)
k (Xi)

]
=

∫
P

(i)
j (xi)P

(i)
k (xi)fXi(xi)dxi = c

(i)
j δjk

(29)

where 〈·, ·〉 is the inner product defined on the space associated with the

probability measure PXi(dxi), δjk is the Kronecker symbol with δjk = 1 if

j = k, otherwise δjk = 0 and c
(i)
j is a constant. The univariate polynomial P

(i)
j

belongs to a specific class according to the distribution of Xi. For instance,

if Xi is standard uniform (resp. Gaussian) random variable,
{
P

(i)
j

}
j≥0

are

orthogonal Legendre (resp. Hermite) polynomials. Then the orthonormal

univariate polynomials are obtained by normalization:

Ψ
(i)
j = P

(i)
j /

√
c

(i)
j (30)

Introducing the multi-indices α = (α1, . . . , αM ), a multivariate polynomial
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can be defined by tensor product as:

Ψα(x)
def
=

M∏

i=1

Ψ(i)
αi

(xi) (31)

Soize and Ghanem (2004) prove that the set of all multivariate polynomials

Ψα in the input random vector X forms a basis of the Hilbert space of second

order random variables:

Y =
∑

α∈NM

aαΨα(X) (32)

where aα’s are the deterministic coefficients of the representation.

In practice, the input random variables are usually not standardized, there-

fore it is necessary to transform the input vector into a set of standard vari-

ables. We define the isoprobabilistic transform Z = T −1(X) which is a unique

mapping from the original random space of Xi’s onto a standard space of M

basic independent random variables Zi’s. As an example Zi may be a standard

normal random variable or a uniform variable over [−1, 1].

In engineering applications, only a finite number of terms can be computed

in Eq.(32). Accordingly, the truncated polynomial chaos expansion of Y can

be represented as follows Sudret (2007):

Y =M(X) =M (T (Z)) =
∑

α∈A
aαΨα(Z) (33)

in which A is the set of multi-indices α’s retained by the truncation scheme.

The application of PCE consists in choosing a suitable polynomial basis

and then computing the appropriate coefficients aα’s. To this end, there

exist several techniques including spectral projection Le Mâıtre et al. (2002);

Matthies and Keese (2005), stochastic collocation method Xiu (2009) or least

square analysis (also called regression, see (Berveiller et al., 2004, 2006)).

A review of these so-called non-intrusive techniques is given in (Blatman,

2009). Recently, the least-square approach has been extended to obtain sparse

expansions (Blatman and Sudret, 2010b, 2011). This technique has been

applied to global sensitivity analysis in Blatman and Sudret (2010a). The

main results are now summarized.

First note that the orthonormality of the polynomial basis leads to the

following properties:

E [Ψα(Z)] = 0 and E [Ψα(Z) Ψβ(Z)] = δαβ (34)
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As a consequence the mean value of the model output y is E [Y ] = a0 whereas

the variance is the sum of the square of the other coefficients:

D = Var [Y ] = Var

[∑

α∈A
aαΨα(Z)

]
=
∑

α∈A
α 6=0

aα
2 Var [Ψα(Z)] =

∑

α∈A
α 6=0

aα
2 (35)

Making use of the unique orthonormality properties of the basis, Sudret (2006,

2008) proposed an original post-processing of the PCE for performing global

sensitivity analysis. For any subset variables u = {i1, . . . , is} ⊂ {1, . . . ,M},
one defines the set of multivariate polynomials Ψα which depends only on u:

Au = {α ∈ A : αk 6= 0 if and only if k ∈ u} (36)

TheAu’s form a partition ofA, thus the Sobol’ decomposition of the truncated

PCE in Eq. (33) may be written as follows:

Y = a0 +
∑

u⊂{1, ... ,M}
u6=∅

Mu(Zu) (37)

where:

Mu(Zu)
def
=
∑

α∈Au

aαΨα(Z) (38)

In other words the Sobol’ decomposition is directly read from the PC ex-

pansion. Consequently, due to the orthonormality of PC basis, the partial

variance Du reads:

Du = Var [Mu(Zu)] =
∑

α∈Au

a2
α (39)

As a consequence the Sobol’ indices at any order may be computed by a mere

combination of the squares of the coefficients. As an illustration, the first

order PC-based Sobol’ indices read:

Si =
∑

α∈Ai

a2
α/D, Ai = {α ∈ A : αi > 0, αj 6=i = 0} (40)

whereas the total PC-based Sobol’ indices are:

STi =
∑

α∈AT
i

a2
α/D, ATi = {α ∈ A : αi > 0} (41)
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4 Derivative of polynomial chaos expan-

sions

In this paper, we consider the combination of polynomial chaos expansions

with derivative-based global sensitivity analysis. On the one hand, PCE are

already known to provide accurate metamodels at reasonable cost. On the

other hand, the derivative-based sensitivity measure (DGSM) is effective for

screening unimportant input factors. The combination of PCE and DGSM ap-

pears as a promising approach for effective low-cost SA. In fact, once the PCE

metamodel is built, the DGSM can be computed as a mere post-processing of

the metamodel which simply consists of polynomial functions.

As seen in Section 2, a DGSM is related to the expectation of the square

of the model derivative, which was denoted by νi. We will express the model

derivative in a way such that the expectation operator can be easily computed,

more precisely by projecting the components of the gradient ∇M onto a PC

expansion.

4.1 Hermite polynomial chaos expansions

In this section we consider a numerical model Y = M(X) where Y is the

scalar output and X = {Xi, . . . , XM} is the input vector composed of M in-

dependent Gaussian variables Xi ∼ N (µi, σi). The isoprobabilistic transform

reads:

X = T (Z) : Xi = µi + σiZi (42)

where Zi ∼ N (0, 1) are standard normal random variables. The truncated

PCE of Y reads:

Y =M(X) =M (T (Z)) =
∑

α∈A
aαΨα(Z) (43)

in which α = {α1, . . . , αM} is a multi-index, A is the set of indices α in

the truncated expansion, Ψα(z) =
M∏
i=1

H̃eαi(zi) is the multivariate polyno-

mial basis obtained as the tensor product of univariate orthonormal Hermite

polynomials H̃eαi(zi) (see A) and aα is the deterministic coefficient associated

with Ψα(z).
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Since T is a one-to-one mapping with
∂zi
∂xi

=
1

σi
, the derivative-based

sensitivity index reads:

νi = E

[(
∂M
∂xi

(X)

)2
]

= E

[(
∂M◦ T
∂zi

∂zi
∂xi

)2
]

=
1

σi2
E

[(
∂M◦ T
∂zi

(Z)

)2
]

(44)

The DGSM of Xi, in other words the corresponding upper bound to the

total Sobol’ index STi , is computed according to Eq. (25):

SDGSMi = σ2
i

νi
D

=
1

D
E

[(
∂M◦ T
∂zi

(Z)

)2
]

=
1

D
E



(
∂

∂zi

∑

α∈A
aαΨα(Z)

)2



(45)

in which D = Var [Y ] =
∑

α∈A,α 6=0

a2
α. This requires computing the partial

derivatives of polynomial functions of the formMA(z) =
∑
α∈A

aαΨα(z). One

can prove that the derivatives H̃e
′

n(z) =
dH̃en

dz
(z) read (see A):

H̃e
′

n(z) =
√
n H̃en−1(z) (46)

Therefore the derivative of the multivariate orthonormal Hermite polynomial

Ψα(z) =
M∏
i=1

H̃eαi(zi) with respect to zi reads:

∂Ψα
∂zi

(z) =

M∏

j=1
j 6=i

H̃eαj (zj)
√
αiH̃eαi−1(zi) (47)

provided that αi > 0, and
∂Ψα
∂zi

(z) = 0 otherwise. Then the derivative of a

Hermite PCE with respect to zi is given the following expression:

∂MA
∂zi

(z) =
∑

α∈A(i)

√
αi aαΨ

α
′
i

(48)

in which A(i) = {α ∈ A, αi > 0} is the set of multi-indices α having a non-

zero ith component and α
′
i = {α1, . . . , αi − 1, . . . , αM} is the index vector

derived from α by subtracting 1 from αi. The expectation of the squared

derivative in Eq. (45) is reformulated as:

E

[(
∂MA
∂zi

(Z)

)2
]

= E


 ∑

α∈A(i)

∑

β∈A(i)

√
αi βi aαaβ Ψαi

′Ψ
β
′
i


 (49)

Due to the linearity of the expectation operator, the above equation requires

computing E
[
Ψαi

′Ψ
β
′
i

]
. Note that the orthonormality of the polynomial basis
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leads to E
[
Ψαi

′Ψ
β
′
i

]
= δαβ where δαβ is the Kronecker symbol. Thus one

has:

E

[(
∂MA
∂zi

(Z)

)2
]

=
∑

α∈A(i)

αi a
2
α (50)

As a consequence, in case of a Hermite PCE the DGSM can be given the

following analytical expression:

ŜDGSMi =
1

D

∑

α∈A(i)

αi a
2
α =

∑
α∈A(i)

αi a
2
α

∑
α∈A,α6=0

a2
α

(51)

Note that the total Sobol’ indices STi can be obtained directly from the PCE by

ŜTi =
∑

α∈A(i)

a2
α/

∑

α∈A,α 6=0

a2
α as shown in Eq. (41). With integer indices αi > 0,

it is clear that the inequality STi ≤ SDGSMi is always true by construction.

4.2 Legendre polynomial chaos expansions

Consider now a computational model Y =M(X) where the input vector X

contains M independent uniform random variables Xi ∼ U [ai, bi]. We first

use an isoprobabilistic transform to convert the input factors into normalized

variables Z = {Zi, . . . , ZM}:

X = T (Z) : Xi =
bi + ai

2
+
bi − ai

2
Zi (52)

where Zi ∼ U [−1, 1] are uniform random variables. The Legendre PCE has

the form of the expansion in Eq. (43), except that Ψα(z) =
M∏
i=1

L̃eαi(zi) is now

the multivariate polynomial basis made of univariate orthonormal Legendre

polynomials L̃eαi(zi) (see B). Again, since T is a one-to-one linear mapping

with
∂zi
∂xi

=
2

bi − ai
the derivative-based sensitivity index reads:

νi = E

[(
∂M
∂xi

(X)

)2
]

=
4

(bi − ai)2
E

[(
∂M◦ T
∂zi

(Z)

)2
]

(53)

Similarly to Eq. (45), the upper bound DGSM to the total Sobol’ index STi is

computed from Eq. (24) as:

SDGSMi =
(bi − ai)2

π2

νi
D

=
4

π2D
E

[(
∂M◦ T
∂zi

(Z)

)2
]

=
4

π2D
E



(
∂

∂zi

∑

α∈A
aαΨα(Z)

)2



(54)
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Thus the derivative of univariate and multivariate Legendre polynomials

are required. Denoting by L̃e
′

i(z)
def
=

dL̃e(z)

dz
, one shows in B that:

{
L̃e
′

1(z), . . . , L̃e
′

n(z)
}T

= CLe · {L̃e0(z), . . . , L̃en−1(z)}T (55)

in which CLe is a constant matrix whose ith row contains the coordinates

of the derivative of L̃ei(z) onto a basis made of lower-degree polynomials{
L̃ej(z), j = 0, . . . , i− 1

}
. In other words, L̃e

′

i(z) =
i∑

j=1
CLeij L̃ej−1(z). Us-

ing this notation, the derivative of the multivariate orthonormal Legendre

polynomials Ψα(z) =
M∏
i=1

L̃eαi(zi) with respect to zi reads:

∂Ψα
∂zi

(z) =

M∏

j=1
j 6=i

L̃eαj (zj)

(
αi∑

l=1

CLeαil
L̃el−1(zi)

)
(56)

For a given α = {α1, . . . , αM} let us define by αri the index vector having

the ith component equal to r:

αri =



α1, . . . ,

ithposition︷︸︸︷
r , . . . , αM



 (57)

Using this notation Eq. (56) rewrites as follows:

∂Ψα
∂zi

(z) =

αi∑

l=1

CLeαil
Ψαl−1

i
(58)

Denote by A(i) the set of α having a non-zero index αi, i.e. A(i) = {α ∈
A, αi > 0}. The derivative of a Legendre PCE with respect to zi then reads:

∂MA
∂zi

(z) =
∑

α∈A(i)

aα
∂Ψα
∂zi

(z) =
∑

α∈A(i)

αi∑

l=1

aαC
L
αil

Ψαl−1
i

(z) (59)

Denote by B(i) the set of multi-indices β representing the ensemble of mul-

tivariate polynomials generated by differentiating the linear combination of

polynomials
{

Ψα(z), α ∈ A(i)
}

. B(i) is obtained as:

B(i) =
{
β = α+ (k − αi) · ei, α ∈ A(i), k = 0, . . . , αi − 1

}
(60)

where:

ei = (0, . . . , 0,

ithpos.︷︸︸︷
1 , 0 . . . , 0) (61)
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The derivative of Legendre PCE rewrites:

∂MA
∂zi

(z) =
∑

β∈B(i)
bβ Ψβ(z) (62)

in which the coefficient bβ is obtained from Eq.(59). Since the polynomials

Ψβ are also orthonormal, one obtains:

E

[(
∂MA
∂zi

(Z)

)2
]

=
∑

β∈B(i)
b2β (63)

Finally, the DGSMs read:

ŜDGSMi =
4

π2

∑
β∈B(i)

b2β

∑
α∈A,α 6=0

a2
α

(64)

4.3 General case

Consider now the general case where the input vector X contains M inde-

pendent random variables with different prescribed probability distribution

functions, i.e. Gaussian, uniform or others. Such a problem can be addressed

using generalized polynomial chaos expansions Xiu and Karniadakis (2002).

As the above derivations for Hermite and Legendre polynomials are valid com-

ponentwise, they remain identical when dealing with generalized expansions.

Only the proper matrix yielding the derivative of the univariate polynomi-

als in the same univariate orthonormal basis is needed, see Appendix A for

Hermite polynomials and Appendix B for Legendre polynomials. The deriva-

tion for Laguerre polynomials is also given in Appendix C for the sake of

completeness.

5 Application examples

5.1 Morris function

We first consider the Morris function that is widely used in the literature for

sensitivity analysis Morris (1991); Lamboni et al. (2013). This function reads:

y = βo +

20∑

i=1

βi ωi +

20∑

i<j

βij ωi ωj +

20∑

i<j<l

βijl ωi ωj ωl + β1234 ω1 ω2 ω3 ω4 (65)

in which:
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• ωi = 2 (Xi − 1/2) except for i = 3, 5, 7 where ωi = 2

(
1.2

Xi

Xi + 1
− 1

2

)
,

• the input vector X = {X1, . . . , X20} contains 20 uniform random vari-

ables {Xi ∼ U [0, 1], i = 1, . . . , 20},

• βi = 20 for i = 1, 2, . . . , 10,

• βij = −15 for i, j = 1, 2, . . . , 6, i < j,

• βijl = −10 for i, j, l = 1, 2, . . . , 5, i < j < l,

• β1234 = 5,

• the remaining first and second order coefficients are defined by βi =

(−1)i, β0 = 0 and βij = (−1)i+j ,

• and the remaining third order coefficients are set to 0.

First, a PCE is built using the Least Angle Regression technique based on a

Latin Hypercube experimental design of size N = 500. Then the PCE is post-

processed to obtain the total Sobol’ indices and the upper-bound derivative-

based sensitivity measures (DGSMs) using Eq. (41) and Eq. (64), respectively.

The procedure is replicated 100 times in order to provide the 95% confidence

interval of the resulting sensitivity indices.

As a reference, the total Sobol’ indices are computed by Monte Carlo sim-

ulation as described in Section 2.1 using the sensitivity package in R Pu-

jol et al. (2013). One samples two experimental designs of size N = 5, 000

denoted respectively by A and B then computes the corresponding output

vectors YA and YB. To estimate the total sensitivity index STi with respect

to random variable Xi, one replaces the entire ith column in sample A (which

contains the samples of Xi) by the ith column in sample B to obtain a new

experimental design denoted by Ci. Then the output YCi is computed from

the input Ci. The variance-based STi is obtained by means of YA, YB and

YCi using the sobol2007 function Pujol et al. (2013); Saltelli et al. (2010).

The total number of model evaluations required by the MCS approach is

5, 000 × (2 + 20) = 110, 000. After 100 replications we also obtain the 95%

confidence interval on the sensitivity indices.

The DGSMs are also computed by Monte Carlo simulation for comparison,

using a finite difference scheme to evaluate the gradient for each realization.
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Figure 2: Morris function: PCE-based vs. MCS-based total Sobol’ indices

500 realizations are used, leading to a total number of 500 × (20 + 1) =

11,000 model evaluations. Again the approach is replicated 100 times to get

confidence intervals.

Figure 2 shows the total Sobol’ sensitivity indices computed by MCS and

from the PC expansion as well as their 95% confidence intervals. The median

results (circle and diamonds) are close to each other, and show that input

parameters X11, . . . , X20 are unimportant factors, while X1, X2, X4 and X6

are important ones. It is observed that the confidence intervals are much

smaller for the PCE-based indices than for the MCS-based indices, at a cost

which is two order of magnitude smaller though (500 runs instead of 110,000).

Figure 3 shows the DGSMs computed by MCS and from the PC expansion

as well as their 95% confidence intervals. Again the results obtained by the

two approaches compare very well to each other and it is observed that the

confidence intervals are smaller when using PC expansions. By comparing

Figures 2 and 3, one can check that the obtained total Sobol’ indices are

always smaller than the DGSMs, as expected. Moreover, the less significant

the parameter, the closer the DGSMs gets to the total Sobol’ index.
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Figure 3: Morris function: PCE-based vs. MCS-based derivative-based global sen-

sitivity measures (DGSM)

5.2 Oakley & O’Hagan function

The second numerical example is the Oakley & O’Hagan function Sobol’ and

Kucherenko (2009); Oakley and O’Hagan (2004) which reads:

f(X) = aT1X + aT2 cos(X) + aT3 sin(X) +XTMX (66)

in which the input vector X = {X1, . . . , X15} consists of 15 independent

standard normal random variables {Xi ∼ N (0, 1), i = 1, . . . , 15}. The 15 ×
1 vectors aj , j = 1, 2, 3 and the 15 × 15 matrix M are provided at www.

sheffield.ac.uk/st1jeo.

Given the complexity of the function, the PCE-based approach is run with

a Latin Hypercube experimental design of size N = 600. The size of a single

sample set for the MCS approach isN = 10, 000 resulting in 10, 000×(2+15) =

170, 000 model runs. The procedure is similar as in Section 5.1.

Figures 4 and 5 show the total Sobol’ indices and the DGSMs computed

both from a PC expansion and by Monte Carlo simulation. The conclusions

are similar to the ones already drawn from the first example: the median val-

ues of the PCE-based DGSMs are almost identical to the MCS-based estima-

tors while the confidence intervals are much smaller. Here the computational
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Figure 4: Oakley & O’Hagan function: PCE-based vs. MCS-based total Sobol’

indices
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Figure 5: Oakley & O’Hagan function: PCE-based vs. MCS-based derivative-based

global sensitivity measures (DGSM)

cost is 600 runs for PCE against 500× (15+1) = 8, 000 for the DGSMs. From

the values one can conclude that X11, . . . , X15 are important parameters,

whereas the other have medium to little importance.
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5.3 Oakley & O’Hagan function: convergence

In order to better assess the accuracy of the polynomial chaos expansions as

a tool for computing the DGSMs, we carry out a parametric study on the

number of samples used in the analysis. Precisely, a Latin hypercube sample

of size N is used as the experimental design for establishing the PC expansion,

and as the set of points where the gradient is computed for the MCS-based

approach (thus 2N points are used for computing a single DGSM).
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Figure 6: Oakley & O’Hagan function: convergence of the PCE-based (resp. MCS-

based) DGSMs as a function of the number of runs (NB: abscissa is the size of the

experimental design for PCE, whereas the actual number of runs for MCS is twice

larger, for each DGSM)

The convergence plots are shown for variables X3, X9, X15 and X11 which

range from unimportant to most important. In each case the reference solution
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is attained using 500 runs or less using PC expansions whereas the convergence

is not attained even for 2 × 2, 000 runs using MCS. Again it is emphasized

that a single experimental design (e.g. of size 500) is used for computing

all 15 DGSMs, whereas Monte Carlo simulation requires (15 + 1) times this

number as a whole, which makes PC expansions even more appealing in large

dimensions.

6 Conclusions

In practical problems, the system of interest usually contains numerous ran-

dom input factors which might lead to large uncertainty in the model output.

Therefore, it is important to quantify the important factors according to their

contributions to the output uncertainty so as to fix unimportant factors to

deterministic values and simplify the model. However, the commonly used

sampling-based approaches for global sensitivity analysis may be computa-

tionally prohibitive in large dimensions.

In this paper, we combined the polynomial chaos expansions (PCE) meta-

modelling with a derivative-based sensitivity analysis technique. Polynomial

chaos expansions are effective surrogate models for global sensitivity analy-

sis. The very nature of the orthogonal expansions reduces the computation of

(total) Sobol’ indices to a mere post-processing of the PC coefficients. Sim-

ilarly, DGSMs can be computed by a straightforward post-processing, i.e.

without requiring additional model runs. One only needs to differentiate the

multivariate polynomials, which in the end reduces to differentiating univari-

ate polynomial functions. Expressions were given for the classical Hermite,

Legendre and Laguerre polynomials. In order to carry out the computation

efficiently the derivative polynomials shall be represented onto the orthonor-

mal basis of the same family, which can be done once and for all. Note that

the derivatives of classical orthogonal polynomial expansions is also an asset

of this paper, which can be reused in other contexts including gradient-based

optimization algorithms.

The proposed PCE/DGSM technique is illustrated on two well-known

benchmark functions. By comparing with Monte Carlo simulation, the PCE
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approach is shown to provide sensitivity indices with smaller uncertainty at a

computational cost that is one to two orders of magnitude smaller. The gain

is even larger in high dimensions since the finite difference computation of

the gradients leads to a linear increase of the computational cost with respect

to the input dimension for MCS-based DGSMs, whereas the use of sparse

polynomial chaos expansions makes the approach rather insensitive to that

dimension.

As an outlook, the capacity of PC expansions to estimate DGSM indices

using very small experimental designs shall be investigated, in order to have

a real screening method that only makes use of limited information to rank

qualitatively the input parameters according to their importance. This work

is currently in progress.
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As seen in Section 4, the computation of polynomial chaos expansions

derivative-based global sensitivity measures (PCE-DGSMs) consists of two

steps. The first step is to represent the derivative of the PCE in terms of

orthonormal polynomials from the same families. It essentially requires to

construct the matrices of coefficients C that are used for differentiating the

classical orthonormal polynomials. The second step is to post-process this

“PCE” of the derivative. A general solution to compute the mean squared

derivative using the coefficients matrices C was presented in Section 4.3.

A Hermite polynomial chaos expansions

The classical Hermite polynomials {Hen, n ∈ N}, where n determines the de-

gree of the polynomial, are defined on the set of real numbersR so as to be

orthogonal with respect to the Gaussian probability measure and associated

inner product:

〈Hem, Hen〉 def
=

∫

R
Hem(z)Hen(z)

e−z
2/2

√
2π

dz = n! δmn (67)

The Hermite polynomials satisfy the following differential equation (Abramovitz

and Stegun, 1965, Chap. 22)

d

dz
Hen(z) = nHen−1(z) (68)

From Eq. (67) the norm of Hermite polynomials reads:

〈Hen, Hen〉 = n! (69)

so that the orthonormal Hermite polynomials are defined by:

H̃en(z) =
1√
n!
Hen(z) (70)
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Substituting for Eq. (70) in Eq. (68), one gets the derivative of orthonormal

Hermite polynomial H̃e
′

n(z)
def
=

dH̃e(z)

dz
:

H̃e
′

n(z) =
√
n H̃en−1(z) (71)

For computational purposes the following matrix notation is introduced:

{
H̃e

′

1(z), . . . , H̃e
′

n(z)
}T

= CH · {H̃e0(z), . . . , H̃en−1(z)}T (72)

which allows one to cast the derivative of the orthonormal Hermite polyno-

mials in the initial basis. From Eq. (71), CH is obviously diagonal:

CHi,j =
√
i δij (73)

B Legendre polynomial chaos expansions

The classical Legendre polynomials {Len, n ∈ N} are defined over [−1, 1] so

as to be orthogonal with respect to the uniform probability measure and

associated inner product:

〈Lem, Len〉 def
=

∫ 1

−1
Lem(z)Len(z)

dz

2
=

1

2n+ 1
δmn (74)

They satisfy the following differential equation (Abramovitz and Stegun, 1965,

Chap. 22)
d

dz
[Len+1(z)− Len−1(z)] = (2n+ 1)Len(z) (75)

Using the notation Le
′
n(z)

def
=

dLen(z)

dz
one can transform Eq. (75) into the

equation:

Le
′
n+1(z) = (2n+ 1)Len(z) + Le

′
n−1(z)

= (2n+ 1)Len(z) + (2(n− 2) + 1)Len−2(z) + Le
′
n−3(z)

= · · ·

(76)

From Eq. (74), the norm of Legendre polynomials reads:

〈Len, Len〉 =
1

2n+ 1
(77)

so that the orthonormal Legendre polynomials read:

L̃en(z) =
√

2n+ 1Len(z) (78)
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Substituting for Eq. (78) in Eq. (76) one obtains:

L̃e
′

n+1(z) =
√

2n+ 3
[√

2n+ 1 L̃en(z) +
√

2(n− 2) + 1 L̃en−2(z)

+
√

2(n− 4) + 1 L̃en−4(z) + . . .
] (79)

Introducing the matrix notation:

{
L̃e
′

1(z), . . . , L̃e
′

n(z)
}T

= CLe · {L̃e0(z), . . . , L̃en−1(z)}T (80)

the matrix CLe reads:

CLe =




√
3 0 0 0 . . .

0
√

5
√

3 0 0 . . .
√

7 · 1 0
√

7
√

5 0 . . .
...

0
√

4p+ 1
√

3 0
√

4p+ 1
√

7 . . .
√

4n+ 1
√

4n− 1




(81)

when n = 2p is even and

CLe =




√
3 0 0 0 . . .

0
√

5
√

3 0 0 . . .
√

7 · 1 0
√

7
√

5 0 . . .
...

√
4p+ 3 · 1 0

√
4p+ 3

√
5 0 . . . 0

√
4p+ 3

√
4p+ 1




(82)

when n = 2p+ 1 is odd.

C Generalized Laguerre polynomial chaos

expansions

Consider a model Y =M(X) where the input vector X contains M indepen-

dent random variables with Gamma distribution Xi ∼ Γ(αi, βi), (αi, βi > 0)

with prescribed probability density functions:

fXi(xi) = βi
αi

1

Γ(αi)
xαi−1e−βixi (83)

where Γ(·) is the Gamma function. We first use an isoprobabilistic transform

to convert the input factors into a random vector Z = {Zi, . . . , ZM} as
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follows:

Zi = βiXi (84)

One can prove that:

fZi(zi) =

∣∣∣∣
dxi
dzi

∣∣∣∣ fXi(xi) =
1

Γ(α)
zi
α−1e−zi (85)

which means Zi ∼ Γ(αi, 1).

By definition, the generalized Laguerre polynomials
{
L

(α−1)
n (z), n ∈ N

}
,

where n is the degree of the polynomial, are orthogonal with respect to the

weight function w(z) = zα−1e−z over (0,∞):

〈L(α−1)
n (z), L(α−1)

m (z)〉 def
=

+∞∫

0

zα−1e−zL(α−1)
n (z)L(α−1)

m (z)dz =
Γ(n+ α)

n!
δmn

(86)

The derivative of L
(α−1)
n reads:

L
′(α−1)
n (z) = −

n−1∑

k=0

L
(α−1)
k (z) (87)

Recall that one obtains the Gamma distribution by scaling the weight function

w(z) by 1/Γ(α). Therefore in the context of PCE, we use the generalized

Laguerre polynomials functions orthonormalized as follows:

L̃(α−1)
n (z) =

√
n!Γ(α)

Γ(n+ α)
L(α−1)
n (z) =

√
nB(n, α)L(α−1)

n (z) (88)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function. Substituting for Eq. (88) in

Eq. (87) one obtains:

L̃
′(α−1)
n (z) = −

n−1∑

k=0

√
Γ(k + α+ 1)n!

Γ(n+ α+ 1) k!
L̃

(α−1)
k (z) = −

n∑

k=1

√
B(n+ 1, α)

B(k, α)
L̃

(α−1)
k−1 (z)

(89)

Introducing the matrix notation:

{
L̃
′
1(z), . . . , L̃

′
n(z)

}T
= CLa · {L̃0(z), . . . , L̃n−1(z)}T (90)

the constant matrix CLa is a lower triangular matrix whose generic term

reads:

CLai,j = −
√
B(i+ 1, α)

B(j, α)
(91)
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