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Abstract

The study makes use of polynomial chaos expansions to compute
Sobol’ indices within the frame of a global sensitivity analysis of hydro-
dispersive parameters in a simplified vertical cross-section of a segment
of the subsurface of the Paris Basin. Applying conservative ranges,
the uncertainty in 78 input variables is propagated upon the mean life-
time expectancy of water molecules departing from a specific location
within a highly confining layer situated in the middle of the model do-
main. Lifetime expectancy is a hydrogeological performance measure
pertinent to safety analysis with respect to subsurface contaminants,
such as radionuclides. The sensitivity analysis indicates that the vari-
ability in the mean lifetime expectancy can be sufficiently explained
by the uncertainty in the petrofacies, i.e. the sets of porosity and hy-
draulic conductivity, of only a few layers of the model. The obtained
results provide guidance regarding the uncertainty modeling in future
investigations employing detailed numerical models of the subsurface
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of the Paris Basin. Moreover, the study demonstrates the high ef-
ficiency of sparse polynomial chaos expansions in computing Sobol’
indices for high-dimensional models.

Keywords – global sensitivity analysis – polynomial chaos ex-
pansions – groundwater flow – lifetime expectancy – deep geological
storage

1 Introduction

With the improvement of computing power, numerical modeling has become
a popular tool for understanding and predicting various kinds of subsurface
processes addressed in the fields of geology and hydrogeology. However, the
incomplete/imprecise knowledge of the underground system frequently com-
pels the modeller to make a number of approximations and assumptions with
regard to the geometry of geological structures, the presence of discontinu-
ities and/or the spatial distribution of hydro-dispersive parameters in their
models Renard (2007). These uncertainties can possibly lead to large vari-
abilities in the predictive modeling of subsurface processes and thus, it be-
comes of major importance to account for the aforementioned assumptions
in the frame of uncertainty and sensitivity analyses. Uncertainty analysis
(UA) aims at quantifying the variability of a given response of interest as a
function of uncertain input factors, whereas sensitivity analysis (SA) has the
purpose to identify the input factors responsible for this variability. Hence,
SA determines the key variables to be described in further detail in order to
reduce the uncertainty in the predictions of a model.

Methods of SA are typically classified in two categories: local SA and
global SA methods. The former investigate effects of variations of the input
factors in the vicinity of nominal values, whereas the latter aim at quanti-
fying the output uncertainty due to variations in the input factors in their
entire domain. Among several global SA methods proposed in the litera-
ture, of interest herein is SA with Sobol’ sensitivity indices, which belongs
to the broader class of variance-based methods Saltelli et al. (2008). These
methods rely upon the decomposition of the response variance as a sum of
contributions of each input factor or combinations thereof and do not assume
any kind of linearity or monotonicity of the model. We note that the Fourier
amplitude sensitivity test (FAST) Cukier et al. (1978); Saltelli et al. (1999)
indices enter this class as well.

Various methods have been investigated for computing the Sobol’ indices
that were first defined in Sobol’ (1993), see e.g. Archer et al. (1997); Sobol’
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(2001); Saltelli (2002); Sobol’ and Kucherenko (2005); Saltelli et al. (2010).
In these papers, Monte Carlo simulation is used as a tool to estimate these
sensitivity indices. This has revealed extremely costly, although more ef-
ficient estimators have been recently proposed Sobol et al. (2007); Janon
et al. (2013). In the recent years, new approaches using surrogate models
have been introduced in the field of global SA Oakley and O’Hagan (2004);
Marrel et al. (2009); Storlie et al. (2009); Zuniga et al. (2013). A popu-
lar method to compute the Sobol’ indices, originally introduced by Sudret
(2008), is by post-processing the coefficients of a polynomial chaos expansion
(PCE) meta-model of the response quantity of interest. PCE constitutes an
efficient UA method in which the key concept is to expand the model re-
sponse onto a basis made of orthogonal polynomials in the input variables.
Once a PCE representation is available, the Sobol’ indices can be calculated
analytically with elementary operations at almost no additional computa-
tional cost. Sparse PCE make the approach even more efficient, as shown in
Blatman and Sudret (2010a).

In the frame of the stochastic modeling of subsurface flow and mass trans-
port, PCE meta-models have proven to be comprehensive and robust tools for
performing SA at low computational cost. As an example, applying a PCE-
based global SA upon a fine-grid numerical model of flow and mass transport
in a heterogeneous porous medium, Fajraoui et al. (2011) and Younes et al.
(2013) established the transient effect of uncertain flow boundary conditions,
hydraulic conductivities and dispersivities on solute concentrations at given
observation points. Sochala and Le Mâıtre (2013) propagated uncertain soil
parameters upon three different physical models of subsurface unsaturated
flow. Their study proved the higher efficiency of PCE meta-models, in com-
parison to a classical Monte-Carlo method, for representing the variability of
the output quantity at low computational cost. In the frame of radionuclide
transport simulation in aquifers, Ciriello et al. (2013) analyzed the statistical
moments of the peak solute concentration measured at a specific location, as
a function of the conductivity field, the dispersivity coefficients and the par-
tition coefficients associated to the heterogeneous media. The comparison of
the Sobol’ indices obtained for various degrees of PCE meta-models showed
that low-degree models can yield reliable indices while considerably reducing
the computational burden. Formaggia et al. (2013) used PCE-based sensi-
tivity indices to investigate effects of uncertainty in hydrogeological variables
on the evolution of a basin-scale sedimentation process. However, the various
aforementioned contributions consider simplified models for the description
of subsurface flow and mass transport. A detailed site characterization model
was employed by Laloy et al. (2013), but global SA was confined to flow pro-
cesses.
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In the scope of the deep geological storage of radioactive wastes, ANDRA
(French National Radioactive Waste Management Agency) has conducted
several studies to assess the potentiality of a clay-rich layer for establish-
ing a mid to long-lived radioactive waste disposal in the subsurface of the
Paris Basin. The thick impermeable layer from Callovo-Oxfordian (COX) age
has been extensively studied (Delay et al., 2006; Distinguin and Lavanchy,
2007; Enssle et al., 2011) together with the two major limestone aquifers,
in place of the Dogger and the Oxfordian sequences (Brigaud et al., 2010;
Linard et al., 2011; Landrein et al., 2013), encompassing the claystone forma-
tion. A recent study (Deman et al., 2015) used a high-resolution integrated
Meuse/Haute-Marne hydrogeological model (AND, 2012) to compute the av-
erage time for water molecules departing from a given area in the COX to
reach the limits of the domain where the numerical model is defined. SA
over hydro-dispersive parameters in 14 hydrogeological layers proved that
the Dogger and Oxfordian limestone sequences have a large influence on the
residence time of groundwater. Indeed, advection processes occurring in per-
meable layers strongly influence the water transit in the subsurface of the
Paris Basin, in contrast to the slow-motion diffusive processes taking place
in impermeable rocks.

However, the analysis of the effect of uncertainties related to other advective-
dispersive parameters, such as boundary conditions, orientations and anisotropies
of hydraulic conductivity tensors or magnitudes of dispersion parameters,
represents a great effort that cannot be carried out with the integrated model
at reasonable computational costs. Addressing the issue of performing UA
with the use of high-resolution numerical models of geological reservoirs,
Castellini and co-workers (Castellini et al., 2003) established that numerical
models built at the coarse scale, but covering a reasonable number of geolog-
ical and geostatistical features, can be particularly informative in capturing
the main subsurface processes at low computational costs.

The present study introduces a vertical two-dimensional multi-layered hy-
drogeological model representing a simplification of the underground media
of the Paris Basin in the vicinity of the site of Bure and does not integrate the
complex geometry of the layers, neither does it include the numerous discon-
tinuities or heterogeneities observed in the field. It must be emphasized that
this simplified model is not aimed at site characterization, but at evaluation
of hydrogeological performance through SA for calibration purposes.

The main objective of the present work is to assess the effect of multiple
advective-dispersive parameters on the mean lifetime expectancy (MLE) of
water molecules departing from a target zone in the central layer. The MLE
corresponds to the average time required for a given solute at a specific lo-
cation to reach any outlet of the model domain and is a critical quantity in
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safety analysis dealing with subsurface contaminants such as radionuclides.
This work represents a substantial complement to the study by Deman et al.
(2015) by encompassing a large scope of uncertain factors, which cannot
be assessed using the integrated model due to the computational burden.
Conservative uncertainty ranges are defined for the input factors analyzed
in the frame of a SA relying on the estimation of PCE-based Sobol’ in-
dices. The sparse PCE approach was chosen because of its ability to tackle
high-dimensional problems with great efficiency. The study provides recom-
mendations for future investigations employing the high-resolution integrated
Meuse/Haute-Marne hydrogeological numerical model of the Paris Basin; in
particular, it identifies the sets of parameters that can be fixed to their nom-
inal values without significantly affecting the MLE variability as well as the
sets of parameters to be described in further detail.

The paper is organized as follows: The subsequent Section 2 provides
a comprehensive description of the considered hydrogeological model, while
Section 3 presents the concepts of SA with Sobol’ indices and the compu-
tation of those indices using PCE. Section 4 includes the results of UA and
SA of the model, along with interpretations accounting for the underlying
physics. Finally, the conclusive Section 5 summarizes the study, highlighting
the main findings of the above analyses, and provides recommendations for
future investigations.

2 The numerical model

2.1 Geometry and finite element mesh

Originally inspired by the COUPLEX numerical model from Bourgeat et al.
(2004), the present model stands as a vertical two-dimensional (x-z) cross-
section of 25,000 × 1,040 meters representing a segment of the Paris Basin
subsurface. The mesh is discretized into 5 × 5 meters square elements for
a total of 1,040,000 elements. In order to subdivide the domain into en-
tities related to geological formations, the main features of the subsurface
were extracted from the lithostratigraphic log of the deep EST433 borehole
(Landrein et al., 2013) in the vicinity of the experimental site of Bure (Haute-
Marne, France). Therefore, the model consists of 15 hydrogeological layers
characterized by tabular geometries, uniform thicknesses and homogeneous
parameters. Figure 1 summarizes the geometry of the model and gives an
overview on the succession and thicknesses of layers.

The bottom layer stands as a 110 m thick low-permeability layer at-
tributed to the Toarcian marl formation (T). Overlying the latter, the suc-
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cession of carbonate formations from the Dogger sequence is subdivided into
5 layers of which the total thickness attains 250 m in the spatial domain.
The sequence encompasses the Bajocian (D1) and Bathonian limestones (D3
and D4) representing the main aquifer formations of the Dogger, a clastic
dominated interval (”Marnes de Longwy”, D2) separating the two. The Dog-
ger sequence is topped with a thin oolithic limestone from Lower Callovian
(”Dalle Nacrée”, C1), implemented as a 15 m thick layer in the model. The
latter marks the transition with the thick, highly impermeable, claystone for-
mation of Callovo-Oxfordian age (C2) of which the thickness reaches 150 m
in the model. In the numerical simulations, a target zone (TZ) located in the
middle of layer C2 (Figure 1) represents the location for the computation of
the output quantity of interest.

The low-permeability COX layer is overlaid by a limestone sequence of
the Oxfordian age. The latter is incorporated as a 260 m thick formation sub-
divided into 6 hydrogeological entities. A relatively confining layer from the
Upper Argovian (C3ab) rests directly on the COX and is followed by perme-
able formations of the Rauracian-Sequanian sequence (L1a to L2c). A thick
interval of marls and argillaceous limestones from Kimmeridgian age (K1-
K2) covers the whole and is implemented as a 160 m thick low-permeability
layer. The top layer is a 120 m thick confining formation attributed to the
Tithonian (K3). The latter outcrops in the vicinity of Bure.

2.2 Governing equations and model outputs

In the numerical simulations the flow is governed by the steady-state equation

∇ · q = 0, (1)

where q = −K ∇H, is the Darcian flux vector [L T−1], K is the tensor of hy-
draulic conductivity [L T−1] and H is the hydraulic head [L]. The anisotropy
AK in the components of the tensor of hydraulic conductivity is defined as
the ratio between the hydraulic conductivities in the two principal directions:
AK = Kz/Kx.

Here, it is assumed that K has orthotropic properties. Considering a
hydraulic conductivity tensor Kp of which the components are mapped into
the Cartesian system and given along their principal direction, Xp, the tensor
K in the global Cartesian space is retrieved by means of the rotation matrix
R with the expression

K = RT Kp R. (2)

For the two-dimensional problem considered, the rotation matrix R is defined
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Figure 1: Geometry and geological layers with the localization of the target
zone (vertical exaggeration: 20).

in terms of the Euler angle θ (in degree) as

R =

(
cos θ sin θ
− sin θ cos θ

)
. (3)

In the present study, steady-state flow simulations are carried out to-
gether with the computation of the lifetime expectancy probability density
function (PDF) at any point x in the domain. Under stationary conditions
(i.e. steady-state flow), the lifetime expectancy PDF addresses the proba-
bility distribution of the time required for a solute, taken at any position
x, to leave the domain. In its formulation, the lifetime expectancy PDF
assimilates the forward advective-diffusive transport equation (ADE) to the
Fokker-Planck (forward Kolmogorov) equation measuring the random motion
of solute particles (Uffink, 1989). For more details on the computation of the
lifetime expectancy PDF, the reader is referred to Cornaton and Perrochet
(2006a,b) and Kazemi et al. (2006).

Based on the ADE, the lifetime expectancy PDF is computed using the
backward transport equation requiring reversed flow directions (q := −q) as
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well as adjusted downstream boundary conditions. The lifetime expectancy
PDF gE(x, t) at any point x in the domain is then governed by

φ
∂gE
∂t

= ∇ · (q gE + D ∇gE), (4)

where φ is the effective porosity [-] and where D is the dispersion tensor

φD = (αL − αT )
q⊗ q

||q|| + αT ||q|| I + φ Dm I, (5)

where I is the identity matrix, Dm is the coefficient of molecular diffu-
sion [L2 T−1], αL and αT are the longitudinal and transverse components
of the macro-dispersion tensor [L] respectively. In the present study, the
anisotropy in the macro-dispersion tensor is determined with the coefficient
Aα = αT/αL.

The straightforward computation of the first moment of the lifetime ex-
pectancy PDF is the so-called mean lifetime expectancy (MLE) E(x, z) [T]
at any position x, governed by

−∇ · (q E + D ∇E) = φ, (6)

where it can be seen that the porosity φ [-] acts as the sink term in the aging
process.

The TZ comprises a set of 1,947 nodes in layer C2, covered by a rectangle
of which the lateral and vertical extensions are x = [18,440; 21,680], z =
[425; 435] (Figure 1). In the present study, the arithmetic mean of E(x, z)
calculated at each of these 1,947 nodes stands for the output response of
interest and is used in the subsequent analysis. It can be seen as the average
time for a solute originating from the TZ to reach any outlet of the domain
of the model.

The finite element simulator GroundWater (Cornaton, 2007) was em-
ployed to solve Eq. (1)-(6) using the finite element technique. A single run
of steady-state flow and MLE computation takes about 120 seconds using a
parallel solver with 6 CPU.

The reader should note that the use of a 2D vertical model to solve for
the hydro-dispersive processes cannot capture correctly the real behavior of
the Paris Basin subsurface because, apart from being a simplified model, it
omits the lateral flow and dispersion along the third dimension. This has the
effect of underestimating the magnitude of the modeled processes Kerrou and
Renard (2010). It is however assumed that this bias is equivalent for all the
layers considered and thus, the interpretation of the SA results obtained with
the 2D cross-section may be generalized to a synthetic 3D case employing
the same settings.
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2.3 Flow boundary conditions

The fully saturated model considers stationary flow conditions in a confined
aquifer which are implemented as Dirichlet type flow boundary conditions
(BCs). These flow BCs are imposed on nodes located at the top of the
model domain as well as at both lateral limits of the two limestone sequences
(Figure 2).

Regional piezometric maps based on field measures (Linard et al., 2011)
were used to constrain the hydraulic gradients in both carbonate sequences.
The flow BCs imposed on the lateral boundaries of the two limestone se-
quences derive from a 25 km transect starting from the Gondrecourt trough
and extending in a North-West direction, the main regional flow direction.
The hydraulic gradient set on top of the domain corresponds to the average
topographic gradient of the region covered by the transect.

Under these conditions, the general groundwater flow direction is oriented
from right to left. The proportions of the total outflowing rates are approx-
imately 2%, 60% and 38% for the top of the domain, the Oxfordian and
the Dogger discharge boundaries, respectively. In layer C2, the groundwater
flows downward in the very right part of the domain and then upward in the
remainder, with a hydraulic gradient inversion in the vicinity of the TZ (see
Figure 2). As a summary, the flow BCs are gathered in Table 1.

Table 1: Flow boundary conditions.

Boundary Position Hydraulic head
right Oxfordian x = 25000, z = [500, 760] H = 305 m
left Oxfordian x = 0, z = [500, 760] H = 230 m
right Dogger x = 25000, z = [110, 360] H = 295 m
left Dogger x = 0, z = [110, 360] H = 275 m
top of domain x = [0, 25000], z = 1040 H = 225 + 85x/25000
elsewhere no flow

To account for uncertainties in the flow BCs, the hydraulic gradients in
the two limestone sequences and on the top of the domain are considered as
uncertain input factors included in the following SA (Section 4). A change
in the hydraulic gradients may shift the position of the vertical groundwater
flux inversion in layer C2, and thus the MLE calculated at the TZ.

2.4 Hydraulic conductivity and porosity values

Many studies have undertaken the inventory of hydraulic conductivity (K)
and porosity (φ) values in the various geological formations of the Paris Basin.
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Figure 2: Flow boundary conditions and head contours (vertical exaggera-
tion: 20).

For a large number of wells and boreholes within a wide area around the
experimental site of Bure, laboratory and field measurements were conducted
to provide {K,φ} datasets for the two limestone sequences (Brigaud et al.,
2010; Linard et al., 2011; Fourre et al., 2011; Delay and Distinguin, 2004;
Delay et al., 2007a).

However, very few {K,φ} datasets are available for the four low-permeability
formations implemented in the present model (i.e. K3, K1-K2, C2 and T).
Hence, data extracted from the literature (Cosenza et al., 2002; Delay et al.,
2007b, 2006; Enssle et al., 2011; Mazurek et al., 2011; Vinsot et al., 2011),
and employed in previous studies (Contoux et al., 2013; de Hoyos et al., 2012;
Goncalves et al., 2004a,b), were used to define the uncertainty ranges for the
{K,φ} sets in these layers.

In the geological formations of the Oxfordian and Dogger sequences, large
variabilities of the {K,φ} couples are noticed with the presence of dependen-
cies (e.g. low K and low φ values are correlated). However, in order to
simplify the conceptual approach in a first stage, a perfect dependence be-
tween log10(K) and φ is defined by making use of a mathematical function
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approximating the relationship between these two in each layer. In the se-
quel, both parameters are referred to as a whole under the name petrofacies.
This approach reduces the computational burden of the subsequent SA by
avoiding the use of correlation functions between the two uncertain factors.
The hydraulic conductivity values deriving from the {K,φ} distributions in
each layer are attributed to the longitudinal component of the hydraulic con-
ductivity tensor, Kx. For each layer, the estimated value of Kx is retrieved
through a relationship: log10(Kx) = f(φ) (Deman et al., 2015).

Although no explicit information is available on the following, the geo-
logical formations are believed to feature anisotropic hydraulic conductivity
tensors K, i.e. anisotropy in the two principal components of the tensor (Kx

and Kz) defined as the ratio AK = Kz/Kx. In the nominal case, AK = 0.1
is assumed for every layer in the model.

Preferential flow directions are supposedly taking place within each indi-
vidual layer. For each layer, the Euler angle θ defines the orientation of the
hydraulic conductivity tensor Kp in the Cartesian space (see Eq. (2)-(3)). In
the nominal case, θ = 0 degree is assumed in every layer, which corresponds
to the two principal components of the hydraulic conductivity tensors Kp

being oriented along the x and z axes. The orientation of the groundwater
flux q in the model is principally due to the static hydraulic gradients ∇H
resulting from flow BCs implemented on the edges of the domain. Note how-
ever that the Euler angle θ may locally change the orientation of q in a given
layer and thus, drive the groundwater into adjacent layers where magnitudes
might be different. This phenomenon may have a significant effect on the
MLE calculated from the TZ, which is explored in Section 4.

Table 2 summarizes the nominal values for φ and the corresponding Kx

in each of the 15 hydrogeological layers comprised in the model. The values
for φ correspond to the mean value (or the median value of the CDF) of the
distribution in each layer, whereas the values for Kx derive from approxi-
mation functions. As a reminder, the present study assumes homogeneous
parameters in every layer. Although this feature is unrealistic, it is recalled
that the purpose of this study is to bring insights into the global effect of
equivalent advective-dispersive parameters of the multi-layered hydrogeolog-
ical model and to provide recommendations for a similar application on a
high-resolution integrated hydrogeological model of the Paris Basin.

2.5 Dispersion parameters

The mean lifetime expectancy formulation (Eq. (6)) is an advective-dispersive
solute transport equation, where the longitudinal and transverse components
of the macro-dispersion tensor (αL and αT respectively) control the particles
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Table 2: Nominal values for the porosity (φ) and the longitudinal hydraulic
conductivity (Kx) in the 15 hydrogeological layers.

Layer Kx [m/s] φ [-]
K3 9.01E−09 0.0100

K1-K2 4.53E−09 0.1150
L2c 1.10E−06 0.1389
L2b 3.46E−07 0.1110
L2a 1.62E−07 0.1139
L1b 1.49E−05 0.1604
L1a 1.17E−06 0.1549

C3ab 4.59E−08 0.0984
C2 1.99E−13 0.1580
C1 1.89E−06 0.0470
D4 1.65E−05 0.0905
D3 1.76E−06 0.1016
D2 2.62E−07 0.0623
D1 3.23E−06 0.0688
T 1.95E−12 0.0810

dispersion. These two uncertain factors depend particularly on the rock
type, on the tortuosity of the porous media and also, on the scale considered.
Homogeneous values of αL and αT are set within each layer, with the values
αL = 15 m and Aα = αT/αL = 0.1 considered in the entire domain of the
model in the nominal case.

As mentioned previously, no decay or adsorption effects are accounted
in the computation of the MLE. The coefficient of molecular diffusion cor-
responds to the theoretical self-diffusion coefficient for the water molecule,
Dm = 2.3 10−9 m2/s.

3 Polynomial chaos expansions for sensitivity

analysis

Let us denote by M the computational model describing the behavior of
the considered physical system. Let X = {X1, . . . , XM} denote the M -
dimensional random input vector with joint PDF fX(x) and marginal PDFs
fXi

(xi), i = 1, . . . ,M . Due to the input uncertainties represented by X,
the model response of interest becomes random. The computational model
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is thus considered as the map

X ∈ DX ⊂ RM 7−→ Y =M(X) ∈ R, (7)

where DX is the support of X. In the description of the theoretical frame-
work hereafter, we assume that the components of X are independent, which
is the case for the model in the present study.

As explained in the Introduction, the aim of global SA is to identity ran-
dom input variables and combinations thereof with significant contributions
to the variability of Y as described by its variance. A concise description of
the employed method of PCE-based Sobol’ sensitivity indices is given in the
following; for further details on the topic, the reader is referred to Sudret
(2008) and Blatman and Sudret (2010a). The extension to the case of mutu-
ally dependent random variables is presented in Li et al. (2010); Kucherenko
et al. (2012); Mara and Tarantola (2012).

3.1 Sobol’ indices

Assuming that the function M(X) is square-integrable with respect to the
probability measure associated with fX(x), the Sobol’ decomposition of Y =
M(X) in summands of increasing dimension is given by Sobol’ (1993)

M(X) =M0 +
M∑

i=1

Mi(Xi) +
∑

1≤i<j≤M
Mij(Xi, Xj) + . . .+M12...M(X) (8)

or equivalently, by

M(X) =M0 +
∑

u 6=∅
Mu(Xu), (9)

whereM0 is the mean value of Y , u = {i1, . . . , is} ⊂ {1, . . . ,M} are index
sets and Xu denotes a subvector of X containing only those components
of which the indices belong to u. The number of summands in the above
equations is 2M − 1.

The Sobol’ decomposition is unique under the condition
∫

DXk

Mu(xu)fXk
(xk)dxk = 0, if k ∈ u, (10)

where DXk
and fXk

(xk) respectively denote the support and marginal PDF
of Xk. Eq. (10) leads to the orthogonality property

E [Mu(Xu)Mv(Xv)] = 0, if u 6= v. (11)

13



The uniqueness and orthogonality properties allow decomposition of the vari-
ance D of Y as

D = Var [M(X)] =
∑

u6=∅
Du, (12)

where Du denotes the partial variance

Du = Var [Mu(Xu)] = E
[
M2

u(Xu)
]
. (13)

The Sobol’ index Su is defined as

Su = Du/D, (14)

and describes the amount of the total variance that is due to the interac-
tion between the uncertain input parameters comprising Xu. By definition,∑
u6=∅ Su = 1. First-order indices, Si, describe the influence of each pa-

rameter Xi considered separately, also called main effects. Second-order in-
dices, Sij, describe the influence from the interaction between the parameters
{Xi, Xj}. Higher-order indices describe influences from interactions between
larger sets of parameters.

The total sensitivity indices, STi , represent the total effect of an input
parameter Xi, accounting for its main effect and all interactions with other
parameters. They are derived from the sum of all partial sensitivity indices
Su that involve parameter Xi, i.e.

STi =
∑

Ii
Du/D, Ii = {u ⊃ i}. (15)

It follows that STi = 1 − S∼i, where S∼i is the sum of all Su with u not
including i.

Evaluation of the Sobol’ indices by Monte Carlo simulation is based on a
recursive relationship that requires computation of 2M Monte Carlo integrals
involvingM(X) in order to obtain the full set. Clearly, this is not affordable
when the computational model is a time-consuming algorithmic sequence. In
typical applications, first-order and total indices are computed. We note that
the first-order indices are equivalent to the first-order indices obtained by the
FAST method, which may provide a more efficient computation. It will be
shown next that when a PCE of the quantity of interest is available, the full
set of Sobol’ indices can be obtained analytically at almost no additional
computational cost.
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3.2 Polynomial chaos expansions

3.2.1 Computation of polynomial chaos expansions

A PCE approximation of Y = M(X) in Eq. (7) has the form Xiu and
Karniadakis (2002)

Ŷ =MPCE(X) =
∑

α∈A
yαΨα(X), (16)

where A is a set of multi-indices α = (α1, . . . , αM), {Ψα,α ∈ A} is a set
of multivariate polynomials that are orthonormal with respect to fX(x) and
{yα,α ∈ A} is the corresponding set of polynomial coefficients.

The multivariate polynomials that comprise the PCE basis are obtained
by tensorization of appropriate univariate polynomials, i.e.

Ψα(X) =
M∏

i=1

ψ(i)
αi

(Xi), (17)

where ψ
(i)
αi (Xi) is a polynomial of degree αi in the i-th input variable be-

longing to a family of polynomials that are orthonormal with respect to
fXi

(xi). For standard distributions, the associated family of orthonormal
polynomials is well-known e.g. a standard normal variable is associated with
the family of Hermite polynomials, whereas a uniform variable over [−1, 1]
is associated with the family of Legendre polynomials. A general case can
be treated through an isoprobabilistic transformation of the input random
vector X to a basic random vector e.g. a vector with independent standard
normal components or independent uniform components over [−1, 1]. The
set of multi-indices A in Eq. (16) is determined by an appropriate truncation
scheme. In the present study, a hyperbolic truncation scheme is employed,
which corresponds to selecting all multi-indices that satisfy

‖ α ‖q=
(

M∑

i=1

αqi

)1/q

≤ p. (18)

for appropriate 0 < q ≤ 1 and p ∈ N Blatman and Sudret (2010b). When
q = 1, polynomials of maximum total degree p are retained, whereas use of
a lower q limits the number of basis terms that include interactions between
two or more variables. Optimal values of these parameters may be selected
in terms of error estimates e.g. by using cross validation techniques.

Once the basis has been specified, the set of coefficients y = {yα, α ∈ A}
may be computed by minimizing the mean-square error of the approximation

15



over a set of N realizations of the input vector, E = {x(1), . . . ,x(N)}, called
experimental design. Efficient solution schemes are obtained by considering
the regularized problem

y = arg min
υ∈RcardA

N∑

i=1

(
M(x(i))−

∑

α∈A
υαΨα(x(i))

)2

+ C‖υ‖21, (19)

where ‖υ‖1 =
∑cardA

j=1 |υj| and C is a non-negative constant. A nice feature
of the above regularized problem is that it provides a sparse meta-model by
disregarding insignificant terms from the set of predictors. Higher values of
C lead to sparser meta-models, while its optimal value is typically identified
as the one leading to the minimum error estimated with e.g. cross validation
techniques Tibshirani (1996). In the present application, we solve Eq. (19)
using the hybrid Least Angle Regression (LAR) method as originally proposed
in Blatman and Sudret (2011). Hybrid LAR employs the LAR algorithm
Efron et al. (2004) to select the best set of predictors and subsequently,
estimates the coefficients with standard least-squares minimization.

3.2.2 Error estimates

A good measure of the accuracy of PCE is the mean-square error of the

residual, ErrG = E
[(
Y − Ŷ

)2]
, called generalization error. In practice,

this could be estimated by Monte Carlo simulation using a sufficiently large
set of nval realizations of the input vector, Xval = {x1, . . . ,xnval

}, called
validation set. The estimate of the generalization error is given by

ÊrrG =
1

nval

nval∑

i=1

(
M(xi)−

∑

α∈A
yαΨα(xi)

)2

. (20)

The relative generalization error, êrrG, is estimated by normalizing ÊrrG
with the empirical variance of Yval = {M(x1), . . . ,M(xnval

)}, denoting the
set of model evaluations at the validation set.

However, PCE are typically used as surrogate models in cases when evalu-
ating a large number of model responses is not affordable. It is thus desirable
to get an estimate of ErrG using only the information obtained from the ex-
perimental design. One such measure is the Leave-One-Out (LOO) error
Allen (1971). The idea of the LOO cross-validation is to set apart one point
of the experimental design, say x(i), and use the remaining points to build
the PCE, denotedMPCE\i . The LOO error is obtained after alternating over
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all points of the experimental design, i.e.

ErrLOO =
1

N

N∑

i=1

(M(x(i))−MPCE\i(x(i)))2. (21)

Although the above definition outlines a computationally demanding pro-
cedure, algebraic manipulations allow evaluation of the LOO error from a
single PCE based on the full experimental design. Let us denote by hi the i-
th diagonal term of matrix Ψ(ΨTΨ)−1ΨT, where Ψ = {Ψij = Ψj(x

(i)), i =
1, . . . , N ; j = 1, . . . , cardA}. Then, the LOO error can be computed as

ErrLOO =
1

N

N∑

i=1

(M(x(i))−MPCE(x(i))

1− hi

)2

. (22)

The relative LOO error, errLOO, is obtained by normalizing ErrLOO with
the empirical variance of Y = {M(x(i)), . . . ,M(x(N))}, denoting the set of
model evaluations at the experimental design. Because this error estimate
may be too optimistic, a corrected estimate is herein employed, given by
Chapelle et al. (2002)

err∗LOO = errLOO

(
1− cardA

N

)−1 (
1 + tr((ΨTΨ)−1)

)
. (23)

This corrected LOO error is a good compromise between fair error estimation
and affordable computational cost.

3.3 Sobol’ indices from polynomical chaos expansions

Let us consider the PCE Ŷ = MPCE(X) of the quantity of interest Y =

M(X). It is straightforward to obtain the Sobol’ decomposition of Ŷ in an
analytical form by observing that the summands MPCE

u (Xu) in Eq. (9) can
be written as

MPCE
u (Xu) =

∑

α∈Au

yαΨα, (24)

where Au denotes the set of multi-indices that depend only on u, i.e.

Au = {α ∈ A : αk 6= 0 if and only if k ∈ u}. (25)

Clearly,
⋃Au = A. Consequently, due to the orthonormality of the PCE

basis, the partial variance Du is estimated as

D̂u = Var
[
MPCE

u (Xu)
]

=
∑

α∈Au

yα
2, (26)
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and the total variance is estimated as

D̂ = Var
[
MPCE(X)

]
=

∑

α∈A\{0}
yα

2. (27)

Accordingly, the Sobol’ indices of any order can be obtained by a mere com-
bination of the squares of the PCE coefficients. For instance, the PCE-based
first- and second-order Sobol’ indices are respectively given by

Ŝi =
∑

α∈Ai

yα
2/D̂, Ai = {α ∈ A : αi > 0, αj 6=i = 0} (28)

and
Ŝij

∑

α∈Aij

yα
2/D̂, Aij = {α ∈ A : αi, αj > 0, αk 6=i,j = 0}, (29)

whereas the total Sobol’ indices are given by

ŜTi =
∑

α∈AT
i

yα
2/D̂, ATi = {α ∈ A : αi > 0}. (30)

It is evident that once a PCE representation of Y =M(X) is available,
the complete list of Sobol’ indices can be obtained at a nearly costless post-
processing of the PCE coefficients requiring only elementary mathematical
operations.

4 Results and discussion

Figure 3 provides an overview of the distribution of the MLE throughout the
entire model domain in the nominal case. In this case, the parameters are
distributed homogeneously in each of the 15 layers; Kx and φ take on the
values given in Table 2 for each layer, whereas for all layers the anisotropy
ratio is AK = 0.1, the Euler angle is θ = 0 degree, the longitudinal component
of the macro-dispersion tensor is αL = 15 m and the anisotropy ratio is
Aα = 0.1. The hydraulic gradients follow the boundary conditions settings
described in Section 2.3.

Because of its highly confining properties, the middle layer (C2) presents
values of MLE > 40,000 years. On average, it takes approximately 75,000
years for a solute departing from the TZ to reach any outlet of the domain.
Much lower MLE values are found in the two aquifer sequences, with the
Oxfordian displaying slightly smaller values. The effect of conductive layers
is clearly distinguishable as fringes of low MLE values stretch in layers D4,

18



Figure 3: Spatial distribution of mean lifetime expectancy in the reference
case (vertical exaggeration: 10).

L1a and L1b in particular. As a result of the low permeability in the top two
layers (K3 and K1-K2) and the bottom layer (T), water molecules can take
more than a 100,000 years to flow through the domain.

In the following, we compute the PCE-based Sobol’ indices for the MLE
at the TZ by implementing the theory presented in Section 3. We con-
sider a high-dimensional random input encompassing the entirety of hydro-
dispersive parameters described in Section 2 as well as the flow boundary
conditions. Note that the term porosity, φ, is construed in the discussion
of the Sobol’ indices. Since the values of the hydraulic conductivities are
retrieved through approximation functions, the estimation of the sensitivity
for the φ variables is implicitly associated to that of the Kx variables in the
respective layers. This is singularly important when interpreting the Sobol’
indices for aquifer formations, where the hydraulic conductivity governs the
ageing process (Section 4.4). Computations of the PCE and Sobol’ indices
are performed with the uncertainty quantification software UQLab Marelli
and Sudret (2014); Marelli et al. (2015).

4.1 Modeling of input uncertainty

The uncertain input in each of the 15 layers of the hydrogeological model
comprises the following parameters governing the advective-dispersive pro-
cesses: the petrofacies, P ; the anisotropy in the components of the hydraulic
conductivity tensor, AK ; the Euler angle of the hydraulic conductivity ten-
sor, θ; the longitudinal component of the dispersivity tensor, αL; and the
anisotropy in the longitudinal and vertical components of the dispersivity
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tensor, Aα. Furthermore, the uncertain input includes the hydraulic gradi-
ents, ∇H, at three zones: the Dogger sequence, the Oxfordian sequence and
the top of the model domain, respectively denoted as zone 1, zone 2 and
zone 3.

As stated before, a deterministic relationship log10(Kx) = f(φ) is assumed
for each layer, i.e. the uncertainty regarding the petrofacies, P , of a layer
is treated through the porosity, φ. The available sparse data, characterizing
specific locations in the subsurface of the Paris Basin, provide insufficient
information for a comprehensive definition of the CDF of the φ parameters.
Thus, in order to conduct a conservative study and avoid introducing any
bias in the analysis, the uncertain porosities are modeled as uniform random
variables. The porosity ranges are bounded by the values φ(min) and φ(max)

listed in Table 3 together with the respective coefficients of variation (CoV);
these are shown graphically along the model cross-section in Figure 4. The
bounds φ(min) and φ(max) represent the 1st and 9th deciles of the correspond-
ing CDF derived from porosity values measured in each geological layer. This
approach is justified by the presence of local extreme measures that cannot
be representative for the whole layer. Bounds for the Kx parameters are also
provided in Table 3, consistently with the log10(Kx) = f(φ) approximation
functions, and presented graphically in Figure 5.

Table 3: Ranges of porosity, φ, and respective CoV and hydraulic conduc-
tivity values, Kx, in the 15 geological layers.

Layer φ(min) [-] φ(max) [-] CoV K
(min)
x [m/s] K

(max)
x [m/s]

K3 0.0840 0.1160 0.0924 3.3734e-10 2.4078e-07
K1-K2 0.0870 0.1430 0.1406 9.8116e-11 2.0928e-07

L2c 0.1019 0.1759 0.1538 3.6186e-08 2.6212e-06
L2b 0.0645 0.1574 0.2417 8.7318e-10 6.3950e-06
L2a 0.0651 0.1627 0.2474 4.7005e-10 9.9336e-06
L1b 0.1375 0.1833 0.0824 3.4324e-09 2.8913e-04
L1a 0.0991 0.2107 0.2080 3.1165e-08 2.1523e-06

C3ab 0.0747 0.1221 0.1391 7.8488e-09 1.2945e-06
C2 0.1284 0.1876 0.1082 5.0349e-14 6.2570e-13
C1 0.0142 0.0799 0.4031 1.8184e-07 1.6195e-05
D4 0.0237 0.1573 0.4262 1.6408e-07 3.1521e-03
D3 0.0237 0.1795 0.4427 1.7470e-07 4.3539e-06
D2 0.0185 0.1061 0.4059 6.6071e-08 1.7049e-06
D1 0.0191 0.1186 0.4172 6.2552e-08 1.8425e-05
T 0.0696 0.0925 0.0816 1.2325e-13 8.1328e-12
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Figure 4: Porosity ranges along the model cross-section.

Due to the lack of explicit information, each of the parameters AK , θ, αL
and Aα is identically distributed in the different layers. In particular, the
anisotropy ratios AK and Aα both follow a uniform distribution in [0.01, 1],
the Euler angle θ is uniformly distributed in [-30, 30] (in degrees) and the
parameter αL is uniformly distributed in [5, 25] (in meters). The static hy-
draulic gradients are also uniformly distributed in the ranges given in Table
4. These were obtained by applying a perturbation of 20% of the nominal
hydraulic gradient within each of the three zones. Although hypothetical,
these conservative uncertainty ranges were purposely chosen to provide in-
sights into the behavior of the multi-layered model.

Table 4: Ranges of hydraulic gradient at the three zones of interest.

Zone number ∇H(min) ∇H(max)

1 0.00064 0.00096
2 0.00240 0.00360
3 0.00272 0.00408

In total, the model subsumesM = 78 independent input random variables
upon the MLE of water molecules outflowing from the TZ in the middle of
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Figure 5: Hydraulic conductivity ranges along the model cross-section.

layer C2.

4.2 Polynomial chaos expansions of the model response

In the sequel, we build PCE of the model response in terms of the 78 input
random variables. To this end, we employ Latin hypercube sampling (LHS)
to draw the experimental design McKay et al. (1979). LHS is a popular
technique for obtaining random experimental designs ensuring uniformity of
each sample in the domains of the margin input variables {X1, . . . , XM}.
The data available herein for building the PCE consist of the MLE values for
(i) an experimental design of size N = 2, 000, drawn with LHS and denoted
E , and (ii) an enrichment of E of equal size N ′ = 2, 000, denoted E ′. The
enrichment is built according to the nested-LHS approach so that the joint
set {E , E ′} is approximately a LHS experimental design as well Wang (2003);
Blatman and Sudret (2010c). Histograms of the model response for the two
sets of input vectors are shown in Figure 6. Positively skewed distributions
are observed for both output sets with the modes situated at MLE ≈ 85,000
years.

We develop PCE based on E and on the joint set {E , E ′} and assess their
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Figure 6: Histograms of mean lifetime expectancy values calculated with sets
E (left) and E ′ (right).

comparative accuracy. For the set E , we consider the MLE response in both
the original and the logarithmic scales; in this case, the enrichment E ′ serves
as a validation set for computing the generalization error (see Section 3.2.2).
For all PCE, the candidate basis is determined using a hyperbolic truncation
scheme with q = 0.5 (see Eq. (18)). Sparse PCE are developed by varying
the maximum degree p from 1 to 15; the meta-model of optimal degree is
selected as the one yielding the smallest corrected LOO error (see Eq. (23)).

The first PCE, denoted A, is built using E as the experimental design
and considering the MLE in the original scale. The optimal degree is p = 8
and the corresponding corrected LOO error is err∗LOO = 0.0565. The sparse
PCE includes 185 basis elements, whereas the total number of basis elements
for p = 8 and q = 0.5 is 18, 643; for q = 1, the size of the candidate basis
would be 5.3 × 1010. The index of sparsity, defined as the number of basis
elements in the sparse expansion divided by the size of a full basis for the
same p and q, is 185/18, 643 = 9.9 × 10−3. The small value of this index
herein indicates the interest in developing sparse PCE for analyses of high-
dimensional models. The sparse basis consists of polynomials in 68 out of the
78 total input parameters, meaning that the output does not depend at all on
the values of the 10 excluded parameters. Note that 3 out of the 10 excluded
parameters are properties of layer T. The estimate of the generalization error
(evaluated with E ′) is êrrG = 0.0759. The left graph of Figure 7 compares the

values of the meta-model, Ŷ , with the respective values of the exact model,
Y , at the input samples of the experimental design, E . A similar comparison
but for the validation set, E ′, is shown in the right graph of the same figure.

A second PCE, denoted B, is built by using again E as the experimental
design, but employing a logarithmic transformation of the MLE. The opti-
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Figure 7: Comparison of PCE A with the actual model response at the
experimental design, E , (left) and at the validation set, E ′ (right).

mal sparse PCE is obtained for p = 8 (same degree as for PCE A) with
corresponding corrected LOO error err∗LOO = 0.0287. It comprises 163 ba-
sis elements and thus, has an index of sparsity 163/18, 643 = 8.7 × 10−3.
The sparse basis consists of polynomials in 65 out of the 78 total input pa-
rameters, with 6 out of the 13 excluded parameters representing dispersivity
anisotropy ratios (Aα). The resulting generalization error for the MLE re-
sponse in the original scale (considering the exponential transformation of
the obtained PCE) is estimated as êrrG = 0.0452. Note that both err∗LOO
and êrrG are lower than the respective error estimates for PCE A. The left
and right graphs of Figure 8 compare the exponential transformation of PCE
B with the exact model response at E and E ′, respectively.

Finally, we use as experimental design the joint set {E , E ′} consisting of
N + N ′ = 4, 000 points. The optimal PCE is obtained for p = 10 and the
corresponding corrected LOO error is err∗LOO = 0.0384. The sparse PCE
comprises 312 basis elements and has an index of sparsity 312/106, 887 ≈
2.9×10−3. The only two parameters excluded from the sparse basis are AL2bK

and αTL. The comparison between this meta-model, denoted C, and the exact
model response at the input samples of the experimental design, {E , E ′}, is
shown in Figure 9.

Assessing the relative accuracies of the three meta-models, we note that
all have (corrected) LOO errors of the same order of magnitude, with the
smallest error corresponding to PCE B. Because it is of interest to limit the
number of costly evaluations of the exact hydrogeological model, an exper-
imental design comprising 2, 000 points is deemed most appropriate. We
therefore conduct SA for the MLE response by post-processing the coeffi-
cients of PCE A and B and compare the results. We underline that the
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Figure 8: Comparison of exponential transformation of PCE B with the ac-
tual model response at the experimental design, E , (left) and at the validation
set, E ′ (right).
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Figure 9: Comparison of PCE C with the actual model response at the
experimental design, {E , E ′}.

Sobol’ indices are not invariant under a logarithmic transformation of the re-
sponse quantity of interest (see e.g. Borgonovo et al. (2014)). Nevertheless,
we expect that the Sobol’ indices for the non-transformed and the logarith-
mic MLE will exhibit similar trends, i.e. a parameter that is important for
the variance of the MLE will also be important for the variance of its loga-
rithm. Moreover, it is of interest to perform SA with PCE B, because the
logarithmic transformation represents herein a meaningful quantity from a
physical viewpoint considering the wide variation of MLE.

To further elaborate on the accuracy of the two meta-models employed
in the subsequent SA, we compare the ED-based mean, µ, and standard
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deviation, σ, of the response with the respective quantities, µ̂ and σ̂, obtained
from the PCE coefficients. For the response in the original scale (PCE A),
we have {µ = 113, 216; σ = 53, 220} and {µ̂ = 113, 410; σ̂ = 50, 735},
corresponding to errors {εµ̂ = 0.17 %; εσ̂ = −4.67 %}. For the logarithmic
response (PCE B), we have {µ = 11.545; σ = 0.4180} and {µ̂ = 11.543; σ̂ =
0.4073}, leading to errors {εµ̂ = −0.01 %; εσ̂ = −2.56 %}. Overall, PCE B
is more accurate.

4.3 Sensitivity analysis

Figure 10 shows bar-plots of the total and first-order Sobol’ indices for PCE
A. The ten largest indices are presented in descending order. The superscripts
on the parameter symbols on the horizontal axes denote layer names or zone
numbers. The figures indicate the same ranking of the five most important
parameters in terms of both the total and first-order indices. These are the
porosities of layers D4, C3ab, L1b, L1a and C1 in order of importance, with
the porosity of layer D4 being dominant. Employing the criterion STi < 0.01
to sort out unimportant variables, the porosities of the aforementioned five
layers comprise the only important parameters. Therefore, the screening
allows one to consider 73 out of 78 parameters as unimportant, meaning
that they could be given a deterministic value without affecting essentially
the predicted MLE.

We note that all five layers with porosities identified as important are
located close to the host layer C2. D4 is the thickest among those and has
the highest hydraulic conductivity. Although C1 is adjacent to the host
layer C2, it is associated with smaller total and first-order indices than other
neighboring layers, which may be attributed to its small thickness.

The largest second-order effects (not shown) comprise interactions be-
tween the five porosities classified above as important and involve one of the
layers D4 or L1b. The second-order effects explain 10.9% of the total vari-
ance, whereas contributions from higher-order effects are practically zero.

In the sequel, we demonstrate that the sensitivity pattern in this high-
dimensional problem can be detected by only a few runs of the model. To
this end, we randomly extract 200 points out of the experimental design E
and follow the same procedure as above to compute the PCE-based sensi-
tivity indices for the MLE in the original scale. Conducting 100 repetitions,
we obtain statistics for the ten largest total Sobol’ indices identified in the
analysis with PCE A (see upper graph of Figure 10). These are depicted
in the boxplot in Figure 11, in which the central mark of a box indicates
the median and its edges indicate the 25th and 75th percentiles. We observe
that the median Sobol’ indices from SA performed with experimental designs
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Figure 10: Sobol’ indices using PCE A.

comprising only 200 points are fairly close to the Sobol’ indices obtained with
the experimental design E comprising 2,000 points. Moreover, the dispersion
is relatively small, i.e. ±0.03 at most, which is more than sufficient for a
preliminary screening of the important variables. These results emphasize
the robustness and remarkable efficiency of our approach in dealing with
high-dimensional SA problems.

Let us now compare the above results with respective results obtained
by considering the logarithmic MLE. In Figure 12, we show bar-plots of the
ten highest total and first-order Sobol’ indices in descending order for PCE
B. Obviously, the indices obtained in the two cases, i.e. considering the
non-transformed and the logarithmic MLE, follow similar trends. SA with
PCE B identifies the same five variables as important (STi ≥ 0.01) in the
same order as the analysis with PCE A, with the porosity of layer D4 being
dominant. Furthermore, the five important variables are also the ones with
the highest first-order indices following the same ranking. Again, the largest
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Figure 11: Boxplot of total Sobol’ indices for the MLE in the original scale
using experimental designs with 200 points.

second-order effects involve the porosities of one of the layers D4 or L1b, while
their sum explains 4.2% of the total variance. Thus, second-order effects are
slightly less significant for the logarithmic response than for the response
in the original scale. Contributions of higher than second-order effects are
practically zero.

To gain further insight into the effects of the important variables on the
model response, we examine the behavior of the corresponding first-order
summands comprising univariate polynomials only, i.e.

MPCE
i (xi) = E

[
MPCE(X|Xi = xi)

]
(31)

or equivalently

MPCE
i (xi) =

∑

α∈Ai

yαΨα(xi), Ai = {α ∈ A : αi > 0, αi 6=j = 0}. (32)

Figures 13 and 14 depict such univariate effects considering PCE A and B,
respectively, for the porosities of the five layers classified as important. De-
spite the different scales, the shapes of respective curves in the two figures
demonstrate similar trends. The two PCE include univariate polynomials of
the same degree in φC3ab, φL1a and φC1 (up to second or third degree), but
PCE B includes higher-degree univariate polynomials in φD4 and φL1b (up to
sixth degree) than PCE A (up to fourth degree). The figures demonstrate
that an increasing porosity and thus, an increasing hydraulic conductivity
are associated with a decreasing algebraic contribution to the MLE value.
Indeed, the hydraulic conductivity parameter, mainly responsible for the ad-
vective processes within the layer, is linearly and oppositely related to the
MLE (see Eq. (1) and (4)). Overall, the response is more sensitive to changes
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Figure 12: Sobol’ indices using PCE B.

occurring within low porosity-permeability ranges, where advective processes
are counterbalanced by dispersive-diffusive processes, with the latter being
responsible for higher MLE values. Plateaus observed in certain graphs in-
dicate the ascendancy of one ageing process over the other, which results in
more regular trends.

For a more in-depth investigation of the contributions of the different
types of hydro-dispersive parameters, Table 5 lists the sums of the first-
order indices per type of property over all layers or zones of the considered
cross-section. According to this table, the added main effects of the porosity
parameters account for approximately 87% and 93% of the response variance
for PCE A and B, respectively, whereas the added main effects of all remain-
ing input random variables account for a mere 2.5% and 2.8%, respectively.
We note the higher contributions of main effects for PCE B and the zero
main effects of Aα for both PCE.

The above analysis indicated that among the set of random variables,
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Table 5: Sums of first-order Sobol’ indices over all layers per type of property.

meta-model φ AK θ αL Aα ∇H
A 0.8664 0.0088 0.0029 0.0076 0 0.0057
B 0.9302 0.0096 0.0032 0.0088 0 0.0061

only the porosity parameters of certain layers are important for explaining the
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response variance. As highlighted earlier, because of the assumed relationship
between porosity and hydraulic conductivity in each layer, the Sobol’ indices
for the φ variables are also indicative of the importance ofKx in the respective
layers. Accordingly, in the subsequent discussion of the SA results, we will
interpret the variability of MLE in terms of joint effects of the petrofacies P .

4.4 Discussion of results

The petrofacies of aquifer formations have the largest effects on the variability
of the MLE at the TZ. For layers D4 and L1b in particular, for which the
upper bounds of the hydraulic conductivity ranges are the highest (see Table
3, Figure 5), strong advective processes within their own volume may reduce
the overall groundwater residence time in the model. Besides, the wider
the ranges of Kx values in these permeable formations, the higher are the
contributions of the respective petrofacies to the variability of the MLE. The
three most significant aquifer formations, namely D4, L1b and L1a, have
rather non-linear univariate effects on the output response (see Figures 13
and 14). Substantial changes within the response are observed with small
shifts in the ranges of low porosity-permeability values, revealing the effect of
the balance between advective and dispersive-diffusive transport processes.
But for higher porosity-permeability values, advective fluxes prevail, thus
yielding more linear and moderate changes in the response.

The position of the aquifers relatively to layer C2 is also relevant: the
further the layer is, the lower is its effect on the MLE of water molecules
departing from the TZ. Layer L1a, which is the first aquifer encountered
in the Oxfordian sequence (at a distance of 60 meters from layer C2), has
a significant effect on the output variance, whereas layers D2 and D3 that
have similar Kx ranges have much smaller contributions.

The relatively large uncertainty range and high upper-bound value of per-
meability for layer D1 results in a marginal effect on the response variability
(see Figures 10 and 12), which is nevertheless unimportant with respect to
the threshold STi < 0.01. Its remote location relative to layer C2 explains
the reduced quantity of water molecules departing from the TZ that reach
the layer, given that most of the solute is captured by the highly advective
aquifer from Upper Bathonian (D4) situated in between.

The petrofacies of semi-permeable formations, PC3ab and PC1, are also
significantly influencing the variability of the MLE at the TZ. By isolating
layer C2 from major aquifer formations, they buffer solute intrusions into the
Oxfordian and Dogger aquifer sequences, thus acting like a geological barrier.
Figures 13 and 14 show that their univariate effects on the output quantity
are relatively non-linear despite their limited amplitude.
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We underline that the petrofacies of the host layer attributed to the
Callovo-Oxfordian claystone (PC2) are insignificant with regard to the vari-
ability of the ouput response. This feature was already outlined in the SA
performed upon the integrated high-definition model in (Deman et al., 2015).
Slow diffusive processes take place into highly impermeable rocks, which in-
duces large values of the MLE response (Figure 3) and prove the high effi-
ciency of the Callovo-Oxfordian claystone to act as a geological barrier. Mod-
ifying the magnitudes of advective-dispersive transport processes in layer C2
does not add a significant variability to the time required for solutes to leave
the domain where the numerical model is defined.

The magnitude of the transverse advective fluxes in each layer is related to
the respective value of Kz, the uncertainty of which is accounted for through
the anisotropy ratio AK . Although AK represents the second most influential
group of factors considering added effects from all layers (see Table 5), the
uncertainty in this property adds a small amount of variability to the MLE
(< 1%) compared to the petrofacies (≈ 90%). We note however that fac-
tor AD4

K is only marginally excluded from the important factors when PCE
B is considered (see Figure 12). Indeed, for the highest Kx values, strong
advective fluxes take place within the layer’s volume. Under the assump-
tion of strong transverse fluxes (AD4

K → 1), solutes can be oriented toward
neighbouring layers where slower fluxes occur, thus raising the MLE.

For each layer, the Euler angle θ could deviate groundwater fluxes from an
orientation parallel to the x-axis and toward the main discharge boundaries,
thus raising the variability of the response. Although it could be assumed
as especially influential in the most advective layers, the total contribution
of this group of uncertain factors to the variance of the MLE is negligible in
comparison to that of the petrofacies P (see Table 5).

In aquifer formations, the effects of the uncertainty regarding the macro-
dispersion tensors upon the response quantity, i.e. the magnitude (αL) and
anisotropy (Aα) of the tensors, are concealed by the strong effect of petrofa-
cies on the advective part of the transport processes (see Table 5). We note
however that the longitudinal component of the macro-dispersion tensor in
layer C3ab (αC3ab

L ) appears among the ten factors with the highest total
Sobol’ indices for both PCE A and B. The anisotropy ratios, Aα, have no
contribution at all to the response variance when considered independently;
the uncertainty in these factors contributes to the variability of MLE only
through interaction terms.

The sensitivity of the MLE with respect to flow BCs considered in the
model is directly related to the magnitude and orientation of the advective
fluxes in the entire model. In the case of high gradients in both limestone
sequences, the advective solute transport processes would raise within their
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volume, and thus reduce the MLE. Table 5 indicates that the three random
hydraulic gradients have a small added effect on the output variance. Note
however that the total Sobol’ index for the hydraulic gradient in the Dogger
sequence (∇H1) belongs to the ten highest indices for both PCE A and
B. The uncertainty regarding this factor can alter the advective processes
occurring notably in layer D4, which has the far highest contribution to the
variance of the MLE calculated at the TZ.

5 Conclusions

The model introduced in this paper stands as a two-dimensional vertical
cross-section of the subsurface of Paris Basin in the vicinity of Bure (Haute-
Marne). While encompassing most of the hydrogeological features of the
underground media, it was simplified with regard to geometries, disconti-
nuities, fractures and heterogeneities. This numerical model is intended to
explore the behavior of a complex multi-layered hydrogeological system at
low computational cost and provide insights into the effect of uncertain pa-
rameters upon the mean lifetime expectancy (MLE).

Sensitivity analysis (SA) was carried out considering a high-dimensional
random input. For the sake of simplicity, homogeneous parameters were
assumed within each of the 15 hydrogeological layers comprising the model.
The uncertain factors at each layer included: the petrofacies, P , regarded
as the couple permeability-porosity, {K,φ}; the anisotropy ratio and the
orientation of the hydraulic conductivity tensor, AK and θ respectively; the
magnitude and anisotropy ratio in the macro-dispersion tensor, αL and Aα
respectively. Additionally, the hydraulic gradients, ∇H, in three zones of the
model domain were considered random, leading to a total of 78 uncertain
input factors.

In the present study, a target zone (TZ) located within the middle layer
(C2) of the model domain provides the output response of interest. Latin
hypercube sampling was employed to address the propagation of the uncer-
tainty from the input factors upon the MLE of water molecules departing
from the TZ. Polynomial chaos expansion (PCE) meta-models were used to
compute the Sobol’ sensitivity indices for each input factor at low compu-
tational costs. Sparse PCE proved singularly efficient in providing accurate
representations of the response of interest at low computational cost with
respect to the high dimensionality of the model. The accuracy was enhanced
when the PCE were fitted to the logarithmic MLE; because of the wide range
of variation of the MLE, considering its logarithmic transformation is herein
meaningful from a physical standpoint.
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The SA results for the non-transformed and the logarithmic MLE demon-
strated similar trends. It was found that the variability of the MLE is almost
entirely due to the uncertainty regarding the petrofacies of the hydrogeolog-
ical layers. The other hydro-dispersive parameters are insignificant for ex-
plaining the response variance and may be considered as deterministic factors
in future works.

Focusing on the effects of petrofacies solely, the SA demonstrated the large
contributions of aquifer formations to the variance of the model output. In
particular, (i) the closer the aquifer formation to layer C2, (ii) the thicker
the layer, (iii) the wider the ranges of the petrofacies and (iv) the higher
the upper bound of the hydraulic conductivity range, the larger were the
effects of the petrofacies on the variability of the response. Investigation
of the univariate effects of petrofacies highlighted that for these permeable
formations, the response is more sensitive to changes occurring within low
porosity-permeability ranges. Hence, within a certain range of {K,φ} values,
the dispersive-diffusive processes counterbalance with the strong advective
fluxes in the ageing process.

In formations characterized by highly advective processes, the longitudi-
nal hydraulic conductivities applying in the main groundwater direction have
large contributions to the MLE variability. The two semi-confining forma-
tions encompassing the C2 layer buffer the transfer of solute from the latter
toward the further aquifer sequences. Besides, it is acknowledged that lon-
gitudinal dispersion processes occurring within their own volume also retard
the solute transfer toward the adjacent aquifers. Because of the diffusion-
dominated transport processes occurring within its volume, the petrofacies
of the highly-confining C2 layer have a negligible effect on the variance of
the output response although responsible for the high values of the latter.

It is important to remind that the use of a 2D model tends to underesti-
mate the output response of interest by omitting the advection and dispersion
along the third dimension. Recognizing this limitation, we underline that the
purpose of the simplified model introduced herein is to shed light on the rela-
tive effects of various uncertain factors governing the advective and dispersive
processes in a complex multi-layered hydrogeological system. The presented
methodology may be applied to a real-case study employing a realistic 3D
numerical model.

The sensitivity analysis performed in this work is deemed particularly in-
formative for future applications with the high-resolution integrated Meuse/Haute-
Marne hydrogeological model. In the frame of a real-case uncertainty analysis
with concern to a solute transport in the subsurface of the Paris Basin, the
authors recommend defining as thoroughly as possible the spatial distribu-
tions of hydraulic conductivity values, with a main focus on the large aquifer
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sequences of Oxfordian and Dogger ages closer to the potential host layer.
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