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Abstract

Computer simulation has become the standard tool in many engineering
fields for designing and optimizing systems, as well as for assessing their relia-
bility. Optimization and uncertainty quantification problems typically require
a large number of runs of the computational model at hand, which may not be
feasible with high-fidelity models directly. Thus surrogate models (a.k.a meta-
models) have been increasingly investigated in the last decade. Polynomial
Chaos Expansions (PCE) and Kriging are two popular non-intrusive meta-
modelling techniques. PCE surrogates the computational model with a series
of orthonormal polynomials in the input variables where polynomials are cho-
sen in coherency with the probability distributions of those input variables. A
least-square minimization technique may be used to determine the coefficients
of the PCE. On the other hand, Kriging assumes that the computer model
behaves as a realization of a Gaussian random process whose parameters are
estimated from the available computer runs, i.e. input vectors and response
values. These two techniques have been developed more or less in parallel so
far with little interaction between the researchers in the two fields. In this
paper, PC-Kriging is derived as a new non-intrusive meta-modeling approach
combining PCE and Kriging. A sparse set of orthonormal polynomials (PCE)
approximates the global behavior of the computational model whereas Krig-
ing manages the local variability of the model output. An adaptive algorithm
similar to the least angle regression algorithm determines the optimal sparse
set of polynomials. PC-Kriging is validated on various benchmark analytical
functions which are easy to sample for reference results. From the numeri-
cal investigations it is concluded that PC-Kriging performs better than or at
least as good as the two distinct meta-modeling techniques. A larger gain in
accuracy is obtained when the experimental design has a limited size, which
is an asset when dealing with demanding computational models.

Keywords: Emulator – Gaussian process modeling – Kriging, meta-
modelling – Polynomial Chaos Expansions – PC-Kriging – Sobol’ function
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1 Introduction

Modern engineering makes a large use of computer simulation in order to de-
sign systems of ever increasing complexity and assess their performance. As
an example, let us consider a structural engineer planning a new structure.
An essential part of his work is to predict the behavior of the not-yet-built
structure based on some assumptions and available information about e.g. ac-
ceptable dimensions, loads to be applied to the structure and material prop-
erties. These ingredients are basically the input parameters of computational
models that predict the performance of the system under various conditions.
The models help the engineer analyze/understand the behavior of the struc-
ture and eventually optimize the design in order to comply with safety and
serviceability constraints.

Similar conditions can also be found in many other scientific and engi-
neering disciplines. The common point is the simulation of the behavior of a
physical process or system by dedicated algorithms which provide a numeri-
cal solution to the governing equations. These simulation algorithms aim at
reproducing the physical process with the highest possible fidelity. As an ex-
ample, finite element models have become a standard tool in modern civil and
mechanical engineering. Due to high fidelity, such models typically exploit the
available computer power, meaning that a single run of the model may take
hours to days of computing, even when using a large number of CPUs.

An additional layer of complexity comes from the fact that most input
parameters of such computational models are not perfectly known in prac-
tice. Some parameters (e.g. material properties, applied loads, etc.) may
exhibit natural variability so that the exact value to be used for simulating
the behavior of a particular system is not known in advance (this is referred
to as aleatory uncertainty). Some others may have a unique value which is
however not directly measurable and prone to lack of knowledge (epistemic un-
certainty). In a probabilistic setup these parameters are modelled by random
variables with prescribed joint probability density function, or more generally,
by random fields. The goal of uncertainty propagation is to assess the effect
of the input uncertainty onto the model output, and consequently onto the
performance of the system under consideration (De Rocquigny et al., 2008;
Sudret, 2007).

Propagating uncertainties usually requires a large number of repeated calls
to the model for different values of the input parameters, for instance through
a Monte Carlo simulation procedure. Such an approach usually require thou-
sands to millions of runs which is not affordable even with modern high per-
formance computing architectures. To circumvent this problem, surrogate
models may be used, which replace the original computational model by an
easy-to-evaluate function (Storlie et al., 2009; Hastie et al., 2001; Forrester
et al., 2008). These surrogate models, also known as response surfaces or
meta-models, are capable of quickly predicting responses to new input real-
izations. This allows for conducting analyses which require a large number
of model evaluations, such as structural reliability and optimization, in a rea-
sonable time.

Among the various options for constructing meta-models, this paper fo-
cuses on non-intrusive approaches, meaning that the computational model is
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considered as a “black-box model”: once an input vector (i.e. a realization
of the random input in the process of uncertainty propagation) is selected,
the model is run and provides an output vector of quantities of interest. No
additional knowledge on the inner structure of the computer code is assumed.
Popular types of meta-models that may be built from a limited set of runs of
the original model (called the experimental design of computations) include
Polynomial Chaos Expansions (PCE) Ghanem and Spanos (2003), Gaussian
process modeling (also called Kriging) Sacks et al. (1989); Rasmussen and
Williams (2006); Santner et al. (2003); Stein (1999), and support vector ma-
chines Gunn (1998); Smola and Schölkopf (2006); Vazquez and Walter (2003);
Clarke et al. (2003), which have been extensively investigated in the last
decade. Polynomial chaos expansions and Kriging are specifically of interest
in this paper.

Polynomial chaos expansions (PCE), also know as spectral expansions,
approximate the computational model by a series of multivariate polynomials
which are orthogonal with respect to the distributions of the input random
variables. Traditionally, spectral expansions have been used to solve partial
differential equations in an intrusive manner Ghanem and Spanos (2003). In
this setup truncated expansions are inserted into the governing equations and
the expansion coefficients are obtained using a Galerkin scheme. This pio-
neering approach called spectral stochastic finite element method (SSFEM),
was later developed by Xiu and Karniadakis (2002); Sudret et al. (2004); Wan
and Karniadakis (2005, 2006); Berveiller et al. (2006a), among others. These
intrusive methods require specific, problem-dependent algorithmic develop-
ments though. Because it is not always possible and/or feasible to treat a
computational model intrusively, especially when legacy codes are at hand in
an industrial context, non-intrusive polynomial chaos expansions were devel-
oped. So-called projections methods were developed by Ghiocel and Ghanem
(2002); Le Mâıtre et al. (2002); Keese and Matthies (2005); Xiu and Hes-
thaven (2005), see a review in Xiu (2009). Least-square minimization tech-
niques have been introduced by Choi et al. (2004); Berveiller et al. (2006b);
Sudret (2008). Further developments which combine spectral expansions and
compressive sensing ideas have lead to so-called sparse polynomial chaos ex-
pansions Blatman and Sudret (2008, 2010a,b); Doostan and Owhadi (2011);
Blatman and Sudret (2011); Doostan et al. (2013); Jakeman et al. (2014).
This is the approach followed in this paper. Further recent applications of
PCE to structural reliability analysis and design optimization can be found
in Eldred (2009); Eldred et al. (2008); Sarangi et al. (2014).

The second meta-modeling technique of interest in this paper is Krig-
ing, which originates from interpolating geographical data in mining Krige
(1951) and is today also known as Gaussian process modeling Rasmussen
and Williams (2006); Santner et al. (2003). The Kriging meta-model is in-
terpreted as the realization of a Gaussian process. Practical applications
can be found in many fields, such as structural reliability analysis Kaymaz
(2005); Bect et al. (2012); Echard et al. (2011); Bichon et al. (2008); Dubourg
et al. (2013); Dubourg and Sudret (2014) and design optimization Jones et al.
(1998); Dubourg et al. (2011); Dubourg (2011). The implementation of the
Kriging meta-modeling technique can be found in e.g. the Matlab toolbox
DACE Lophaven et al. (2002) and the more recent R toolbox DiceKriging
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Roustant et al. (2012, 2013).
So far the two distinct meta-modeling approaches have been applied in

various fields rather independently. To our knowledge, there has not been
any attempt to combine PCE and Kriging in a systematic way yet. To bridge
the gap between the two communities, this paper aims at combining the two
distinct approaches into a new and more powerful meta-modeling technique
called Polynomial-Chaos-Kriging (PC-Kriging). As seen in the sequel the
combination of the characteristics and the advantages of both approaches
leads to a more accurate and flexible algorithm which will be detailed in this
paper.

The paper is organized as follows. PCE and Kriging are first summarized
in Section 2 and Section 3 respectively. Section 4 introduces the new meta-
modeling approach PC-Kriging as the combination of the two distinct ap-
proaches. The accuracy of the new and traditional meta-modeling approaches
is compared in Section 5 on a set of benchmark analytical functions.

2 Polynomial Chaos Expansions

2.1 Problem definition

Consider the probability space (Ω,F ,P), where Ω denotes the event space
equipped with σ-algebra F and the probability measure P. Random variables
are denoted by capital letters X(ω) : Ω 7→ DX ⊂ R and their realizations
denoted by the corresponding lower case letters, e.g. x. Random vectors (e.g.
X = {X1, . . . , XM}T) and their realizations (e.g. x = {x1, . . . , xM}T) are
denoted by bold faced capital and lower case letters, respectively.

In this context, consider a system whose behavior is represented by a com-
putational model M which maps the M -dimensional input parameter space
to the 1-dimensional output space, i.e. M : x ∈ DX ⊂ RM 7→ y ∈ R
where x = {x1, . . . , xM}T. As the input vector x is assumed to be affected
by uncertainty, a probabilistic framework is introduced. Due to uncertain-
ties in the input vector, it is represented by a random vector X with given
joint probability density function (PDF) fX . For the sake of simplicity the
components are assumed independent throughout the paper, so that the joint
PDF may be written as the product of the marginal PDFs denoted by fXi ,
i = 1, . . . ,M . Note that the case of dependent input variables can easily be
addressed by using an isoprobabilistic transform first, such as the Nataf or
Rosenblatt transform Blatman and Sudret (2010a). The output of the model
is a random variable Y obtained by propagating the input uncertainty in X
through the computational model M:

Y =M(X). (1)

In this paper we consider that the computational model is a deterministic
mapping from the input to the output space, i.e. repeated evaluations with
the same input value x0 ∈ DX lead to the same output value y0 =M(x0).

Provided that the output random variable Y is a second-order variable (i.e.
E
[
Y 2
]
< +∞), it can be cast as the following polynomial chaos expansion
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(PCE) Ghanem and Spanos (2003); Soize and Ghanem (2004):

Y ≡M(X) =
∑

α∈NM

aα ψα(X), (2)

where {aα, α ∈ NM} are coefficients of the multivariate orthonormal polyno-
mials ψα(X) in coherency with the distribution of the input random vector
X, α = {α1, . . . , αM} is the multi-index and M is the number of input vari-
ables (dimensions). Since the components of X are independent, the joint
probability density function fX is the product of the margins fXi . Then a
functional inner product for each marginal PDF fXi is defined by

〈φ1, φ2〉i =

∫

Di

φ1(x)φ2(x) fXi(x)dx, (3)

for any two functions {φi, φ2} such that the integral exists. For each vari-
able i = 1, . . . ,M an orthonormal polynomial basis can be constructed which
satisfies Xiu and Karniadakis (2002):

〈P (i)
j , P

(i)
k 〉 =

∫

Di

P
(i)
j (x)P

(i)
k (x) fXi(x)dx = δjk, (4)

where P
(i)
j , P

(i)
k are two candidate univariate polynomials in the i-th variable,

Di is the support of the random variable Xi and δjk is the Kronecker delta
which is equal to 1 for j = k and equal to 0 otherwise. Xiu and Karniadakis
(2002) summarize various orthonormal bases for some classical PDFs, some
of which are summarized in Tab. 1.

Table 1: Classical orthogonal/orthonormal polynomials (as presented in Sudret
(2014))

Distribution PDF Orthogonal polynomials Orthonormal basis

Uniform 1]−1,1[(x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian 1√
2π
e−x

2/2 Hermite Hek(x) Hek(x)/
√
k!

Gamma xae−x1R+(x) Laguerre Lak(x) Lak(x)/

√
Γ(k+a+1)

k!

Beta 1]−1,1[(x) (1−x)a(1+x)b

B(a)B(b) Jacobi Ja,bk (x) Ja,bk (x)/Ja,b,k
J 2
a,b,k = 2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

The multivariate polynomials in Eq. (2) are then composed of univariate
polynomials by tensor product, i.e. by multiplying the various polynomials
in each input variable:

ψα(X) =
M∏

i=1

ψ(i)
αi

(Xi), (5)

where ψ
(i)
αi is the polynomial of degree αi in the i-th variable.

The main idea of polynomial chaos expansion (PCE) is then to surrogate
the computational model by an infinite series of polynomials as shown in
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Eq. (2). In practice, it is not feasible to handle infinite series, thus the need
of a truncation scheme. Such a truncation scheme corresponds to a set of
multi-indexes α ∈ A ⊂ NM such that the system response is accurately
approximated with respect to some error measure Blatman and Sudret (2010a,
2011):

Y ≈ Y (PCE) def
= M(PCE)(X) =

∑

α∈A
aα ψα(X). (6)

There are several ways to select a priori a truncation set A. A simple and
commonly applied scheme consists in upper-bounding the total degree of poly-
nomials to a maximal value p. The total degree of polynomials is defined by

|α| =
M∑

i=1

αi. (7)

In this case the set of multi-indices is denoted by AM,p = {α ∈ NM : |α| ≤ p}
where p is the maximal total polynomial degree. The cardinality of the set A
reads: ∣∣AM,p

∣∣ =
(M + p)!

M ! p!
. (8)

This cardinality grows polynomially with both M and p. Such a truncation
scheme thus leads to non tractable problems if the response is highly nonlinear
in its input parameters (need for a large p) and/or if the size of the input
vector X is large (say, M > 10). This problem is referred to as the curse of
dimensionality.

Blatman and Sudret (2010a); Blatman (2009) proposed a more restrictive
truncation scheme called hyperbolic truncation set. The authors observed that
many systems tend to have only low-degree interaction polynomials and thus it
is not necessary to compute all interaction terms of higher polynomial degree.
The hyperbolic index set is based on the following q-norm:

AM,p
q ≡ {α ∈ NM : ‖α‖q ≤ p}, (9)

where

‖α‖q ≡
(

M∑

i=1

αqi

) 1
q

, (10)

0 < q ≤ 1 is a tuning parameter and p is the maximal total degree of the poly-
nomials. A decreasing q leads to a smaller number of interactive polynomials,
i.e. a smaller set of polynomials. When q → 0, only univariate polynomials
are left in the set of polynomials which is called an additive model Sudret
(2014). For the sake of illustration, the retained polynomial indices α ∈ AM,p

q

of a 2-dimensional input space (M = 2) and varying p and q are illustrated
in Figure 1. The indices denoted by • are part of AM,p

q and the solid black
line represents ‖α‖q = p. Note that for q = 1, the hyperbolic index sets are
equivalent to the total degree index set (see Eq. (7)).

2.2 Computation of the coefficients

After defining the set of candidate polynomials, the next step is to determine
the expansion coefficients aα of each multivariate polynomial ψα(x). In this
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Figure 1: Representation of a hyperbolic index set α ∈ AM,p
q for various p and q

(M = 2)

paper we consider only non-intrusive methods which are based on repeatedly
evaluating the modelM over a set of input realizations X = {χ(1), . . . ,χ(N)},
the so-called experimental design. Different non-intrusive methods have been
proposed in the last decade to calibrate PC meta-models, namely projection
Ghiocel and Ghanem (2002); Le Mâıtre et al. (2002); Keese and Matthies
(2005), stochastic collocation Xiu and Hesthaven (2005); Xiu (2009) and least-
square minimization methods Chkifa et al. (2013); Migliorati et al. (2014);
Berveiller et al. (2006b); Blatman and Sudret (2010a, 2011). In this paper
we adopt the least-square minimization method. The expansion coefficients
a = {aα, α ∈ A ⊂ NM} are calculated by minimizing the expectation of the
least-squares residual:

a = arg min
a∈R|A|

E



(
Y −

∑

α∈A
aα ψα(X)

)2

 . (11)

In practice the expectation in Eq. (11) is evaluated by an empirical sample-
based estimator. Denoting by Y = {M(χ(1)), . . . ,M(χ(N))} ≡ {Y(1), . . . ,Y(N)}
the set of outputs of the exact model M for each point in the experimental
design X , the discretized least-squares error minimization problem derived
from Eq. (11) reads

â = arg min
a∈R|A|

1

N

N∑

i=1

(
Y(i) −

∑

α∈A
aα ψα(χ(i))

)2

. (12)

The optimal expansion coefficients â may be computed by solving the linear
system

â = (FTF)−1FTY, (13)
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where F is the information matrix of size N × |A| whose generic term reads:

Fij = ψj(χ
(i)), i = 1, . . . , N, j = 1, . . . , |A|. (14)

Typically for smooth functions, a small number of polynomials is able to
represent accurately the output of the computational model. Thus a further
reduction of the set of predictors in high-dimensional space is possible. Various
types of generalized regression algorithms have been proposed in the literature,
namely the least absolute shrinkage operator (LASSO) Tibshirani (1996), the
Least Angle Regression (LAR) Efron et al. (2004), low-rank approximations
Doostan et al. (2013); Peng et al. (2014) and compressive sensing Sargsyan
et al. (2014). In the applications of this paper, the LAR algorithm is used in
combination with hyperbolic index sets.

Given a PCE meta-model, i.e. a set of polynomials ψα, α ∈ A and the
corresponding parameters aα, the response of a new sample x ∈ DX may be
eventually predicted by Eq. (6):

y(PCE) =M(PCE)(x). (15)

2.3 Error estimation

As seen in Eq. (6), polynomial chaos expansions (PCE) are approximations of
the exact computational model and thus the prediction at new input samples
leads to some residual error. That is why error measures are developed to
quantify the deviation between the exact output Y = {Y(i), i = 1, . . . , N} and
the meta-model output Y(PCE) =M(PCE)(X ). The generalization error (also
called L2-error) is the expectation of the squared output residuals Vapnik
(1995), i.e.

Errgen = E
[(
Y − Y (PCE)

)2
]
, (16)

where Y (PCE) corresponds to the truncated series (see Eq. (6)) and the expec-
tation is defined with respect to the PDF of the input variablesX. If the com-
putational model M is inexpensive to evaluate, the generalization error can
be estimated accurately using an auxiliary validation set X = {x(1), . . . ,x(n)},
which is sampled from the input distribution fX . The estimate of the gener-
alization error then reads:

Êrrgen =
1

n

n∑

i=1

(
M(x(i))−M(PCE)(x(i))

)2
. (17)

However, this rarely happens in real applications since the very purpose of
building a meta-model is to avoid evaluatingM on a large sample set X. Note
that in Section 5 though, the various meta-modeling techniques are compared
on analytical benchmark functions, making it possible to use such an estimate
of the generalization error.

When the use of a large validation set is not affordable, the empirical error
based on the available experimental design X may be defined:

Erremp ≡
1

N

N∑

i=1

(
Y(i) −M(PCE)(χ(i))

)2
. (18)
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Normalizing the empirical error by the variance of the output values leads to
the relative empirical error which is defined as

εemp ≡
∑N

i=1

(
Y(i) −M(PCE)(χ(i))

)2
∑N

i=1

(
Y(i) − µY

)2 , (19)

where µY is the mean value of the output values Y. The empirical error
which is based on the experimental design generally underestimates the gen-
eralization error. In particular if the number of polynomials |A| is close to the
number of samples N in the experimental design, the empirical error tends
to zero whereas the true (generalization) error does not. This phenomenon is
called overfitting (in the extreme case where N = |A| the predictors may inter-
polate the experimental design points and thus the empirical error vanishes).
Hence the leave-one-out (LOO) error has been proposed as an estimate of the
generalization error Stone (1974); Geisser (1975). The general formulation of
the leave-one-out error is

Err
(PCE)
LOO ≡ 1

N

N∑

i=1

(
Y(i) −M(PCE)

(−i) (χ(i))
)2
, (20)

whereM(PCE)
(−i) (·) is a PCE model built from the sample set X (−i) = X\χ(i) ≡

{χ(j), j = 1, . . . , i − 1, i + 1, . . . , N} and Y = {Y(i), i = 1, . . . , N} are the
response values of the exact computational model. The LOO error is a special
case of the leave-k-out cross-validation error Allen (1971) which discards k
samples from the initial experimental design to build up a model and predict
the error at the k discarded samples.

In theory the computational cost of the LOO error is proportional to the
number of samples N since it would require the determination of N PCE
meta-models corresponding to each experimental design X (−i). In the special
case of linearly parameterized regression, which is the case for PCE, it is
possible to calculate the LOO error analytically without building N separate
models. The LOO error reads (see e.g. Saporta (2006); Blatman (2009) for
the proof)

Err
(PCE)
LOO =

1

N

N∑

i=1

(
Y(i) −M(PCE)(χ(i))

1− hi

)2

, (21)

where hi is the ith diagonal term of the matrix F
(
FTF

)−1
FT and the infor-

mation matrix F is defined in Eq. (14). Note that the PCE used in Eq. (21)
is built only once from the full experimental design X .

3 Kriging

3.1 Problem definition

The second meta-modeling technique in this paper is Kriging, also known
as Gaussian process modeling, which assumes that the response of a compu-
tational model is a realization of a Gaussian random process Santner et al.
(2003), i.e.

M(x) ≈M(K)(x) = βTf(x) + σ2 Z(x), (22)
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where βTf(x) =
∑P

j=1 βjfj(x) is the mean value of the Gaussian process,

also called trend, with coefficients β, σ2 is the Gaussian process variance
and Z(x) is a zero-mean, unit-variance stationary Gaussian process. The
zero-mean Gaussian process Z(x) is fully determined by the auto-correlation
function between two input sample points R(x,x′) = R(|x − x′|;θ) due to
stationarity, where θ are hyper-parameters to be computed.

Various correlation functions can be found in the literature Rasmussen and
Williams (2006); Santner et al. (2003), some of which are the linear, exponen-
tial, Gaussian (also called squared exponential) and Matérn autocorrelation
function. In this paper the Matérn autocorrelation function is mainly used
as it is a generalization of the exponential and the Gaussian autocorrelation
functions. The general Matérn kernel of degree ν is defined as Matérn (1986)

R(|x− x′|; l, ν) =

M∏

i=1

1

2ν−1Γ(ν)

(√
2ν
|xi − x′i|

li

)ν
κν

(√
2ν
|xi − x′i|

li

)
, (23)

where x and x′ are two sample points in the input space DX , l = {li > 0, i =
1, . . . ,M} are the scale parameters (also called correlation lengths), ν ≥ 1/2
is the shape parameter, Γ(·) is the Euler Gamma function and κν(·) is the
modified Bessel function of the second kind (also known as Bessel function
of the third kind). In many publications the shape parameter is set to either
ν = 3/2 or ν = 5/2 which simplifies Eq. (23) to Roustant et al. (2012):

R(|x− x′|; l, ν = 3/2) =
M∏

i=1

(
1 +

√
3 |xi − x′i|

li

)
exp

(
−
√

3 |xi − x′i|
li

)
, (24)

R(|x−x′|; l, ν = 5/2) =

M∏

i=1

(
1 +

√
5 |xi − x′i|

li
+

5(xi − x′i)2

3 l2i

)
exp

(
−
√

5 |xi − x′i|
li

)
.

(25)
Apart from the correlation part in Eq. (22) there is also a trend part

βTf(x). Three different flavors of Kriging are defined in the literature Ras-
mussen and Williams (2006); Santner et al. (2003); Stein (1999), namely sim-
ple, ordinary and universal Kriging according to the choice of the trend.
Simple Kriging assumes that the trend has a known constant value, i.e.
βTf(x) = β0. In ordinary Kriging the trend has a constant but unknown
value, i.e. P = 1, f1(x) = 1 and β1 is unknown. The most general and flexi-
ble formulation is universal Kriging which assumes that the trend is composed
of a sum of P pre-selected functions fk(x), i.e.

βTf(x) =
P∑

k=1

βkfk(x), (26)

where βk is the trend coefficient of each function. Note that simple and
ordinary Kriging are special cases of universal Kriging. As discussed later in
this paper, one approach to set up a trend is to use a sparse set of polynomials,
which defines a new variant of universal Kriging.

3.2 Calibration of the Kriging model

Given a value for the auto-correlation hyper-parameters θ̂, the calibration
of the Kriging model parameters {β(θ̂), σ2

y(θ̂)} may be computed using an
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empirical best linear unbiased estimator (BLUE). The optimization yields an
analytical expression as a function of θ̂:

β(θ̂) =
(
FTR−1F

)−1
FR−1Y, (27)

σ2
y(θ̂) =

1

N
(Y − Fβ)TR−1 (Y − Fβ) , (28)

where Y = {Y(i), i = 1, . . . , N} are model responses of the exact com-
putational model on the experimental design X = {χ(i), i = 1, . . . , N},
Rij = R(|χ(i) − χ(j)|; θ̂) is the correlation matrix and Fij = fj(χ

(i)) is the
information matrix.

In recent developments, the optimal correlation parameters θ̂ may be de-
termined by either a maximum-likelihood-estimate (denoted by ML) Marrel
et al. (2008); Dubourg (2011) or by leave-one-out cross-validation (CV ) Ba-
choc (2013b). The optimal parameters are determined through a minimization
which reads:

θ̂ML = arg min
θ

[
1

N
(Y − Fβ)TR−1 (Y − Fβ) (detR)1/N

]
, (29)

θ̂CV = arg min
θ

[
YTR(θ)−1diag

(
R(θ)−1

)−2
R(θ)−1 Y

]
. (30)

The comparison of both approaches shows that ML is preferable to CV in
well-specified cases, i.e. when the meta-model autocorrelation function fam-
ily is identical to the autocorrelation function of the computational model.
For practical problems, i.e. assuming a black-box model, the autocorrelation
function family is not known with certainty. In this case CV shall lead to
more robust results than ML, as discussed in Bachoc (2013b).

Determining the optimal correlation parameters in Eq. (29) and (30) is a
complex multi-dimensional minimization problem. Optimization algorithms
can be cast into two distinct categories: local and global optimization al-
gorithms. Local methods are usually gradient based algorithms such as the
quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm Goldfarb
(1970); Fletcher (1970); Shanno (1970) and its modifications Byrd et al.
(1999). Global methods are algorithms such as genetic algorithms Goldberg
(1989) and differential evolution algorithms Storn and Price (1997); Deng
et al. (2013). The best optimization algorithm is problem dependent and in
many cases not known a-priori.

The optimal correlation parameters are then used for predicting the model
response at new samples of the input space. By assumption, the prediction of
a Kriging model of a new point x is a Gaussian random variable with mean
µŷ(x) and variance σ2

ŷ(x):

µŷ(x) = f(x)Tβ + r(x)TR−1 (Y − Fβ) , (31)

σ2
ŷ(x) = σ2

y

(
1− 〈f(x)Tr(x)T〉

[
0 FT

F R

]−1 [
f(x)
r(x)

])
, (32)

where ri(x) = R(|x − χ(i)|;θ) is the correlation between the new sample x
and the sample χ(i) of the experimental design. The prediction mean is used
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as the surrogate to the original model M, whereas the variance gives a local
error indicator about the precision. It is important to note that the Kriging
model interpolates the data, i.e.

µŷ(χ
(i)) =M(χ(i)), σ2

ŷ(χ
(i)) = 0, ∀χ(i) ∈ X .

Apart from this procedure to calibrate the meta-model and predict model
responses, the Kriging meta-modeling technique has been developed further
in recent years. The latest developments in Kriging are contributed in the as-
pects of optimal estimation of the hyper-parameters Bachoc (2013b); Bachoc
et al. (2014); Bachoc (2013a), the use of adaptive kernels Duvenaud et al.
(2011); Ginsbourger et al. (2013) and the use of additive auto-correlation
kernels Durrande et al. (2012, 2013); Ginsbourger et al. (2013)

3.3 Error estimation

A local error measure for any sample x is given by the prediction variance
σ2
ŷ(x) in Eq. (32). This information is useful to detect regions where the

prediction accuracy is low. Adding new samples to the experimental design
X in the regions with high prediction variance may lead to an overall increase
in the accuracy of the meta-model in that region. This characteristics is
exploited when devising adaptive experimental designs in structural reliability
analysis, see Echard et al. (2013); Bichon et al. (2008, 2011); Dubourg et al.
(2011).

A simple global error measure of the accuracy of the meta-model (such as
Eq. (19) for PC expansions) is not available for Kriging due to its interpolating
properties, which make the empirical error vanish (considering no nugget effect
in its auto-correlation function). Thus one approach to a global error measure
is the leave-one-out (LOO) error

Err
(K)
LOO =

1

N

N∑

i=1

(
Y(i) − µŷ,(−i)(χ(i))

)2
, (33)

where µŷ,(−i)(χ(i)) is the prediction mean µŷ of sample χ(i) by a Kriging meta-

model based on the experimental design X (−i) = X\χ(i) and Y = {Y(i), i =
1, . . . , N} is the exact model response. Dubrule (1983) derived an analytical
solution for the LOO error for universal Kriging without computing the N
meta-models explicitly in the same spirit as Eq. (21) for PC expansions. The
prediction mean and variance are given by

µŷ,(−i) = −
N∑

j=1,j 6=i

Bij

Bii
Y(j) = −

N∑

j=1

Bij

Bii
Y(j) + Y(i), (34)

σ2
ŷ,(−i) =

1

Bii
, (35)

where B is a square matrix of size (N+P ) with N and P denoting the number
of samples in the experimental design and the number of polynomials in the
trend part, respectively:

B =

[
σ2R F
FT 0

]−1

, (36)
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where σ2 is the Kriging variance for the full experimental design X esti-
mated by Eq. (28). A generalized version of this algorithm called v-fold cross-
correlation error can be found in Dubrule (1983).

3.4 PCE as a particular case of universal Kriging

PC expansions can be interpreted as Kriging models where the samples of the
experimental design are uncorrelated, i.e. where the autocorrelation function
consists of the Dirac function:

R(|x− x′|) = δ(x− x′). (37)

The correlation matrix is then the identity matrix of size N , i.e. R = IN .
This reduces Eq. (27) to Eq. (13) and Eq. (31) to Eq. (2).

Further it can be shown that the leave-one-out error in Eq. (33)-(35) re-
duces to Eq. (21) by the following derivations. Consider the symmetric parti-
tioned matrix C and the corresponding inverse D, i.e. D = C−1 which are
defined as:

C =

[
C11 C12

CT
12 C22

]
, D =

[
D11 D12

DT
12 D22

]
,

where C11, D11 (resp. C22, D22) are square matrices with dimension N (resp.
P ). Using block matrix inversion one can derive:

D11 = C−1
11 + C−1

11 C12

(
C22 −CT

12C
−1
11 C12

)−1
CT

12C
−1
11 . (38)

In the context of the leave-one-out error, taking C ≡ B in Eq. (36), C11 =
σ2IN , C12 = F, C22 = 0P :

D11 =
1

σ2
IN +

1

σ2
INF

(
0P − FT 1

σ2
INF

)−1

FT 1

σ2
IN

=
1

σ2
I +

1

σ2
F
(
−FTF

)−1
FT =

1

σ2

(
I− F

(
FTF

)−1
FT

)
.

(39)

Then, the leave-one-out error in Eq. (33) combined with Eq. (34) and the
above inverse formulation of the B matrix reads:

ErrK
LOO =

1

N

N∑

i=1


Y(i) +

N∑

j=1

Bij
Bii
Y(j) − Y(i)




2

=
1

N

N∑

i=1


 1

Bii

N∑

j=1

BijY(j)




2

=
1

N

N∑

i=1


 1

Biiσ2

N∑

j=1

(
I− F

(
FTF

)−1
FT

)

ij

Y(j)




2

=
1

N

N∑

i=1


 1

1−
(

diag
[
F (FTF)

−1
FT
])

i

·


Y(i) −

N∑

j=1

[
F
(
FTF

)−1
FT

]

ij

Y(j)






2

=
1

N

N∑

i=1



Y(i) −

[(
FTF

)−1
FTY

]T
f(χ(i))

1−
(

diag
[
F (FTF)

−1
FT
])

i




2

,

(40)
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which is equivalent to the formulation of the leave-one-out error in Eq. (21)
for the case of PCE and f(χ(i)) ≡ ψ(χ(i)). Thus the leave-one-out error in
PCE can be seen as a special case of the leave-one-out error in the Kriging
framework.

4 PC-Kriging

4.1 Principle

The characteristic of Kriging is to interpolate local variations of the output
of the computational model as a function of the neighboring experimental
design points. In contrast, polynomial chaos expansions (PCE) are used for
approximating the global behavior ofM using a set of orthogonal polynomials.
By combining the two techniques we aim at capturing the global behavior of
the computational model with the set of orthogonal polynomials in the trend of
a universal Kriging model and the local variability with the Gaussian process.
The new approach called Polynomial-Chaos-Kriging (PC-Kriging) combines
these two distinct meta-modeling techniques and their characteristics.

Using now the standard notation for truncated polynomial chaos expan-
sions (see Eq. (6)), we cast the PC-Kriging meta-model as follows Schöbi and
Sudret (2014c):

M(x) ≈M(PCK)(x) =
∑

α∈A
aαψα(x) + σ2Z(x), (41)

where
∑
α∈A aαψα(x) is a weighted sum of orthonormal polynomials describ-

ing the mean value of the Gaussian process and A is the index set of the
polynomials. Z(x) is a zero-mean, unit-variance stationary Gaussian process
defined by an autocorrelation function R(|x− x′|;θ) and is parametrized by
a set of hyper-parameters θ.

Building a PC-Kriging meta-model consists of two parts: the determina-
tion of the optimal set of polynomials contained in the regression part (i.e. the
truncation set A) and the calibration of the correlation hyper-parameters θ as
well as the Kriging parameters {σ2,aα}. The set of polynomials is determined
using the Least-Angle-Regression (LAR) algorithm as in Blatman and Sudret
(2011) together with hyperbolic index sets to obtain sparse sets of polynomi-
als. After the set of polynomials is fixed, the trend and correlation parameters
are evaluated using the universal Kriging equations (Eq. (27)-(30)).

4.2 Algorithm

The two distinct frameworks for PCE and Kriging can be combined in various
ways. In this paper two approaches will be explained in detail, i.e. the Sequen-
tial PC-Kriging (SPC-Kriging) and the Optimal PC-Kriging (OPC-Kriging).
Both approaches are based on the same input information, namely the ex-
perimental design X , the corresponding response values Y obtained from the
computational modelM(X ), the description of the stochastic input variables
(joint PDF fX) and the parametric expression of the an auto-correlation func-
tion R(|x− x′|;θ). The two approaches are defined as follows:
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• Sequential PC-Kriging (SPC-Kriging): in this approach, the set of poly-
nomials and the Kriging meta-model are determined sequentially. The
assumption behind this procedure is that the optimal set of polynomials
found by the LAR algorithm in the context of pure PCE can be used
directly as an optimal trend for the universal Kriging. In a first step the
optimal set of polynomials is determined using the PCE framework: A is
found by applying the LAR procedure as in Blatman and Sudret (2011).
The set of multivariate orthonormal polynomials A is then embedded
into a universal Kriging model as the trend. The universal Kriging
meta-model is calibrated using Eq. (27)-(30).

At the end of the algorithm the accuracy of the meta-model can be
measured by the leave-one-out error given in Eq. (33) or, when using a
validation set, by the sample-based generalization error in Eq. (17).
The SPC-Kriging algorithm is illustrated in Figure 2 in which the white
boxes represent the required input information and the blue boxes rep-
resent the computational tasks. Given a calibrated SPC-Kriging model,
the response of new input realizations (i.e. the prediction) is computed
by Eq. (31) and Eq. (32).

Input Distributions
fX

Experimental design
{X , Y}

LAR

Autocorrelation
function

R(|x − x′|;θ)

Sequential-PC-Kriging

M(SPCK)(x) =
∑
α∈A aαψα(x) + σ2Z(x, ω)

Prediction
{µŷ(x), σ2

ŷ(x)}

Figure 2: Flowchart for Sequential-PC-Kriging (SPC-Kriging)

• Optimal PC-Kriging (OPC-Kriging): in this approach, the PC-Kriging
meta-model is obtained iteratively. The set of orthonormal multivariate
polynomials is determined by LAR algorithm in the same way as in SPC-
Kriging. Yet the LAR algorithm results in a list of ranked polynomials
which are chosen depending on their correlation to the current residual at
each iteration in decreasing order. OPC-Kriging consists of an iterative
algorithm where each polynomial is added one-by-one to the trend part.
In each iteration, the coefficients of the trend and the parameters of
the auto-correlation function are calibrated. In the end, a number |A| of
different PC-Kriging models are available. The |A|meta-models are then
compared in terms of the LOO error (Eq. (33)). The optimal PC-Kriging
meta-model is then chosen as the one with minimal leave-one-out error.

Figure 3 illustrates the OPC-Kriging algorithm in a flowchart. The
notation M(K)(Q)(x) means a universal Kriging meta-model where the
trend is modeled by theQ first polynomials selected inA according to the
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ranking obtained by LAR. Note that the red box represents the universal
Kriging model which eventually minimizes the LOO error (Q = P ∗) and
which is thus finally chosen. The final box marks the prediction of new
model responses which is computed by Eq. (31) and Eq. (32).

Input Distributions
fX

Experimental design
{X , Y}

Autocorrelation
function

R(|x − x′|;θ)

Optimal PC-Kriging

LAR (it-
eration 1)
y =

M(K)(Q=1)(x)

LOO1

LAR (it-
eration 2)
y =

M(K)(Q=2)(x)

LOO2

· · ·

LAR (it-
eration P )
y =

M(K)(Q=P )(x)

LOOP

PC-Kriging model
M(OPCK) =

argminM(K)(Q=P ) LOOP

Prediction
{µŷ(x), σ2

ŷ(x)}

Figure 3: Flowchart for Optimal PC-Kriging (OPC-Kriging)

As a summary PC-Kriging can be viewed as a universal Kriging meta-
model with a non-standard trend part. Thus the error estimates from Kriging
in Section 3.3 are valid here with no modification. In particular, the LOO
error in Eq. (33) is computed to compare different PC-Kriging models and
to compute the optimal meta-model in OPC-Kriging. The performance of
both approaches and the comparison to the traditional PCE and Kriging
approaches is now illustrated for a variety of benchmark analytical functions.
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5 Analytical benchmark functions

5.1 Setup

Easy-to-evaluate functions are tested to verify and validate the new PC-
Kriging approach by comparing the meta-model to the exact model response.
In this paper, six analytical functions of different dimensionality are illus-
trated, namely four with uniformly distributed input variables (i.e. Ishigami,
Sobol’, Rosenbrock and Morris functions) and two with Gaussian input vari-
ables (i.e. Rastrigin and O’Hagan function). References to the original use of
the benchmark functions in the literature are given below.

The first four analytical functions use uniformly distributed random vari-
ables in the input space. The Ishigami function is a smooth function with
three independent input parameters commonly used for benchmarking meth-
ods in global sensitivity analysis.

f1(x) = sinx1 + 7 sin2 x2 + 0.1x4
3 sinx1, (42)

where Xi ∼ U(−π, π), i = 1, 2, 3. The Sobol ’ function is also well-known
sensitivity analysis because the Sobol’ indices are easy to derive analytically
Sobol’ (1993):

f2(x) =

8∏

i=i

|4xi − 2|+ ci
1 + ci

, (43)

where Xi ∼ U(0, 1), i = 1, . . . , 8 and c = (1, 2, 5, 10, 20, 50, 100, 500)T as in
Sudret (2008). Due to the absolute value operator in the enumerator the func-
tion behaves non-smoothly at the point xi = 0.5. The Rosenbrock function is
a polynomial function with a 2-dimensional input space Rosenbrock (1960):

f3(x) = 100
(
x2 − x2

1

)2
+ (1− x1)2 , (44)

where Xi ∼ U(−2, 2), i = 1, 2. The last function considered is the Morris
function which is defined by Morris (1991)

f4(x) =
20∑

i=1

βiwi +
20∑

i<j

βij wiwj +
20∑

i<j<l

βijl wiwjwl + 5w1w2w3w4, (45)

where Xi ∼ U(0, 1), i = 1, . . . , 20 and wi = 2 (xi − 1/2) for all i except for

i = 3, 5, 7 where wi = 2 (
1.1xi
xi + 0.1

− 1/2). The coefficients are defined as:

βi = 20, i = 1, . . . , 10; βij = −15, i, j = 1, . . . , 6; βijl = −10, i, j, l = 1, . . . , 5.
The remaining coefficients are set equal to βi = (−1)i and βij = (−1)i+j as
in Blatman (2009).

Two other benchmark functions of independent Gaussian variables are
also studied. The Rastrigin function has a two-dimensional input space and
is defined by Rastrigin (1974)

f5(x) = 10−
2∑

i=1

(x2
i − 5 cos(2π xi)), (46)
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where Xi ∼ N (0, 1), i = 1, 2. The last function is the O’Hagan function
which is defined by Oakley and O’Hagan (2004)

f6(x) = a1
Tx+ a2

T sin(x) + a3
T cos(x) + xTQx, (47)

where Xi ∼ N (0, 1), i = 1, . . . , 15. The vectors {a1,a2.a3} and matrix Q are
defined in Oakley and O’Hagan (2004).

Note that the functions f1− f4 have uniform input random variables. Ac-
cordingly the PC trend in PC-Kriging is built up from multivariate Legendre
polynomials. In contrast f5, f6 have Gaussian input random variables. Thus
the PC trend is modeled by multivariate Hermite polynomials (see Tab. 1).

5.2 Analysis

At the beginning of each algorithm the experimental design is generated
with the Latin-hypercube sampling technique McKay et al. (1979). Then
the meta-modeling is processed applying the four previously discussed meta-
modeling techniques, i.e. ordinary Kriging, PCE, SPC-Kriging and OPC-
Kriging. Note that for the Kriging meta-models, the maximum likelihood
formulation (Eq. (29)) in combination with the gradient based BFGS opti-
mization algorithm is used in order to compute the optimal correlation pa-
rameters.

Their performance is compared by means of the relative generalization
error which is defined as the ratio between the generalization error (Eq. (16))
and the output variance:

εgen =
E
[(
Y − Y (PCE)

)2]

Var [Y ]
. (48)

The error is estimated here using a large validation set X = {x(1), . . . ,x(n)}
of size n = 105, which results in

ε̂gen ≈
∑n

i=1

(
M(x(i))− M̂(x(i))

)2

∑n
i=1

(
M(x(i))− µy

)2 , (49)

where µy is the mean value of the set of exact model responses over the valida-
tion set Y = {y(1), . . . , y(n)} ≡ {M(x(1)), . . . ,M(x(n))}. For all Kriging-based

approaches, the meta-model M̂(x) is the prediction mean µŷ(x). Note that
the samples in X follow the distribution of the input variables X in order to
obtain a reliable error estimate.

For each experimental setup, the analysis is replicated to account for the
statistical uncertainties in the experimental design. 50 independent runs of
the full analysis are carried out and the results are represented using boxplots.
In a box plot the central mark represents the median value of the 50 runs,
the edges are the 25th and 75th percentile denoted by q25 and q75. The
whiskers describe the boundary to the outliers. Outliers are defined as the
values smaller than q25 − 1.5 (q75 − q25) or larger than q75 + 1.5 (q75 − q25).
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5.3 Results

5.3.1 Visualization of PC-Kriging’s behavior

The different types of meta-models are illustrated in Fig. 4 which shows a
2-dimensional contour plot of the output of the Rastrigin function (N =
128 samples) (Fig. 4(A)) and its approximations by PCE, ordinary Kriging
and PC-Kriging (Fig. 4(B)-4(D)). The Rastrigin function has a highly oscil-
latory behavior on the entire input space as seen in Fig. 4(A). This behavior
is difficult to meta-model with a small number of samples because many local
minima/maxima are missed out.

The analytical formulation of the Rastrigin function is a combination of
a quadratic component and a high-frequency trigonometric component. The
PCE model in Fig. 4(C) captures the global characteristic of the function, i.e.
the quadratic component, whereas the ordinary Kriging model in Fig. 4(B)
approximates the local characteristics, i.e. the high-frequency trigonometric
component. Finally, the combination of PCE and Kriging leads to a better
meta-model as shown in Fig. 4(D).

Note that the meta-models in Fig. 4 have a high accuracy around the
origin of the coordinate system due to the definition of the input vector PDF
as standard normal distributions (Xi ∼ N (0, 1)).
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(A) Rastrigin function
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(C) PCE
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(D) PC-Kriging

Figure 4: Rastrigin function – Visual composition of PC-Kriging

5.3.2 Small experimental design

The four meta-modeling techniques are compared for the six analytical func-
tions using experimental designs of increasing size. The number of samples
is chosen so that it yields a large range of relative generalization errors on
the second axis. The results are illustrated in Fig. 5-10. In each figure (A)
shows the ordinary Kriging model and (B) shows the PCE model. The new
approaches SPC-Kriging and OPC-Kriging are shown in (C) and (D) respec-
tively.

Figure 5 shows the relative generalization error for the various meta-
modeling techniques for the Ishigami function. For a small sample size of
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Figure 5: Ishigami function – Relative generalization error (Eq. (49)) for the various
meta-modeling approaches

N = 20 samples, ordinary Kriging performs best with respect to the median
value of the box plots. SPC-Kriging and OPC-Kriging perform worse due to
the effect of overfitting (see also Section 2.3). The number of parameters to
be estimated in the case of PC-Kriging is larger than in the case of ordinary
Kriging due to the number of polynomials in the trend of the Kriging model.
Thus, OPC-Kriging (and also SPC-Kriging) are more prone to overfitting
than ordinary Kriging for small experimental designs. When the number of
samples is increased, however, the two PC-Kriging approaches perform better
than the traditional approaches because their median value and their varia-
tion of the error are lower. For the large sample sizes (N ≥ 50), PC-Kriging
performs similarly to PCE, though slightly better. OPC-Kriging is slightly
more accurate than SPC-Kriging over the whole range of sample sizes.
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Figure 6: Rosenbrock function – Relative generalization error (Eq. (49)) for the
various meta-modeling approaches
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Figure 6 presents the results of the Rosenbrock function, which is a purely
polynomial function and can be modeled accordingly with a small number of
polynomials based on a small number of points in the experimental design
(e.g. in the case of PCE). This is the reason why the number of points lies
within N = 8, . . . , 20. Highly accurate surrogate models are obtained with
only 20 samples. For small sample sizes OPC-Kriging performs best among
the four techniques in terms of the relative generalization error.
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Figure 7: Sobol’ function – Relative generalization error (Eq. (49)) for the various
meta-modeling approaches

The Sobol’ function is more complex than the two previous functions be-
cause of the dimensionality (M = 8) and the non-smooth behavior at xi = 0.5.
Thus more samples are needed to obtain a similar range of relative generaliza-
tion errors compared to the previous functions, as seen in Fig. 7. Behaviors
for the larger sample sizes (N = 64, 128) are very similar among the meta-
modeling approaches, although PC-Kriging performs slightly better than the
traditional PCE and ordinary Kriging approaches. For very small sample sizes
(N = 16, 32), OPC-Kriging performs significantly better than the others.

Figure 8 shows the results for the Morris function. A large experimental
design is required to properly surrogate the computational model because of
the high dimensionality of the input vector X and the amount of interac-
tive terms of different input variables Xi in the analytical formulation (see
Eq. (45)). The relative generalization error of the two PC-Kriging approaches
resembles more the one of ordinary Kriging than the one of PCE in this case.
PCE is not capable of modeling this analytical function with a small number
of samples.

The results associated with the Rastrigin function are shown in Fig. 9. De-
spite the low dimensionality of the input (M = 2), many samples are needed
to obtain small error estimates. This is due to the fact that the function out-
put is highly oscillatory over the entire input space as previously illustrated
in Fig. 4. In comparison to Section 5.3.1, which describes the qualitative
performance of PC-Kriging on the Rastrigin function, the quantitative ben-
efit of combining PCE and Kriging becomes visible in Fig. 9: PC-Kriging
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Figure 8: Morris function – Relative generalization error (Eq. (49)) for the various
meta-modeling approaches
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Figure 9: Rastrigin function – Relative generalization error (Eq. (49)) for the various
meta-modeling approaches

performs better than the traditional approaches. Ordinary Kriging performs
the worst followed by PCE. OPC-Kriging has statistically the lowest relative
generalization errors over the whole range of experimental design sizes.

Figure 10 displays the results associated with the O’Hagan function. Sim-
ilarly to the Morris function, the performance of PC-Kriging in the case of the
O’Hagan function resembles that of ordinary Kriging whereas PCE performs
worse than the other three approaches. Over the entire displayed range of
experimental designs in Fig. 10, the performance of OPC-Kriging is slightly
better than the performance of SPC-Kriging and ordinary Kriging. Note that
meta-modeling the O’Hagan function requires less samples in the experimen-
tal design to obtain the same accuracy as in the case of the Rastrigin function
despite the fact that the O’Hagan function has a 15-dimensional input space
and that both functions are very smooth.
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Figure 10: O’Hagan function – Relative generalization error (Eq. (49)) for the vari-
ous meta-modeling approaches

Summarizing the results of all six analytical functions in Fig. 5-10, the
proposed PC-Kriging approaches perform better than or at least as good as
the traditional PCE and Kriging approaches. Note that for functions like
O’Hagan (Fig. 10) and Morris (Fig. 8) the performance of PC-Kriging is more
similar to Kriging than PCE, whereas for the other functions the performance
of PC-Kriging resembles more that of PCE. As one could expect, there is no
general rule so as to decide whether PCE or Kriging provide the most accurate
meta-models for a given experimental design. The advantage of PC-Kriging
is to perform as least as well as the best of the two.

The combination of PCE and Kriging and its increased accuracy comes
with a higher computational cost. The traditional ordinary Kriging and PCE
approaches have the lowest computational cost, SPC-Kriging has an interme-
diate and OPC-Kriging has the highest cost. The high cost of OPC-Kriging
originates from the iterative character of the algorithm and the accompa-
nying repetitive calibration of Kriging models. OPC-Kriging computes LAR
and calibrates P Kriging models with increasing complex trend, whereas ordi-
nary Kriging consists of a single calibration of a Kriging model with constant
trend. For a single calibration of a surrogate of the Ishigami function (ex-
perimental design of size N = 128 samples) the ratio of computational times
when comparing PCE to ordinary Kriging, SPC-Kriging and OPC-Kriging is
approximately 1 : 5, 1 : 20 and 1 : 200, respectively.

Note that it is intended to apply these techniques to realistic problems
where the evaluation of the exact computational model response lasts much
longer than the computation of a meta-model. The apparent computational
overload of OPC-Kriging will not be anymore an issue in many practical
applications.

5.3.3 Large experimental designs

When the resources for experiments are limited the focus lies on doing as few
computational model runs as possible as discussed in the previous section.
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In order to describe the entire behavior of the meta-modeling approaches,
the Ishigami function is also studied now for larger experimental designs in
order to assess the convergence of the various schemes. Results are shown in
Fig. 11. This figure illustrates the evolution of the relative generalization error
from small to large sample sizes on the logarithmic (base 10) scale. The error
measure decreases fast when enlarging the sample set because the Ishigami
function is composed of sine and cosine functions which can be approximated
well with series of polynomials, e.g. as in a Taylor expansion. Thus PCE is
the dominating effect for PC-Kriging.

For large sample sizes, ordinary Kriging is outperformed by the other
three approaches. Kriging in general works well with small sample sizes. If
too many samples are used, the interpolation algorithm becomes unstable due
to singularities and bad conditioning in the auto-correlation matrix. If a large
sample size is available, regional Kriging models on a subset of samples, e.g.
the neighboring samples, are more suitable Dubrule (1983).
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Figure 11: The Ishigami function – Relative generalization error (Eq. (49)) associ-
ated with large experimental designs for the various meta-modeling approaches

The performance of PC-Kriging and also PCE for a large number of sam-
ples (here 128 and 256 samples in Fig. 11) is in the order of magnitude of
the machine computation precision. Errors around εgen ≈ 10−12 originate
from numerical round-off errors which are not reducible by adding more sam-
ples. It is questionable though, whether in reality such a high accuracy in the
meta-model prediction is needed.

5.3.4 Evolution of the error measures

The OPC-Kriging algorithm includes the tracking of the LOO error to opti-
mally choose the sparse set of orthonormal polynomials. The evolution of the
LOO error for the Ishigami function and a sample size of N = 128 samples is
presented in Fig. 12. The experimental-design-based LOO error (dashed, red
line) is compared to the relative generalization error which is shown as the
solid black line.
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Figure 12: Evolution of the leave-one-out error (LOO) and relative generalization
error inside the OPC-Kriging algorithm as a function of the number of polynomials
in the regression part

The first point to notice is that the LOO error slightly under-predicts the
true value of the relative generalization error for all sizes of polynomial sets.
This is due to the fact that the LOO error is based solely on the information
contained in the experimental design samples whereas the relative general-
ization error is based on a large validation set (n = 105). Although there is
an inherent under-prediction, the overall behavior of the two error measures
is similar. Thus the choice of the optimal set of polynomials for the OPC-
Kriging can be based on the LOO error, which is obtained as a by-product
of the procedure used to fit the parameters of the PC-Kriging model. In the
example case of Fig. 12, choosing only half of the polynomials, i.e. P = 27
leads to a meta-model which is almost as accurate as using all 56 polynomials.
The optimal set of polynomials can be chosen at the point where the decrease
in LOO error becomes insignificant. This reduces the number of polynomials
needed and thus also reduces the complexity of the OPC-Kriging meta-model.

6 Conclusion

In the context of increasing computational power, computational models in
engineering sciences have become more and more complex. Many analyses
such as reliability assessment or design optimization, require repeated runs
of such computational models which may be infeasible due to resource limi-
tations. To overcome these limitations computational models are nowadays
approximated by easy-to-evaluate functions called meta-models.

This paper summarized the principles of two popular non-intrusive meta-
modeling techniques, namely Polynomial Chaos Expansions (PCE) and Krig-
ing (also called Gaussian process modeling). Then the combination of the
two approaches to a new meta-modeling approach called Polynomial-Chaos-
Kriging (PC-Kriging) is proposed. Two formulations of PC-Kriging are intro-
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duced in this paper, namely Optimal-PC-Kriging (OPC-Kriging) and Sequential-
PC-Kriging (SPC-Kriging). SPC-Kriging employs first a least-angle-regression
(LAR) algorithm to determine the optimal sparse set of orthonormal polyno-
mials in the input space. Then, the set of polynomials is used as the trend
of a universal Kriging meta-model. OPC-Kriging employs the same least-
angle-regression algorithm as SPC-Kriging, yet iteratively adds polynomials
to the trend part of the universal Kriging model one-by-one, and fit the hy-
perparameters of the auto-correlation function in each iteration. In this case
polynomials are added to the trend in the order they are selected by the LAR
algorithm. Based on the LOO error the best meta-model is found to be the
OPC-Kriging meta-model.

The performance of the four approaches (ordinary Kriging, PCE, SPC-
Kriging, OPC-Kriging) is compared in terms of the relative generalization
error on benchmark analytical functions. The results show that PC-Kriging
is better than, or at least as good as the distinct approaches for small exper-
imental designs. Specifically, OPC-Kriging is preferable to SPC-Kriging as it
reduces the number of polynomials in the regression part and thus reduces
the complexity of the meta-model, at a computational calibration cost which
is however higher than that of SPC-Kriging.

The analysis of the performance of PC-Kriging is limited to some bench-
mark analytical functions in this paper. The ongoing research applies PC-
Kriging to realistic engineering problems such as reliability analysis or design
optimization. The idea of adaptive experimental designs (also called design
enrichment) is introduced in order to increase the accuracy of the surrogate
in some specific regions of the input space (e.g. close to the zero-level of the
limit state function in reliability analysis) instead of everywhere. The ini-
tialization of the iterative algorithm is a small initial experimental design to
which points are added in regions of interest. These added points will then in-
crease the quality of the meta-model specifically in those regions. Preliminary
ideas developed in Schöbi and Sudret (2014b,c,a) are currently investigated
in details.
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