
POLYNOMIAL CHAOS EXPANSIONS AND STOCHASTIC

FINITE ELEMENT METHODS

B.Sudret

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH
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1 Introduction

Soil and rock masses naturally present heterogeneity at various scales of description. This

heterogeneity may be of two kinds. At a large scale soil properties may be considered

piecewise homogeneous once regions (e.g. layers) have been identified. At a lower scale

the local spatial variability of the properties shall be accounted for. In any case, the use

of deterministic values for representing the soil characteristics is poor, since it ignores

the natural randomness of the medium. Alternatively, this randomness may be properly

modelled using probabilistic models.

In the first of the two cases identified above, the material properties (e.g. Young’s

modulus, cohesion, friction angle, etc.) may be modelled in each region as random vari-

ables whose distributions (and possibly mutual correlation) have to be specified. In the

second case, the introduction of random fields is necessary. In this respect probabilistic

soil modelling is a long-term story, see e.g. Vanmarcke (1977); DeGroot and Baecher

(1993); Fenton (1999a,b); Rackwitz (2000); Popescu et al. (2005).

Usually soil characteristics are investigated in order to feed models of geotechnical

structures in the context of engineering design. Examples of such structures are dams,

embankments, pile or raft foundations, tunnels, etc. The design then consists in choosing

characterictics of the structure (dimensions, material properties) so that the latter fulfills

some requirements (e.g. retain water, support a building, etc.) under a given set of

environmental actions that we will call “loading”. The design is practically carried out by

satisfying some design criteria which usually apply onto model response quantities (e.g.

global equilibrium equation, settlements, bearing capacity, etc.). The conservatism of the

design according to codes of practice is ensured first by introducing safety coefficients,
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second by using penalized values of the model parameters. In this approach, the natural

spatial variability of the soil is completely hidden.

From another point of view, when the uncertainties and variability of the soil properties

have been identified, methods that allow to propagate these uncertainties throughout the

model have to be used. Perturbation methods used in the 80’s and 90’s (Baecher and

Ingra, 1981; Phoon et al., 1990) allow to estimate the mean value and standard deviation

of the system response. First/Second-order reliability methods (FORM/SORM) are used

for assessing the probability of failure of the system with respect to performance criteria

(Ditlevsen and Madsen, 1996). Numerous applications of the latter can be found e.g. in

Phoon (2003); Low (2005); Low and Tang (2007); Li and Low (2010) among others.

In the early 90’s a new approach called stochastic finite element method (SFEM) has

emerged, which allows one to solve boundary value problems with uncertain coefficients

and is especially suited to spatially variable inputs (Ghanem and Spanos, 1991). The key

ingredient in this approach is so-called polynomial chaos expansions (PCE), which allows

one to represent a random output (e.g. the nodal displacement vector resulting from a

finite element analysis) as a polynomial series in the input variables. Early applications of

such a SFEM to geotechnics can be found in Ghanem and Brzkala (1996); Sudret and Der

Kiureghian (2000); Ghiocel and Ghanem (2002); Clouteau and Lafargue (2003); Sudret

et al. (2004); Sudret et al. (2006); Berveiller et al. (2006).

During the last ten years, polynomial chaos expansions have become a cross-field key

approach to uncertainty quantification in engineering problems ranging from computa-

tional fluid dynamics and heat transfer problems to electromagnetism. The associated

computational methods have also been somewhat simplified due to the emergence of non

intrusive spectral approaches, as shown later.

The goal of this chapter is to give an overview on stochastic finite element analysis us-

ing polynomial chaos expansions, focusing more specifically on non intrusive computation

schemes. The chapter is organized as follows. Section 2 presents a versatile uncertainty

quantification framework which is now widely used by both researchers and practitioners

(Sudret, 2007; De Rocquigny, 2012). Section 3 presents the machinery of polynomial

chaos expansions in a step-by-step approach: how to construct the polynomial chaos ba-

sis, how to compute the coefficients, how to estimate the quality of obtained series, how

to address large dimensional problems using sparse expansions? Section 4 shows how to

post-process a PC expansion for different applications, i.e. compute statistical moments

of the response quantities, estimate the model output distribution or carry out sensi-

tivity analysis. Finally, Section 5 presents different application examples in the field of

geotechnics.
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2 Uncertainty propagation framework

2.1 Introduction

Let us consider a physical system (e.g. a foundation on a soft soil layer, a retaining wall,

etc.) whose mechanical behaviour is represented by a computational model M:

x ∈ DX ⊂ RM 7→ y =M(x) ∈ R. (1)

In this equation, x = {x1, . . . , xM}T gathers the M input parameters of the model while

y is the quantity of interest (QoI) in the analyis, e.g. a load carrying capacity, a limit

state equation for stability, etc. In the sequel only models having a single (scalar) quantity

of interest are presented, although the derivations hold componentwise in case of vector-

valued models y = M(x) ∈ Rq.

Figure 1: Uncertainty quantification framework

As shown in Figure 1, once a computational modelM is chosen to evaluate the perfor-

mance of the system of interest (Step A), the sources of uncertainty are to be quantified

(Step B): in this step the available information (expert judgment on the problem, data

bases and literature, existing measurements) are used to build a proper probabilistic model

of the input parameters, which is eventually cast as a random vector X described by a

joint probability density function fX . When the parameters are assumed statistically

independent, this joint distribution is equivalently defined by the set of marginal distri-

bution of all input parameters, say {fXi
, i = 1, . . . ,M}. If dependence exists, the copula

formalism may be used, see Nelsen (1999); Caniou (2012). As a consequence, the quantity

of interest becomes a random variable

Y =M(X), (2)

whose properties are implicitely defined by the propagation of the uncertainties described

by the joint distribution fX through the computational model (Step C). This step consists

in characterizing the probabilistic content of Y , i.e. its statistical moments, quantiles or
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full distribution, in order to derive confidence intervals around the mean QoI for robust

predictions, or to carry out reliability assessment.

When the spatial variability of soil properties is to be modelled, random fields have

to be used. The mathematical description of random fields and their discretization is

beyond the scope of this chapter. For an overview the interested reader is referred to

Vanmarcke (1983); Sudret and Der Kiureghian (2000); Sudret and Berveiller (2007). In

any case, and whatever the random field discretization technique (e.g. Karhunen-Love

expansion, EOLE, etc.), the problem eventually reduces to an input random vector (which

is usually Gaussian) appearing in the discretization. Then the uncertainty propagation

issue identically suits the framework described above. For the sake of illustration an

application example involving spatial variability will be addressed in Section 5.3.

2.2 Monte Carlo simulation

Monte Carlo simulation (MCS) is a well-known technique for estimating statistical prop-

erties of the random response Y =M(X): realizations of the input vector X are sampled

according to the input distribution fX , then the computational modelM is run for each

sample and the resulting set of QoI is post-processed (Rubinstein and Kroese, 2008). Al-

though rather universal, MCS suffers from a low efficiency. Typically 103−4 samples are

required to reach an acceptable accuracy. The cost even blows up when probabilities of

failure are to be computed for the sake of reliability assessment, since 10k+2 samples are

required when estimating a probability of 10−k. Thus alternative methods have to be

devised for addressing uncertainty quantification problems which involve computationally

demanding models such as finite element models. In the last decade polynomial chaos

expansions have become a popular approach in this respect.

3 Polynomial chaos expansions

3.1 Mathematical setting

Consider a computational modelM whose input parameters are represented by a random

vector X, and the associated (random) quantity of interest Y =M(X). Assuming that

Y has a finite variance (which is a physically meaningful assumption when dealing with

geotechnical systems), it belongs to the so-called Hilbert space of second order random

variables, which allows for the following representation (Soize and Ghanem, 2004):

Y =
∞∑

j=0

yj Zj. (3)

In the latter equation, the random variable Y is cast as an infinite series, in which {Zj}∞j=0

is a numerable set of random variables (which form a basis of the Hilbert space), and

{yj}∞j=0 are coefficients. The latter may be interpreted as the coordinates of Y in this

basis. Hilbertian analysis guarantees the existence of such bases and representation,
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however many choices are possible. In the sequel we focus on polynomial chaos expansions,

in which the basis terms {Zj}∞j=0 are multivariate orthonormal polynomials in the input

vector X, i.e. Zj = Ψj(X).

3.2 Construction of the basis

3.2.1 Univariate orthonormal polynomials

For the sake of simplicity we assume that the input random vector has independent com-

ponents denoted by {Xi, i = 1, . . . ,M}, meaning that the joint distribution is simply the

product of the M marginal distributions {fXi
}Mi=1:

fX(x) =
M∏

i=1

fXi
(xi), xi ∈ DXi

, (4)

where DXi
is the support of Xi. For each single variable Xi and any two functions

φ1, φ2 : x ∈ DXi
7→ R, we define a functional inner product by the following integral

(provided it exists):

〈φ1, φ2〉i =

∫

DXi

φ1(x)φ2(x) fXi
(x) dx. (5)

The latter is nothing but the expectation E [φ1(Xi)φ2(Xi)] with respect to the marginal

distribution fXi
. Two such functions are said orthogonal with respect to the probability

measure P (dx) = fXi
(x) dx if E [φ1(Xi)φ2(Xi)] = 0. Using the above notation, classical

algebra allows one to build a family of orthogonal polynomials {π(i)
k , k ∈ N} satisfying

〈
π

(i)
j , π

(i)
k

〉
i

def
= E

[
π

(i)
j (Xi)π

(i)
k (Xi)

]
=

∫

DXi

π
(i)
j (x) π

(i)
k (x) fXi

(x) dx = aij δjk, (6)

where subscript k denotes the degree of the polynomial π
(i)
k , δjk is the Kronecker symbol

equal to 1 when j = k and 0 otherwise, and aij corresponds to squared norm of π
(i)
j :

aij
def
=‖ π(i)

j ‖2
i

def
=
〈
π

(i)
j , π

(i)
j

〉
i

(7)

This family can be obtained by applying the Gram-Schmidt orthogonalization procedure

to the canonical family of monomials {1, x, x2, . . . }. For standard distributions, the

associated family of orthogonal polynomials is well-known. For instance, if Xi ∼ U(−1, 1)

has a uniform distribution over [−1, 1], the resulting family is that of so-called Legendre

polynomials. If Xi ∼ N (0, 1) has a standard normal distribution with zero mean value and

unit standard deviation, the resulting family is that of Hermite polynomials. The families

associated to standard distributions are summarized in Table 1 (Xiu and Karniadakis,

2002).

Note that the obtained family is usually not orthonormal. By enforcing the normal-

ization, an orthonormal family
{
ψ

(i)
j

}∞
j=0

is obtained from Eqs.(6),(7) by

ψ
(i)
j = π

(i)
j /
√
aij i = 1, . . . ,M, j ∈ N, (8)

The normalizing coefficients are listed in Table 1 for the standard families. For the sake

of illustration Hermite polynomials up to degree 4 are plotted in Figure 2.
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Table 1: Classical families of orthogonal polynomials

Type of variable Distribution Orthogonal polynomials Hilbertian basis ψk(x)

Uniform

U(−1, 1) 1[−1,1](x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian

N (0, 1)
1√
2π
e−x

2/2 Hermite Hek(x) Hek(x)/
√
k!

Gamma

Γ(a, λ = 1) xa e−x 1R+(x) Laguerre Lak(x) Lak(x)/
√

Γ(k+a+1)
k!

Beta

B(a, b) 1[−1,1](x) (1−x)a(1+x)b

B(a)B(b)
Jacobi Ja,bk (x) Ja,bk (x)/Ja,b,k

J2
a,b,k = 2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

H
e n

(x
)

He1 (x)

He2 (x)

He3 (x)

He4 (x)

Figure 2: Univariate Hermite polynomials

3.2.2 Multivariate polynomials

In order to build up a basis such as in (3), tensor products of univariate orthonormal

polynomials are built up. For this purpose let us define multi-indices (also called tuples)

α ∈ NM which are ordered lists of integers

α = (α1, . . . , αM) , αi ∈ N. (9)

One can associate a multivariate polynomial Ψα to any multi-index α by

Ψα(x)
def
=

M∏

i=1

ψ(i)
αi

(xi), (10)

where the univariate polynomials
{
ψ

(i)
k , k ∈ N

}
are defined according to the i-th marginal

distribution, see Eqs.(6),(8). By virtue of Eq.(6) and the above tensor product construc-
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tion, the multivariate polynomials in the input vector X are also orthonormal, i.e.

E [Ψα(X) Ψβ(X)]
def
=

∫

DX
Ψα(x)Ψβ(x) fX(x) dx = δαβ ∀α,β ∈ NM , (11)

where δαβ is the Kronecker symbol which is equal to 1 if α = β and zero otherwise.

With this notation, it can be proven that the set of all multivariate polynomials in the

input random vector X forms a basis of the Hilbert space in which Y =M(X) is to be

represented (Soize and Ghanem, 2004):

Y =
∑

α∈NM

yα Ψα(X). (12)

This equation may be interpreted as an intrinsic representation of the random response Y

in an abstract space through an orthonormal basis and coefficients that are the coordinates

of Y in this basis.

3.3 Practical implementation

3.3.1 Isoprobabilistic transform

In practical uncertainty quantification problems the random variables which model the

input parameters (e.g. material properties, loads, etc.) are usually not standardized as

those shown in Table 1. Thus it is necessary to first transform random vector X into a

set of reduced variables U through an isoprobabilistic transform

X = T (U ). (13)

Depending on the marginal distribution of each input variable Xi, the associated reduced

variable Ui may be standard normal N (0, 1), standard uniform U(−1, 1), etc. Then the

random model response Y is cast as a function of the reduced variables by composing the

computational model M and the transform T :

Y =M(X) =M◦ T (U) =
∑

α∈NM

yα Ψα(U). (14)

Note that the isoprobabilistic transform also allows one to address the case of correlated

input variables through e.g. Nataf transform (Ditlevsen and Madsen, 1996).

Example 1 Suppose X = {X1, . . . , XM}T is a vector of independent Gaussian variables

Xi ∼ N (µi, σi) with respective mean value µi and standard deviation σi. Then a one-to-

one mapping X = T (U) is obtained by:

Xi = µi + σi Ui, i = 1, . . . ,M. (15)

where U = {U1, . . . , UM}T is a standard normal vector.
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Example 2 Suppose X = {X1, X2}T where X1 ∼ LN (λ, ζ) is a lognormal variable

and X2 ∼ U(a, b) is a uniform variable. It is natural to transform X1 into a standard

normal variable and X2 into a standard uniform variable. The isoprobabilistic transform

X = T (U) then reads: 



X1 = eλ+ζ U1

X2 =
b− a

2
U2 +

b+ a

2

(16)

3.3.2 Truncation scheme

The representation of the random response in Eq.(12) is exact when the infinite series is

considered. However, in practice, only a finite number of terms may be computed. For

this purpose a truncation scheme has to be adopted. Since the polynomial chaos basis is

made of polynomials, it is natural to consider as a truncated series all polynomials up to

a certain degree. Let us define the total degree of a multivariate polynomial Ψα by:

|α| def=
M∑

i=1

αi. (17)

The standard truncation scheme consists in selecting all polynomials such that |α| is

smaller than a given p, i.e.

AM,p =
{
α ∈ NM : |α| ≤ p

}
. (18)

The number of terms in the truncated series is

card AM,p =

(
M + p

p

)
=

(M + p)!

M ! p!
. (19)

The maximal polynomial degree p may typically be equal to 3 − 5 in practical applica-

tions. The question on how to define the suitable p for obtaining a given accuracy in

the truncated series will be addressed later in Section 3.6. Note that the cardinality of

AM,p increases polynomially with M and p. Thus the number of terms in the series, i.e.

the number of coefficients to be computed, increases dramatically when M > 10, say.

This complexity is referred to as the curse of dimensionality. Other advanced truncation

schemes that allow one to bypass this problem will be considered later on in Section 3.6.

As a conclusion, the construction of a truncated PC expansion requires to:

• transform the input random vector X into reduced variables;

• compute the associated families of univariate orthonormal polynomials;

• compute the set of multi-indices corresponding to the truncation set (Eq.(18)). For

this purpose, two different algorithms may be found in Sudret et al. (2006, Ap-

pendix I) and Blatman (2009, Appendix C).
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3.3.3 Application example

Let us consider a computational model y =M(x1, x2) involving two random parameters

{X1 , X2}T that are modelled by lognormal distributions, e.g. the load carrying capacity

of a foundation in which the soil cohesion and friction angle are considered uncertain.

Denoting by (λi, ζi) the parameters of each distribution (i.e. the mean and standard

deviation of the logarithm of Xi, i = 1, 2), the input variables may be transformed into

reduced standard normal variables X = T (U) as follows:

X1 ∼ LN (λ1, ζ1) X1 = eλ1+ζ1 U1

X2 ∼ LN (λ2, ζ2) X2 = eλ2+ζ2 U2
(20)

The problem reduces to representing a function of two standard normal variables onto a

polynomial chaos expansion:

Y =M(T (U1, U2)) =
∑

α∈N2

yα Ψα(U1, U2). (21)

Since the reduced variables are standard normal, Hermite polynomials are used. Their

derivation is presented in details in Appendix A. For the sake of illustration the orthonor-

mal Hermite polynomials up to degree p = 3 read (see Eq.(8)):

ψ0(x) = 1 ψ1(x) = x ψ2(x) = (x2 − 1)/
√

2 ψ3(x) = (x3 − 3x)/
√

6. (22)

Suppose a standard truncation scheme of maximal degree p = 3 is selected. This leads to

a truncation set A2,3 of size P =
(

2+3
3

)
= 10. The set of multi-indices (α1, α2) such that

{αi ≥ 0, α1 + α2 ≤ 3} is given in Table 2 together with the expression of the resulting

multivariate polynomials.

Table 2: Hermite polynomial chaos basis – M = 2 standard normal variables, p = 3

j α Ψα ≡ Ψj

0 (0, 0) Ψ0 = 1

1 (1, 0) Ψ1 = U1

2 (0, 1) Ψ2 = U2

3 (2, 0) Ψ3 = (U2
1 − 1)/

√
2

4 (1, 1) Ψ4 = U1U2

5 (0, 2) Ψ5 = (U2
2 − 1)/

√
2

6 (3, 0) Ψ6 = (U3
1 − 3U1)/

√
6

7 (2, 1) Ψ7 = (U2
1 − 1)U2/

√
2

8 (1, 2) Ψ8 = (U2
2 − 1)U1/

√
2

9 (0, 3) Ψ9 = (U3
2 − 3U2)/

√
6

As a conclusion, the random response of our computational model Y =M(T (U1, U2))
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will be approximated by a 10-term polynomial series expansion in (U1, U2):

Ỹ
def
=MPC(U1, U2) = y0 + y1 U1 + y2 U2 + y3 (U2

1 − 1)/
√

2 + y4 U1U2

+ y5 (U2
2 − 1)/

√
2 + y6 (U3

1 − 3U1)/
√

6 + y7 (U2
1 − 1)U2/

√
2

+ y8 (U2
2 − 1)U1/

√
2 + y9(U3

2 − 3U2)/
√

6.

(23)

3.4 Computation of the coefficients

3.4.1 Introduction

Once the truncated basis has been selected the coefficients {yα}α∈AM,p shall be com-

puted. Historically, so-called intrusive computation schemes have been developed in the

context of stochastic finite element analysis (Ghanem and Spanos, 1991). In this setup

the constitutive equations of the physical problem (e.g. linear elasticity for estimating

the settlement of foundations) are discretized both in the physical space (using standard

finite element techniques) and in the random space using the polynomial chaos expansion.

This results in coupled systems of equations which require ad-hoc solvers, thus the term

“intrusive”. The application of such approaches to geotechnical problems may be found

in Ghiocel and Ghanem (2002); Berveiller et al. (2004b); Sudret et al. (2004); Sudret et al.

(2006), Sudret and Berveiller (2007, Chap. 7).

In the last decade alternative approaches termed non-intrusive have been developed for

computing the expansion coefficients. The common point of these techniques is that they

rely upon the repeated run of the computational model for selected realizations of random

vector X, exactly as in Monte-Carlo simulation. Thus the computational model may be

used without modification. The main techniques are now reviewed with an emphasis on

least-square minimization.

3.4.2 Projection

Due to the orthogonality of the PC basis (Eq.(11)) one can compute each expansion

coefficient as follows:

E [Y Ψα(X)] = E


Ψα(X) ·

∑

β∈NM

yβ Ψβ(X)


 =

∑

β∈NM

yβ

δαβ︷ ︸︸ ︷
E [Ψα(X)Ψβ(X)] = yα. (24)

Thus each coefficient yα is nothing but the orthogonal projection of the random response

Y onto the corresponding basis function Ψα(X). The latter may be further elaborated

as

yα = E [Y Ψα(X)] =

∫

DX
M(x) Ψα(x) fX(x) dx. (25)

The numerical estimation of yα may be carried with either one of the two expressions,

namely:

• by Monte Carlo simulation (MCS) allowing one to estimate the expectation in

Eq.(25) (Ghiocel and Ghanem, 2002). This technique however shows low efficiency,

as does MCS in general;

10



• by a the numerical integration of the right-hand side of Eq.(25) using Gaussian

quadrature (Le Mâıtre et al., 2002; Berveiller et al., 2004a; Matthies and Keese,

2005).

The quadrature approach has been extended using sparse grids for a more efficient inte-

gration, especially in large dimensions. So-called stochastic collocation methods have also

been developed. The reader is referred to the review paper by Xiu (2009) for more details.

3.4.3 Least-square minimization

Instead of devising numerical methods that directly estimate each coefficient from the

expression yα = E [Y Ψα(X)], an alternative approach based on least-square minimization

and originally termed “regression approach” has been proposed in Berveiller et al. (2004b,

2006). The problem is set up as follows. Once a truncation scheme A ⊂ NM is chosen (for

instance, A = AM,p as in Eq.(18)), the infinite series is recast as the sum of the truncated

series and a residual:

Y =M(X) =
∑

α∈A
yα Ψα(X) + ε, (26)

in which ε corresponds to all those PC polynomials whose index α is not in the truncation

set A. The least-square minimization approach consists in finding the set of coefficients

y = {yα, α ∈ A} which minimizes the mean square error

E
[
ε2
] def

= E



(
Y −

∑

α∈A
yα Ψα(X)

)2

 , (27)

that is:

y = arg min
y∈RcardA

E



(
M(X)−

∑

α∈A
yα Ψα(X)

)2

 . (28)

The residual in Eq.(27) is nothing but a quadratic function of the (still unknown) co-

efficients {yα}α∈A. By simple algebra it can be proven that the solution is identical to

that obtained by projection in Eq.(25). However, the setup in Eq.(28) which is similar to

regression opens to new computational schemes.

For this purpose, the discretized version of the problem is obtained by replacing the

expectation operator in Eq.(28) by the empirical mean over a sample set:

ŷ = arg min
y∈RcardA

1

n

n∑

i=1

(
M(x(i))−

∑

α∈A
yα Ψα(x(i))

)2

. (29)

In this expression, X =
{
x(i), i = 1, . . . , n

}
is a sample set of points, (also called exper-

imental design (ED)) that is typically obtained by Monte Carlo simulation of the input

random vector X. The least-square minimization problem in Eq.(29) is solved as follows:

• The computational model M is run for each point in the ED, and the results are

stored in a vector

Y =
{
y(1) =M(x(1)), . . . , y(n) =M(x(n))

}T
. (30)
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• The information matrix is calculated from the evaluation of the basis polynomials

onto each point in the ED:

A =
{
Aij

def
= Ψj(x

(i)) , i = 1, . . . , n, j = 1, . . . , card A
}
. (31)

• The solution of the least-square minimization problem reads

ŷ =
(
ATA

)−1
AT Y . (32)

In order to be well-posed the least-square minimization requires that the number of

unknown P = card A is smaller than the size of the experimental design n = card X .

The empirical thumb rule n ≈ 2P - 3P is often mentioned (Sudret, 2007; Blatman,

2009). To overcome the potential ill-condionning of the information matrix, a singular

value decomposition shall be used (Press et al., 2001).

The points used in the experimental design may be obtained from crude Monte Carlo

simulation. However other types of designs are of common use, especially Latin Hypercube

sampling (LHS), see McKay et al. (1979), or quasi-random sequences such as the Sobol’

or Halton sequence (Niederreiter, 1992). From the author’s experience the latter types of

design provide rather equivalent accuracy in terms of resulting mean-square error, for the

same sample size n. Note that deterministic designs based on the roots of the orthogonal

polynomials have also been proposed earlier in Berveiller et al. (2006) based on Isukapalli

(1999).

Once the coefficients have been evaluated (Eq.(32)) the approximation of the random

response is the random variable

Ŷ =MPC(X) =
∑

α∈A
ŷα Ψα(X). (33)

The above equation may also be interpreted as a response surface, i.e. a function x 7→
MPC(x) =

∑

α∈A
ŷα Ψα(x) that allows one to surrogate (fast, although approximately) the

original model y =M(x).

3.5 Validation

3.5.1 Error estimators

As mentioned already, it is not possible to know in advance how to choose the maximal

polynomial degree in the standard truncation scheme Eq.(18). A crude approach would

consist in testing several truncation schemes of increasing degree (e.g. p = 2, 3, 4) and

observe if there is some convergence for the quantities of interest. Recently, a posteriori

error estimates have been proposed by Blatman and Sudret (2010) that allow for an

objective evaluation of the accuracy of any truncated PCE.

First of all it is reminded that a good measure of the error committed by using a

truncated series expansion is the mean-square error of the residual (which is also called
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generalization error in statistical learning theory):

ErrG
def
= E

[
ε2
]

= E



(
Y −

∑

α∈A
ŷα Ψα(X)

)2

 . (34)

In practice the latter is not known analytically, yet it may be estimated by a Monte Carlo

simulation using a large sample set, say Xval = {x1, . . . ,xnval
}:

ÊrrG
def
=

1

nval

nval∑

i=1

(
M(xi)−

∑

α∈A
ŷα Ψα(xi)

)2

. (35)

The so-called validation set Xval shall be large enough to get an accurate estimation, e.g.

nval = 103−5. However, as the computation of ÊrrG requires evaluatingM for each point

in Xval, this is not affordable in real applications and would ruin the efficiency of the

approach. Indeed the purpose of using polynomial chaos expansions is to avoid Monte

Carlo simulation, i.e. to limit the number of runs ofM in Eq.(30) to the smallest possible

number, typically n = 50 to a few hundreds.

As a consequence, in order to get an estimation of the generalization error Eq.(34)

at an affordable computational cost, the points in the experimental design X could be

used in Eq.(35) instead of the validation set, leading to the so-called empirical error ÊrrE
defined by

ÊrrE
def
=

1

n

n∑

i=1

(
M(x(i))−

∑

α∈A
ŷα Ψα(x(i))

)2

, x(i) ∈ X (36)

This empirical error now only uses the values M(x(i)) that are already available from

Eq.(30) and is thus readily computable. Note that the normalized quantity

R2 = 1− ÊrrE
Var [Y ]

, (37)

where Var [Y ] is the empirical variance of the set of response quantities in Eq.(30), is the

well-known coefficient of determination in regression analysis.

However ÊrrE usually underestimates (sometimes severely) the real generalization

error ErrG. As an example, in the limit case when an interpolating polynomial would

be fitted to the experimental design, ÊrrE would be exactly zero while ErrG in Eq.(34)

would probably not: this phenomenon is known as overfitting.

3.5.2 Leave-one-out cross-validation

A compromise between fair error estimation and affordable computational cost may be

obtained by leave-one-out (LOO) cross-validation, which was originally proposed by Allen

(1971); Geisser (1975). The idea is to use different sets of points to (i) build a PC

expansion and (ii) compute the error with the original computational model. Starting

from the full experimental design X , LOO cross-validation sets one point apart, say x(i)

13



and builds a PC expansion denoted by MPC\i(.) from the n − 1 remaining points, i.e.

from the ED X\x(i) def
=
{
x(1), . . . ,x(i−1), x(i+1), . . . ,x(n)

}
. The predicted residual error

at that point reads:

∆i
def
=M(x(i))−MPC\i(x(i)). (38)

The PRESS coefficient(predicted residual sum of squares) and the leave-one-out error

respectively read:

PRESS =
n∑

i=1

∆2
i , (39)

ÊrrLOO =
1

n

n∑

i=1

∆2
i . (40)

Similar to the determination coefficient in Eq.(37) the Q2 indicator defined by

Q2 = 1− ÊrrLOO
Var [Y ]

(41)

is a normalized measure of the accuracy of the meta-model. From the above equations

one could think that evaluating ÊrrLOO is computationally demanding since it is based

on the sum of n predicted residuals, each of them obtained from a different PC expansion.

However algebraic derivations may be carried out to compute ÊrrLOO from a single PC

expansion analysis using the full original experimental design X (details may be found in

Blatman (2009, Appendix D)) as follows. The predicted residual in Eq.(38) eventually

reads:

∆i =M(x(i))−MPC\i(x(i)) =
M(x(i))−MPC(x(i))

1− hi
, (42)

where hi is the i-th diagonal term of matrix A(ATA)−1AT. The LOO error estimate

eventually reads

ÊrrLOO =
1

n

n∑

i=1

(M(x(i))−MPC(x(i))

1− hi

)2

, (43)

where MPC has been built up from the full experimental design. As a conclusion, from

a single resolution of a least-square problem using the ED X , a fair error estimate of

the mean-square error is available a posteriori using Eq.(43). Note that in practice,

a normalized version of the LOO error is obtained by dividing ÊrrLOO by the sample

variance Var [Y ]. A correction factor that accounts for the limit size of the experimental

design is also added (Chapelle et al., 2002) which eventually leads to:

ε̂LOO =
1

n− P

(
1 + 1

n
tr C−1

emp

Var [Y ]

)
n∑

i=1

(M(x(i))−MPC(x(i))

1− hi

)2

, (44)

where tr(·) is the trace, P = card A and Cemp = 1
n
ΨTΨ.
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3.6 Curse of dimensionality

Common engineering problems are solved with computational models having typically

M = 10 to 50 input parameters. Even using a low-order PC expansion, this leads to a

large number of unknown coefficients (size of the truncation set P = card AM,p), which is

equal to e.g. 286 – 23,426 terms when choosing p = 3. As explained already the suitable

size of the experimental design shall be two to three times those numbers, which may

reveal unaffordable when the computational model M is e.g. a finite element model.

On the other hand, most of the terms in this large truncation set AM,p correspond to

polynomials representing interactions between input variables. Yet it has been observed

in many practical applications that only the low-interaction terms have coefficients that

are significantly non zero. Taking again the example {M = 50, p = 3}, the number of

univariate polynomials in the input variables (i.e. depending only on U1, on U2, etc.)

is equal to p ·M =150, i.e. less than 1% of the total number of terms in A50,3. As a

conclusion, the common truncation scheme in Eq.(18) leads to compute a large number of

coefficients, whereas most of them may reveal negligible once the computation has been

carried out.

Due to this sparsity-of-effect principle Blatman (2009) has proposed to use truncation

schemes that favor the low-interaction (also called low-rank) polynomials. Let us define

the rank r of a multi-index α by the number of non zero integers in α, i.e.

r
def
= ||α||0 =

M∑

i=1

1{αi>0} (45)

This rank corresponds to the number of input variables a polynomial Ψα depends on. For

instance, Ψ1, Ψ3 and Ψ9 in Table 2 are of rank 1 (they only depend on one single variable)

whereas Ψ4, Ψ7 and Ψ8 are of rank 2. Blatman and Sudret (2010) propose to fix a priori

the maximum rank rmax and define truncation sets as follows:

AM,p,rmax = {α ∈ NM : |α| ≤ p, ||α||0 ≤ rmax} (46)

Another approach which has proven to be more relevant in the context of adaptive al-

gorithms has been introduced in Blatman and Sudret (2011a) and is referred to as the

hyperbolic truncation scheme. Let us define for any multi-index α and 0 < q ≤ 1 the

q-norm:

||α||q def
=

(
M∑

i=1

αqi

)1/q

(47)

The hyperbolic truncation scheme corresponds to selecting all multi-indices of q-norm less

than or equal to p:

AM,p,q = {α ∈ NM : ||α||q ≤ p} (48)

As shown in Figure 3 for a two-dimensional problem (M = 2), such a truncation set con-

tains all univariate polynomials up to degree p (since tuples of the form (0, . . . , αi 6= 0, . . . , 0)

belong to it as long as αi ≤ p). The case q = 1 corresponds to the standard truncation set
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AM,p defined in Eq.(18). When q < 1 though, the polynomials of rank r > 1 (correspond-

ing to the blue points that are not on the axes in Figure 3) are less numerous than in

AM,p. The gain in the basis size is all the more important when q is small and M is large.

In the limit when q → 0+ only univariate polynomials (rank 1, no interaction terms) are

retained leading to an additive surrogate model, i.e. a sum of univariate functions. As

shown in Blatman and Sudret (2011a) the size of the truncation set in Eq.(48) may be

smaller by 2 to 3 orders of magnitude than that of the standard truncation scheme for

large M and p ≥ 5.

Figure 3: Hyperbolic truncation scheme (after Blatman and Sudret (2011a))

3.7 Adaptive algorithms

The use of hyperbolic truncation schemes AM,p,q as described above allows one to a priori

decrease the number of coefficients to be computed in a truncated series expansion. This

automatically reduces the computational cost since the minimal size of the experimental

design X shall be equal to k · card AM,p,q, where k = 2 to 3. However this may remain

too costly when large-dimensional, highly non linear problems are to be addressed.

Moreover, it is often observed a posteriori that the non zero coefficients in the expan-

sion form a sparse subset of AM,p,q. Thus came the idea to build on-the-fly the suitable
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Standard truncation (AM,p) Hyperbolic truncation (AM,p,q) Sparse truncation (A)

Figure 4: Sketch of the different truncation sets (blue points)

sparse basis instead of computing useless terms in the expansion which are eventually

negligible. For this purpose adaptive algorithms have been introduced in Blatman and

Sudret (2008) and further improved in Blatman and Sudret (2010, 2011a). In the latter

publication the question of finding a suitable truncated basis is interpreted as a variable

selection problem. The so-called least-angle regression (LAR) algorithm (Efron et al.,

2004) has proven remarkable efficiency in this respect (see also Hastie et al. (2007)).

The principle of LAR is to (i) select a candidate set of polynomials A, e.g. a given

hyperbolic truncation set as in Eq.(48), and (ii) build up from scratch a sequence of sparse

bases having 1, 2, , . . . , card A terms. The algorithm is initialized by looking for the basis

term Ψα1 which is the most correlated with the response vector Y . The correlation is

practically computed from the realizations of Y (i.e. the set Y of QoI in Eq.(30)) and

the realizations of the Ψα’s, namely the information matrix in Eq.(31). This is carried

out by normalizing each column vector into a zero-mean, unit variance vector, such that

the correlation is then obtained by a mere scalar product of the normalized vector. Once

the first basis term Ψα1 is identified, the associated coefficient is computed such that the

residual Y − y(1)
α1 Ψα1(X) becomes equicorrelated with two basis terms (Ψα1 , Ψα2). This

will define the best one-term expansion. Then the current approximation is improved

by moving along the direction (Ψα1 + Ψα2) up to a point where the residual becomes

equi-correlated with a third polynomial Ψα3 , and so on.

In the end the LAR algorithm has produced a sequence of less and less sparse expan-

sions. The leave-one-out error of each expansion can be evaluated by Eq.(43). The sparse

model providing the smallest error is retained. The great advantage of LAR is that it can

be applied also in the case when the size of the candidate basis A is larger than the size of

the ED, card X . Usually the size of the optimal sparse truncation is smaller than card X
in the end. Thus the coefficients of the associated PC expansion may be recomputed by

least-square minimization for a better accuracy (Efron et al., 2004).

Note that all the above calculations are conducted from a prescribed initial experimen-

tal design X . It may happen though that this size is too small to address the complexity

of the problem, meaning that there is not enough information to find a sparse expan-

sion with a sufficiently small LOO error. In this case overfitting appears, which can be

detected automatically as shown in Blatman and Sudret (2011a). At that point the ED

shall be enriched by adding new points (Monte Carlo samples or nested Latin Hypercube
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sampling).

Figure 5: Basis-and-ED adaptive algorithm for sparse PC expansions (after Blatman and

Sudret (2011a))

All in all a fully automatic “basis-and-ED” adaptive algorithm may be devised that will

only require to prescribe the target accuracy of the analysis, i.e. the maximal tolerated

LOO error, and an initial experimental design. The algorithm then automatically runs

LAR analysis with increasingly large candidate sets A, and possibly by increasing large

experimental designs so as to reach the prescribed accuracy (see Figure 5). Note that

extensions to vector-valued models have been proposed recently in Blatman and Sudret

(2011b, 2013).

4 Post-processing for engineering applications

The polynomial chaos expansion technique presented in the previous sections leads to

represent the quantity of interest (QoI) of a computational model Y =M(X) through a

somewhat abstract represention by a polynomial series Ŷ =
∑
α∈A ŷα Ψα(X) (Eq.(33)).

Once the PC basis has been set up (a priori or using an adaptive algorithm such as

LAR) and once the coefficients have been calculated, the series expansion shall be post-

processed so as to provide engineeringwise meaningful numbers and statements: what

is the mean behaviour of the system (mean QoI), scattering (variance of the QoI), con-

fidence intervals or probability of failure (i.e. the probability that the QoI exceeds an

admissible threshold)? In this section the various ways of post-processing a PC expansion

are reviewed.
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4.1 Moment analysis

From the orthonormality of the PC basis shown in Eq.(11) one can easily compute the

mean and standard deviation of a truncated series Ŷ =
∑
α∈A ŷα Ψα(X). Indeed, each

polynomial shall be orthogonal to Ψ0 ≡ 1, meaning that E [Ψα(X)] = 0 ∀α 6= 0. Thus

the mean value of Ŷ is the first term of the series:

E
[
Ŷ
]

= E

[∑

α∈A
ŷα Ψα(X)

]
= y0 (49)

Similarly, due to Eq.(11) the variance reads

σ2
Ŷ

def
= Var

[
Ŷ
]

= E
[(
Ŷ − y0

)2
]

=
∑

α∈A
α 6=0

ŷ2
α (50)

Higher order moments such as the skewness and kurtosis coefficients δŶ and κŶ may also

be computed, which however requires the expectation of products of three (resp. four)

multivariate polynomials:

δŶ
def
=

1

σ3
Ŷ

E
[
(Ŷ − y0)3

]
=

1

σ3
Ŷ

∑

α∈A

∑

β∈A

∑

γ∈A
E [Ψα(X)Ψβ(X)Ψγ(X)] ŷαŷβŷγ

κŶ
def
=

1

σ4
Ŷ

E
[
(Ŷ − y0)4

]
=

1

σ4
Ŷ

∑

α∈A

∑

β∈A

∑

γ∈A

∑

δ∈A
E [Ψα(X)Ψβ(X)Ψγ(X)Ψδ(X)] ŷαŷβŷγ ŷδ

(51)

The above expectations of products can be given analytical expressions only when Hermite

polynomials are used (see Sudret et al. (2006, Appendix I)). Otherwise they may be

computed numerically by quadrature.

4.2 Distribution analysis and confidence intervals

As shown from Eq.(33) the PC expansion MPC can be used as a polynomial response

surface. Thus the output probability density function of Ŷ =
∑
α∈A ŷα Ψα(X) can be

obtained by merely sampling the input random vector X, say XMCS = {x1, . . . ,xnMCS
}

and evaluating the PC expansion onto this sample, i.e.

YPC
MCS =

{
MPC(x1), . . . ,MPC(xnMCS

)
}
. (52)

Using a sufficiently large sample set (e.g. nMCS = 105−6), one can then compute and plot

the almost exact PDF of Ŷ by using a kernel density estimator (Wand and Jones, 1995):

f̂Ŷ (y) =
1

nMCS h

nMCS∑

i=1

K

(
y −MPC(xi)

h

)
. (53)

In this equation the kernel function K is a positive definite function integrating to one

(e.g. the standard normal PDF ϕ(y) = e−y
2/2/
√

2π) and h is the bandwith. The latter

can be taken for instance from Silverman’s equation:

h = 0.9n
−1/5
MCS min

(
σ̂Ŷ , (Q0.75 −Q0.25)/1.34

)
, (54)
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where σŶ (resp. Q0.25 , Q0.75) is the empirical standard deviation of YPC
MCS (resp. the first

and third quartile of YPC
MCS). Note that these quantiles as well as any other can be obtained

from the large sample set in Eq.(52). Having first reordered it in ascending order, say{
ŷ(1), . . . , ŷ(nMCS)

}
, the empirical p-quantile Qp%, 0 < p < 1 is the bp% · nMCSc-th point

in the ordered sample set, i.e.

Qp% = ŷ(bp%·nMCSc), (55)

where buc is the largest integer that is smaller than u. This allows one to compute

confidence intervals (CI) on the quantity of interest Ŷ . For instance the 95% centered

confidence interval, whose bounds are defined by the 2.5% and 97.5% quantile, is

CI95%
Ŷ

=
[
ŷ(b2.5%·nMCSc) , ŷ(b97.5%·nMCSc)

]
. (56)

Note that all the above post-processing may be carried out on large Monte Carlo samples

since the function to evaluate in Eq.(52) is the polynomial surrogate model and not the

original model M. Such an evaluation is nowadays a matter of seconds on standard

computers, even with nMCS = 105−6.

4.3 Reliability analysis

Reliability analysis aims at computing the probability of failure associated to a perfor-

mance criterion related to the quantity of interest (QoI) Y = M(X). In general the

failure criterion under consideration is represented by a limit state function g(X) defined

in the space of parameters as follows (Ditlevsen and Madsen, 1996):

• Ds = {x ∈ DX : g(x) > 0} is the safe domain of the structure;

• Df = {x ∈ DX : g(x) < 0} is the failure domain;

• The set of realizations {x ∈ Dx : g(x) = 0} is the so-called limit state surface.

Typical performance criteria are defined by the fact that the QoI shall be smaller than

an admissible threshold yadm. According to the above definition the limit state function

then reads

g(x) = yadm −M(x). (57)

Then the probability of failure of the system is defined as the probability that X belongs

to the failure domain:

Pf =

∫

{x: yadm−M(x)≤0}
fX(x) dx = E

[
1{x: yadm−M(x)≤0}(X)

]
(58)

where fX is the joint probability density function of X and 1{x: yadm−M(x)≤0} is the in-

dicator function of the failure domain. In all but academic cases, this integral cannot

be computed analytically, since the failure domain is defined from a quantity of interest

Y =M(X) (e.g. displacements, strains, stresses, etc.), which is obtained by means of a

computer code (e.g. finite element code) in industrial applications.
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Once a PC expansion of the QoI is available though, the probability of failure may be

obtained by substituting M by MPC in Eq.(57):

PPC
f =

∫

{x: yadm−MPC(x)≤0}
fX(x) dx = E

[
1{x:MPC(x)≥yadm}(X)

]
(59)

The latter can be estimated by crude Monte Carlo simulation. Using the sample set in

Eq.(52) one computes the number nf of samples such that MPC(xi) ≥ yadm. Then the

estimate of the probability of failure reads:

P̂PC
f =

nf
nMCS

(60)

This crude Monte Carlo approach will typically work efficiently if Pf ≤ 10−4, i.e. if at

most 106 runs of PC expansion are required. Note that any standard reliability method

such as importance sampling or subset simulation could be also used.

4.4 Sensitivity analysis

4.4.1 Sobol’ decomposition

Global sensitivity analysis (GSA) aims at quantifying which input parameters {Xi , i = 1, . . . ,M}
or combinations thereof explain at best the variability of the quantity of interest Y =

M(X) (Saltelli et al., 2000, 2008). This variability being well described by the variance of

Y , the question reduces to apportioning Var [Y ] to each input parameter {X1, . . . , XM},
second-order interactions XiXj, etc. For this purpose variance decomposition techniques

have gained interest since the mid 90’s. The Sobol’ decomposition (Sobol’, 1993) states

that any square integrable function M with respect to a probability measure associated

with a PDF fX(x) =
∏M

i=1 fXi
(xi) (independent components) may be cast as:

M(x) =M0 +
M∑

i=1

Mi(xi) +
∑

1≤i<j≤M
Mij(xi, xj) + · · ·+M12...M(x) (61)

that is, as a sum of a constant, univariate functions {Mi(xi) , 1 ≤ i ≤M}, bivariate

functions {Mij(xi, xj) , 1 ≤ i < j ≤M}, etc. Using the set notation for indices

u
def
= {i1, . . . , is} ⊂ {1, . . . ,M} , (62)

the Sobol’ decomposition in Eq.(61) reads:

M(x) =M0 +
∑

u⊂{1, ... ,M}
u6=∅

Mu(xu) (63)

where xu is a subvector of x which only contains the components that belong to the index

set u. It can be proven that the Sobol’ decomposition is unique when the orthogonality

between summands is required, namely:

E [Mu(xu)Mv(xv)] = 0 ∀ u, v ⊂ {1, . . . ,M} , u 6= v (64)
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A recursive construction is obtained by the following recurrence relationship:

M0 = E [M(X)]

Mi(xi) = E [M(X)|Xi = xi]−M0

Mij(xi, xj) = E [M(X)|Xi, Xj = xi, xj]−Mi(xi)−Mj(xj)−M0

(65)

The latter equation is of little interest in practice since the integrals required to compute

the various conditional expectations are cumbersome. Nevertheless the existence and

unicity of Eq.(61) together with the orthogonality property in Eq.(64) now allow one to

decompose the variance of Y as follows:

D
def
= Var [Y ] = Var




∑

u⊂{1, ... ,M}
u6=∅

Mu(xu)


 =

∑

u⊂{1, ... ,M}
u6=∅

Var [Mu(Xu)] (66)

where the partial variances read:

Du
def
= Var [Mu(Xu)] = E

[
M2

u(Xu)
]
. (67)

4.4.2 Sobol’ indices

The so-called Sobol’ indices are defined as the ratio of the partial variances Du to the

total variance D. The so-called first-order indices correspond to single input variables,

i.e. u = {i}:
Si =

Di

D
=

Var [Mi(Xi)]

Var [Y ]
(68)

The second-order indices (u = {i, j}) read:

Sij =
Dij

D
=

Var [Mij(Xi, Xj)]

Var [Y ]
(69)

etc. Note that the total Sobol’ index STi , which quantifies the total impact of a given

parameter Xi including all interactions, may be computed by the sum of the Sobol’

indices of any order that contain Xi:

STi =
∑

i∈u
Su (70)

4.4.3 Sobol’ indices from PC expansions

Sobol’ indices have proven to be the most efficient sensitivity measures for general compu-

tational models (Saltelli et al., 2008). However they are traditionally evaluated by Monte

Carlo simulation (possibly using quasi-random sequences) (Sobol’ and Kucherenko, 2005),

which make them difficult to use when costly computational modelsM are used. In order

to bypass the problem Sudret (2006, 2008) has proposed an original post-processing of

polynomial chaos expansions for sensitivity analysis. Indeed, the Sobol’ decomposition of
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a truncated PC expansion Ŷ =MPC(X) =
∑
α∈A

ŷα Ψα(X) can be established analytically,

as shown below.

For any subset of variables u = {i1, . . . , is} ⊂ {1, . . . ,M} let us define the set of

multivariate polynomials Ψα which depend only on u:

Au = {α ∈ A : αk 6= 0 if and only if k ∈ u} . (71)

It is clear that the Au’s form a partition of A since

⋃

u⊂{1, ... ,M}
Au = A. (72)

Thus a truncated PC expansion such as in Eq.(33) may be rewritten as follows by simple

reordering of the terms:

MPC(x) = y0 +
∑

u⊂{1, ... ,M}
u6=∅

MPC
u (xu) (73)

where:

MPC
u (xu)

def
=
∑

α∈Au

yα Ψα(x) (74)

Consequently, due to the orthogonality of the PC basis, the partial variance Du reduces

to:

Du = Var
[
MPC

u (Xu)
]

=
∑

α∈Au

y2
α (75)

In other words, from a given PC expansion, the Sobol’ indices at any order may be

obtained by a mere combination of the squares of the coefficients. As an illustration the

first-order PC-based Sobol’ indices read:

SPC
i =

∑

α∈Ai

y2
α/D Ai = {α ∈ A : αi > 0 , αj 6=i = 0} (76)

whereas the total PC-based Sobol’ indices are:

ST,PCi =
∑

α∈AT
i

y2
α/D ATi = {α ∈ A : αi > 0} (77)

Polynomial chaos expansions and the various types of post-processing presented above

are now applied to different classical geotechnical problems.

5 Application examples

5.1 Load carrying capacity of a strip footing

5.1.1 Independent input variables

Let us consider the strip footing of width B = 10 m sketched in Figure 6 which is

embedded at depth D. We assume that the ground water table is far below the surface.
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Figure 6: Example #1 : Strip footing

The soil layer is assumed homogeneous with cohesion c, friction angle φ and unit weight

γ.

The ultimate bearing capacity reads (Lang et al., 2007):

qu = cNc + γDNq +
1

2
B γ Nγ (78)

where the bearing capacity factors read:

Nq = eπ tanφ tan2(π/4 + φ/2)

Nc = (Nq − 1) cotφ

Nγ = 2 (Nq − 1) tanφ

(79)

The soil parameters and the foundation depth are considered as independent random

variables, whose properties are listed in Table 3. Let us denote the model input vector

by X = {D, γ, c, φ}T. The associated random bearing capacity is qu(X).

Table 3: Ultimate bearing capacity of a strip foundation – probabilistic model

Parameter Notation Type of PDF Mean value Coef. of variation

Foundation width B Deterministic 10 m

Foundation depth D Gaussian 1 m 15%

Unit soil weight γ Lognormal 20 kN/m3 10 %

Cohesion c Lognormal 20 kPa 25%

Friction angle φ Beta Range:[0, 45]◦, µ = 30◦ =10%

Using the mean values of the parameters in Table 3 the ultimate bearing capacity is

equal to qu = 2.78 MPa. We consider now several design situations with applied loads

qdes = qu/SF where SF = 1.5, 2, 2.5, 3 would be the global safety factor obtained from a

deterministic design. Then we consider the reliability of the foundation with respect to
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the ultimate bearing capacity. The limit state function reads:

g(X) = qu(X)− qdes = qu(X)− qu/SF (80)

Classical reliability methods are used, namely FORM, SORM and crude Monte Carlo

simulation (MCS) with 107 samples in order to get a reference solution. The uncertainty

quantification software UQLab is used (Marelli and Sudret, 2014). Alternatively a PC

expansion qPCu (X) of the ultimate bearing capacity is first computed using a LHS exper-

imental design of size n = 500. Then the PC expansion is substituted for in Eq.(80) and

the associated probability of failure is computed by Monte Carlo simulation (107 sam-

ples), now using the PC expansion only (and for the different values of SF). The results

are reported in Table 4.

Table 4: Ultimate bearing capacity of a strip foundation – Probability of failure (resp.

generalized reliability index βgen = −Φ−1(Pf ) between parentheses) – Case of independent

variables

SF FORM SORM MCS (107 runs) PCE +MCS †

1.5 1.73 · 10−1 (0.94) 1.70 · 10−1 (0.96) 1.69 · 10−1 (0.96) 1.70 · 10−1 (0.96)

2.0 5.49 · 10−2 (1.60) 5.30 · 10−2 (1.62) 5.30 · 10−2 (1.62) 5.29 · 10−2 (1.62)

2.5 1.72 · 10−2 (2.11) 1.65 · 10−2 (2.13) 1.63 · 10−2 (2.14) 1.65 · 10−2 (2.13)

3.0 5.54 · 10−3 (2.54) 5.23 · 10−3 (2.56) 5.24 · 10−3 (2.56) 5.20 · 10−3 (2.56)
† n = 500, nMCS = 107

From Table 4 it is clear that the results obtained by PC expansion are almost equal

to those obtained by the reference Monte Carlo simulation. The relative error in terms

of the probability of failure is all in all less than one 1% (the corresponding error on the

generalized reliability index βgen = −Φ−1(Pf ) is negligible).

The number of runs associated to FORM (resp. SORM) are 31 for SF=1.5 and 2, and

35 for SF =2.5 and 3 (resp. 65 for SF=1.5 and 2, and 69 for SF =2.5 and 3). Note that

for each value of SF a new analysis FORM/SORM analysis shall be run. In contrast to

FORM/SORM, a single PC expansion has been used to obtain the reliability associated

to all safety factors. Using 500 points in the experimental design, i.e. 500 evaluations of

qu(X), the obtained PC expansion provides a normalized LOO error equal to 1.7 · 10−7

(the maximal PC degree is 6 and the number of terms in the sparse expansion is 140).

5.1.2 Correlated input variables

For a more realistic modelling of the soil properties one now considers the statistical

dependence between the cohesion c and the friction angle φ. From the literature (see

a review in Al Bittar and Soubra (2013)) the correlation between these parameters is

negative with a value around −0.5. In this section we model the dependence between

c and φ by a Gaussian copula which is parametrized by the rank correlation coefficient
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ρR = −0.5. Due to the choice of marginal distributions in Table 3 this corresponds to

a linear correlation of −0.512. Using 500 points in the experimental design, i.e. 500

evaluations of qu(X), the obtained PC expansion provides a LOO error equal to 6.8 ·10−7

(the maximal PC degree is 6 and the number of terms in the sparse expansion is 172).

The reliability results accounting for correlation are reported in Table 5.

Table 5: Ultimate bearing capacity of a strip foundation – Probability of failure (resp.

generalized reliability index βgen = Φ−1(Pf ) between parentheses) – Case of dependent

(c , φ)

SF FORM SORM MCS (107 runs.) PCE +MCS †

1.5 1.55 · 10−1 (1.01) 1.52 · 10−1 (1.03) 1.51 · 10−1 (1.03) 1.52 · 10−1 (1.03)

2.0 4.02 · 10−2 (1.75) 3.85 · 10−2 (1.77) 3.85 · 10−2 (1.77) 3.85 · 10−2 (1.77)

2.5 9.60 · 10−3 (2.34) 8.98 · 10−3 (2.37) 8.98 · 10−3 (2.37) 8.99 · 10−3 (2.37)

3.0 2.20 · 10−3 (2.85) 2.00 · 10−3 (2.88) 2.01 · 10−3 (2.88) 2.00 · 10−3 (2.88)
† n = 500, nMCS = 107

These results show that polynomial chaos expansions may be applied to solve reliability

problems also when the variables in the limit state function are correlated. In terms

of accuracy, the PCE results compare very well with the reference results obtained by

MCS, the error on the probability of failure being again less than 1%. SORM provides

accurate results as well, at a cost of 65, 65, 72 and 83 runs when SF=1.5, 2, 2.5, 3 (the

associated FORM analysis required 31, 31, 38 and 49 runs). Moreover, it clearly appears

that neglecting the correlation between c and φ leads to a conservative estimation of

the probability of failure, e.g. by a factor 2.5 for SF = 3 (10% underestimation of the

generalized reliability index).

5.2 Settlement of a foundation on an elastic 2-layer soil mass

Let us consider an elastic soil mass made of two layers of different isotropic linear elastic

materials lying on a rigid substratum. A foundation on this soil mass is modeled by a

uniform pressure P1 applied over a length 2B1 = 10 m of the free surface. An additional

load P2 is applied over a length 2B2 = 5 m (Figure 7-(a)).

Due to the symmetry, half of the structure is modeled by finite elements (Figure 7-

(b)). The mesh comprises 500 QUAD4 isoparametric elements. A plane strain analysis is

carried out. The geometry is considered as deterministic. The elastic material properties

of both layers and the applied loads are modelled by random variables, whose PDF are

specified in Table 6. All six random variables are supposed to be independent.

The quantity of interest is the maximum vertical displacement uA at point A, i.e.

on the symmetry axis of the problem. The finite element model is thus considered

a black-box MFE that computes uA as a function of the six input parameters X =
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2B2

t1 = 8 m

t2 = 22 m

E1, 𝜈𝜈1

E2, 𝜈𝜈2

P2

P1

2B1

A

(a) Scheme of the foundation (b) Finite element mesh

Figure 7: Example #2 : Foundation on a two-layer soil mass

Table 6: Example #1 : Two-layer soil layer mass - Parameters of the model

Parameter Notation Type of PDF Mean value Coef. of variation

Upper layer soil thickness t1 Deterministic 8 m -

Lower layer soil thickness t2 Deterministic 22 m -

Upper layer Young’s modulus E1 Lognormal 50 MPa 20 %

Lower layer Young’s modulus E2 Lognormal 100 MPa 20 %

Upper layer Poisson ratio ν1 Uniform 0.3 15 %

Lower layer Poisson ratio ν2 Uniform 0.3 15 %

Load #1 P1 Gamma 0.2 MPa 20 %

Load #2 P2 Weibull 0.4 MPa 20 %

{E1, E2, ν1, ν2, P1, P2}T:

uA =MFE(E1, E2, ν1, ν2, P1, P2). (81)

The serviceability of this foundation on a layered soil mass vis-à-vis an admissible settle-

ment is studied. The limit state function is defined by:

g(X) = uadm − uA = uadm −MFE(E1, E2, ν1, ν2, P1, P2), (82)

in which the admissible settlement is chosen to 12, 15, 20 and 21 cm. First FORM and

SORM are applied, together with importance sampling (IS) at the design point using

nMCS = 104 samples. The latter is considered as the reference solution. Results are

reported in Table 7.

Then PC expansions of the maximal settlement MPC are computed using different

experimental designs (ED) of increasing size, namely n = 100, 200, 500, 1000 using the

27



Table 7: Settlement of a foundation on a two-layer soil mass – reliability results

Threshold FORM SORM Importance Sampling

uadm Pf,FORM β Pf,SORM β Pf,IS β

12 cm 1.54 · 10−1 1.02 1.38 · 10−1 1.09 1.42 · 10−1 [CoV = 1.27%] 1.07

15 cm 1.64 · 10−2 2.13 1.36 · 10−2 2.21 1.43 · 10−2 [CoV = 1.67%] 2.19

20 cm 1.54 · 10−4 3.61 1.17 · 10−4 3.68 1.23 · 10−4 [CoV = 2.23%] 3.67

21 cm 5.57 · 10−5 3.86 4.14 · 10−5 3.94 4.53 · 10−5 [CoV = 2.27%] 3.91

UQLab platform (Marelli and Sudret, 2014). The obtained expansion is then substituted

for in the limit state function Eq.(82) and the associated reliability problem is solved

using crude Monte Carlo simulation (nMCS = 106 samples). The results are reported in

Table 8.

Table 8: Settlement of a foundation on a two-layer soil mass – reliability results from PC

expansion (MCS with nMCS = 107)

Threshold n = 100 n = 200 n = 500 n = 1000

uadm Pf β Pf β Pf β Pf β

12 cm 1.44 · 10−1 1.06 1.45 · 10−1 1.06 1.44 · 10−01 1.06 1.44 · 10−1 1.06

[CoV = 0.08%] [CoV = 0.08%] [CoV = 0.08%] [CoV = 0.08%

15 cm 1.33 · 10−2 2.22 1.44 · 10−2 2.19 1.45 · 10−02 2.18 1.45 · 10−2 2.18

[CoV = 0.27%] [CoV = 0.26%] [CoV = 0.26%] [CoV = 0.26%

20 cm 5.84 · 10−5 3.85 1.13 · 10−4 3.69 1.26 · 10−04 3.66 1.24 · 10−4 3.66

[CoV = 4.14%] [CoV = 2.97%] [CoV = 2.82%] [CoV = 2.84%

21 cm 1.66 · 10−5 4.15 3.64 · 10−5 3.97 4.72 · 10−05 3.90 4.56 · 10−5 3.91

[CoV = 7.76%] [CoV = 5.24%] [CoV = 4.60%] [CoV = 4.68%

It can be observed that the results obtained from the PC expansion compare very well

to the reference as soon as n = 200 points are used in the experimental design. The error

is less than 1% in the generalized reliability index, for values as large as β = 4, i.e. for

probabilities of failure in the order of 10−5. The detailed features of the PC expansions

built for each experimental design of size n = 100, 200, 500, 1, 000 are reported in Table 9.

Again the sparsity of the expansions is clear: a full expansion with all polynomials up

to degree p = 4 in M = 6 variables has P =
(

6+4
4

)
= 210 terms, which would typically

require an experimental design of size 2× 210 = 440. Using only n = 100 points a sparse

PC expansion having 59 terms could be built up. It is also observed that the classical

(normalized) empirical error 1− R2 is typically one order of magnitude smaller than the
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Table 9: Settlement of a foundation on a two-layer soil mass – PC expansion features

(p stands for the maximal degree of polynomials and P is the number of non zero terms

polynomials in the sparse expansion)

n = 100 n = 200 n = 500 n = 1000

1−R2 (Eq.(37)) 8.45 · 10−5 6.76 · 10−6 1.25 · 10−6 1.14 · 10−7

ε̂LOO (Eq.(44)) 1.20 · 10−3 2.39 · 10−4 1.33 · 10−5 2.08 · 10−6

p 4 4 4 5

P 59 126 152 225

leave-one-out normalized error, the latter being a closer estimate of the real generalization

error.

5.3 Settlement of a foundation on soil mass with spatially vary-

ing Young’s modulus (after Blatman (2009))

Let us now consider a foundation on an elastic soil layer showing spatial variability in its

material properties. A structure to be founded on this soil mass is idealized as a uniform

pressure P applied over a length 2B = 20 m of the free surface (Figure 8).

(a) Scheme of the foundation (b) Finite element mesh

Figure 8: Example #3: Foundation on a soil mass with spatially varying Young’s modulus

The soil layer thickness is equal to 30 m. The soil mesh width is equal to 120 m. The

soil layer is modelled as an elastic linear isotropic material with Poisson’s ratio equal to

0.3. A plane strain analysis is carried out. The finite element mesh is made of 448 QUAD4-

elements. The Young’s modulus is modelled by a two-dimensional homogeneous lognormal

random field with mean value µE = 50 MPa and a coefficient of variation of 30%. The

underlying Gaussian random field logE(x, ω) has a square-exponential autocorrelation

function:

ρlogE(x,x′) = exp

(
−‖ x− x

′ ‖2

`2

)
, (83)

where ` = 15 m. The Gaussian random field logE(x, ω) is discretized using the Karhunen-

Love (KL) expansion (Loève, 1978; Sudret and Der Kiureghian, 2000), (Sudret and
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Berveiller, 2007, Chap. 7):

logE(x, ω) = µlogE + σlogE

∞∑

i=1

√
λi ξi(ω)φi(x) (84)

where {ξi(ω)}∞i=1 are independent standard normal variables and the pairs {(λi, φi)}∞i=1

are solution of the following eigenvalue problem (Fredholm integral of the second kind):

∫
ρlogE(x , x′)ϕi(x

′) dx′ = λi ϕi(x) (85)

As no analytical solution to the Fredholm equation exists for this type of autocorrelation

function, the latter is solved by expanding the eigenmodes onto an orthogonal polynomial

basis, see details in Blatman (2009, Appendix B). Note that other numerical methods have

been proposed in the literature (Phoon et al., 2002b,a, 2005; Li et al., 2007). Eventually

38 modes are retained in the truncated expansion:

logE(x, ω) ≈ µlogE + σlogE

38∑

i=1

√
λi ξi(ω)φi(x), (86)

where µlogE = 3.8689 and σlogE = 0.2936 in the present application. The 9 first eigen-

modes are plotted in Figure 9 for the sake of illustration. Note that these 38 modes allow

one to account for 99% of the variance of the Gaussian field.

The average settlement under the foundation is computed by finite element analysis. It

may be considered as a random variable Y =M(ξ), where ξ is the standard normal vector

of dimension 38 that enters the truncated KL expansion. Of interest is the sensitivity of

this average settlement to the various modes appearing in the KL expansion. To address

this problem, a sparse PC expansion is built using a LHS experimental design of size

n = 200. It allows one to get a LOO error less than 5%. From the obtained expansion the

total Sobol’ indices related to each input variable ξi (i.e. each mode in the KL expansion)

are computed and plotted in Figure 10

It appears that only 7 modes contribute to the variability of the settlement. This may

be explained by the fact that the model response is an averaged quantity over the domain

of application of the load, which is therefore rather insensitive to small-scale fluctuations

of the spatially variable random Young’s modulus. Note that some modes have a zero

total Sobol’ index, namely modes #2, 4, 7 and 8. From Figure 10 it appears that they

correspond to antisymmetric modes with respect to the vertical axis (see Figure 9). This

means that the symmetry of the problem is accounted for in the analysis. It is now clear

why the PC expansion is sparse since roughly half of the modes (i.e. half of the input

variables of the uncertainty quantification problem) do not play any role in the analysis.

5.4 Conclusions

In this section three different problems of interest in geotechnical engineering have been

addressed, namely the bearing capacity of a strip footing, the maximal settlement of a
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Figure 9: Example #3: First modes of the Karhunen-Love expansion of the Young’s

modulus (after Blatman and Sudret (2011a))

foundation on a two-layer soil mass, and the settlement in case of a single layer with

spatially-varying Young’s modulus. In the two first cases reliability analysis is carried

out as a post-processing of a PC expansion. The results in terms of probability of failure

compare very well with those obtained by reference methods such as importance sampling

at the design point. From a broader experience in structural reliability analysis, it appears

that PC expansions are suitable for reliability analysis as long as the probability of failure

to be computed is smaller than 10−5. For very small probabilities, suitable methods such

as adaptive Kriging shall be rather used (Dubourg et al., 2011; Sudret, 2012)

In the last example the spatial variability of the soil properties is introduced. The

purpose is to show that problems involving a large number of random input variables (here,

38) may be solved at an affordable cost using sparse PC expansions (here, 200 samples in

the experimental design). Recent applications of this approach to the bearing capacity of

2D and 3D foundations can be found in Al Bittar and Soubra (2013); Mao et al. (2012).
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Figure 10: Example #3 : Foundation on a soil mass with spatially varying Young’s

modulus – Total Sobol’ indices (after Blatman and Sudret (2011a))

6 Conclusions

Accounting for uncertainties has become a crucial issue in modern geotechnical engineering

due to the large variability of soil properties as well as the associated limited information.

The uncertainty analysis framework that is nowadays widely used in many fields applies

equally to geotechnics. Starting from a computational model used for assessing the system

performance, the input parameters are represented by random variables or fields. The

effect of the input uncertainty onto the model response (i.e. the system performance) can

be assessed by a number of numerical methods.

Monte Carlo simulation (MCS) offers a sound framework for uncertainty propagation,

however its low efficiency precludes its use for analyses involving finite element models.

Classical structural reliability methods such as FORM and SORM may be used, at the

price of some linearizations and approximations. In contrast, the so-called polynomial

chaos expansions allow for an accurate, intrisic representation of the model output. The

series expansion coefficients may be computed using non intrusive schemes which are

similar in essence to MCS: a sample set of input vectors is simulated and the corresponding

model output evaluated. From this data, algorithms such as least-square minimization or

least-angle regression may be used.

The resulting series expansion can be post-processed in order to compute the statistical

moments of the model response (mean value, standard deviation, etc.), quantiles and

confidence intervals or even the probability density function. In the latter case, the

PC expansion is used as a surrogate to the original computational model. Due to its

polynomial expression it can be used together with Monte Carlo simulation and kernel
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smoothing techniques.

PC expansions appear also extremely efficient in the context of sensitivity analysis.

The Sobol’ indices, which are considered as the most accurate sensitivity measures, may

be computed analytically from PC expansions coefficients by simple algebra. The PC

expansion itself may be reordered so as to exhibit the so-called Sobol’ decomposition,

which allows for detecting the linear and non linear effects of the input variables as well

as their interaction.

Problems involving spatial variability of the material properties may be efficiently ad-

dressed by introducing random fields and using discretization techniques. The discretized

field is represented by a vector of (usually) standard normal variables, whose size may be

large (e.g. 20-100) especially when the correlation length of the field is small. However,

the so-called sparse PC expansion technique may be used so that the full analysis can be

carried out using a few hundred to a thousand model runs.
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Appendix A: List of symbols

α Multi-index of Ψα

δ2
Ŷ

PC-based response skewness

Di, Du Partial variance

ÊrrE Empirical error

ÊrrLOO Leave-one-out error

fX Probability density function of the input vector

fXi
Marginal distribution of Xi

g(.) Limit state function

h Kernel bandwitdh

Hej Hermite polynomial

κ2
Ŷ

PC-based response kurtosis

K(.) Kernel function

M Dimension of the input random vector X

MCS Abbreviation of “Monte Carlo simulation”

Pj Legendre polynomials

Pf Probability of failure

PC Abbreviation of “polynomial chaos”

π
(i)
j , ψ

(i)
j Univariate orthogonal (resp. orthonormal) polynomials

Qp% p%-quantile

σ2
Ŷ

PC-based response variance

Si, Sij Sobol’ index

STi Total Sobol’ index

X Input random vector

y =M(x) Model response (quantity of interest)

yα Coefficient of the polynomial chaos expansion

Ψα(x) Multivariate orthonormal polynomials

A, AM,p Truncation set

AM,p,q Hyperbolic truncation set

Ds, Df Safe (resp. failure) domain

LN (λ, ζ) Lognormal distribution

M computational model

Mi(xi),Mij(xi, xj),Mu(xu) Terms in the Sobol’-Hoeffding decomposition

T Isoprobabilistic transform

U(a, b) Uniform distribution on [a, b]

X Experimental design of computer simulations
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Appendix B: Hermite polynomials

The Hermite polynomials Hen(x) are solution of the following differential equation:

y′′ − x y′ + n y = 0 n ∈ N (A.1)

They may be generated in practice by the following recurrence relationship:

He0(x) = 1 (A.2)

Hen+1(x) = xHen(x)− nHen−1(x) (A.3)

They are orthogonal with respect to the Gaussian probability measure:

∫ ∞

−∞
Hem(x)Hen(x)ϕ(x) dx = n! δmn (A.4)

where ϕ(x) = 1/
√

2π e−x
2/2 is the standard normal PDF. If U is a standard normal

random variable, the following relationship holds:

E [Hem(U)Hen(U)] = n! δmn (A.5)

The first four Hermite polynomials are:

He0(x) = 1 He1(x) = x He2(x) = x2 − 1 He3(x) = x3 − 3x (A.6)

Due to (A.5) the orthonormal polynomials read:

ψ0(x) = 1 ψ1(x) = x ψ2(x) = (x2 − 1)/
√

2 ψ3(x) = (x3 − 3x)/
√

6 (A.7)
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for simulation using a wavelet-Galerkin scheme. Prob. Eng. Mech. 17 (3), 293–303.

Phoon, K., S. Huang, and S. Quek (2002b). Simulation of second-order processes using
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Sudret, B., M. Berveiller, and M. Lemaire (2006). A stochastic finite element procedure

for moment and reliability analysis. Eur. J. Comput. Mech. 15 (7-8), 825–866.

Sudret, B. and A. Der Kiureghian (2000). Stochastic finite elements and reliability: a

state-of-the-art report. Technical Report UCB/SEMM-2000/08, University of Califor-

nia, Berkeley (173 pages).

Vanmarcke, E. (1977). Probabilistic modeling of soil profiles. J. Geo. Eng.

Div. 103 (GT11), 1227–1246.

Vanmarcke, E. (1983). Random fields : analysis and synthesis. The MIT Press, Cam-

bridge, Massachussets.

Wand, M. and M. Jones (1995). Kernel smoothing. Chapman and Hall, Boca Raton.

Xiu, D. (2009). Fast numerical methods for stochastic computations: a review. Comm.

Comput. Phys. 5 (2-4), 242–272.

Xiu, D. and G. Karniadakis (2002). The Wiener-Askey polynomial chaos for stochastic

differential equations. SIAM J. Sci. Comput. 24 (2), 619–644.

40


