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Abstract

Global sensitivity analysis aims at quantifying respective effects of input random variables (or com-

binations thereof) onto variance of a physical or mathematical model response. Among the abundant

literature on sensitivity measures, Sobol indices have received much attention since they provide accu-

rate information for most of models. We consider a problem of experimental design points selection for

Sobol’ indices estimation. Based on the concept of 𝐷-optimality, we propose a method for constructing

an adaptive design of experiments, effective for calculation of Sobol’ indices based on Polynomial Chaos

Expansions. We provide a set of applications that demonstrate the efficiency of the proposed approach.

Keywords: Design of Experiment – Sensitivity Analysis – Sobol Indices – Polynomial Chaos

Expansions – Active Learning

1 Introduction

Computational models play important role in different areas of human activity (see [1, 2, 3]). Over

the past decades, computational models have become more complex, and there is an increasing need

for special methods for their analysis. Sensitivity analysis is an important tool for investigation of

computational models.

Sensitivity analysis tries to find how different model input parameters influence the model output,

what are the most influential parameters and how to evaluate such effects quantitatively (see [4]). Sen-

sitivity analysis allows to better understand behavior of computational models. Particularly, it allows

us to separate all input parameters into important (significant), relatively important and unimportant

(nonsignificant) ones. Important parameters, i.e. parameters whose variability has a strong effect

on the model output, need to be controlled more accurately. Complex computational models often

suffer from over-parameterization. By excluding unimportant parameters, we can potentially improve

model quality, reduce parametrization (which is of great interest in the field of meta-modeling) and

computational costs [29].
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Sensitivity analysis includes a wide range of metrics and techniques: e.g. the Morris method

[5], linear regression-based methods [6], variance-based methods [7]. Among others, Sobol’ (sensitivity)

indices are a common metric to evaluate the influence of model parameters [11]. Sobol’ indices quantify

which portions of the output variance are explained by different input parameters and combinations

thereof. This method is especially useful for the case of nonlinear computational models [12].

There are two main approaches to evaluate Sobol’ indices. Monte Carlo approach (Monte Carlo

simulations, FAST [13], SPF scheme [14] and others) is relatively robust (see [8]), but requires large

number of model runs, typically in the order of 104 for an accurate estimation of each index. Thus, it

is impractical for a number of industrial applications, where each model evaluation is computationally

costly.

Metamodeling approaches for Sobol’ indices estimation allow one to reduce the required number

of model runs [6, 10]. Following this approach, we replace the original computational model by an

approximating metamodel (also known as surrogate model or response surface) which is computationally

efficient and has some clear internal structure [9]. The approach consists of the following general steps:

selection of the design of experiments (DoE) and generation of the training sample, construction of the

metamodel based on the training sample, including its accuracy assessment and evaluation of Sobol’

indices (or any other measure) using the constructed metamodel. Note that the evaluation of indices

may be either based on a known internal structure of the metamodel or via Monte Carlo simulations

based on the metamodel itself.

In general, the metamodeling approach is more computationally efficient than an original Monte

Carlo approach, since the cost (in terms of the number of runs of the costly computational model)

reduces to that of the training set (usually containing results from a few dozens to a few hundreds

model runs). However, this approach can be nonrobust and its accuracy is more difficult to analyze.

Indeed, although procedures like cross-validation [29, 15] allow to estimate quality of metamodels,

the accuracy of complex statistics (e.g. Sobol’ indices), derived from metamodels, has a complicated

dependency on the metamodels structure and quality (see e.g. confidence intervals for Sobol’ indices

estimates [16] in case of Gaussian Process metamodel [17, 18, 19, 20, 21] and bootstrap-based confidence

intervals in case of polynomial chaos expansions [22]).

In this paper, we consider a problem of a DoE construction in case of a particular metamodeling

approach: how to select the experimental design for building a polynomial chaos expansion for further

evaluation of Sobol’ indices, that is effective in terms of the number of computational model runs?

Space-filling designs are commonly used for sensitivity analysis. Methods like Monte Carlo sampling,

Latin Hypercube Sampling (LHS) [23] or sampling in FAST method [13] try to fill “uniformly” the input

parameters space with design points (points are some realizations of parameters values). These sampling

methods are model free, as they make no assumptions on the computational model.

In order to speed up the convergence of indices estimates, we assume that the computational model is

close to its approximating metamodel and exploit knowledge of the metamodel structure. In this paper,

we consider Polynomial Chaos Expansions (PCE) that is commonly used in engineering and other

applications [24]. PCE approximation is based on a series of polynomials (Hermite, Legendre, Laguerre

etc.) that are orthogonal w.r.t. the probability distributions of corresponding input parameters of the

computational model. It allows to calculate Sobol’ indices analytically from the expansion coefficients

[25, 26].

In this paper, we address the problem of design of experiments construction for evaluating Sobol’

indices from a PCE metamodel. Based on asymptotic considerations, we propose an adaptive algorithm

for design construction and test it on a set of applied problems. Note that in [36], we investigated the
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adaptive design algorithm for the case of a quadratic metamodel (see also [37]). In this paper, we extend

these results for the case of a generalized PCE metamodel and provide more examples, including real

industrial applications.

The paper is organized as follows: in Section 2, we review the definition of sensitivity indices and

describe their estimation based on a PCE metamodel. In Section 3, asymptotic analysis of indices

estimates is provided. In Section 4, we introduce an optimality criterion and propose a procedure for

constructing the experimental design. In Section 5, we provide experimental results, applications and

benchmark with other methods of design construction.

2 Sensitivity Indices and PCE Metamodel

2.1 Sensitivity Indices

Consider a computational model 𝑦 = 𝑓(x), where x = (𝑥1, . . . , 𝑥𝑑) ∈ X ⊂ R𝑑 is a vector of input

variables (aka parameters or features), 𝑦 ∈ R1 is an output variable and X is a design space. The

model 𝑓(x) describes behavior of some physical system of interest.

We consider the model 𝑓(x) as a black-box: no additional knowledge on its inner structure is

assumed. For some design of experiments 𝑋 = {x𝑖 ∈ X }𝑛𝑖=1 ∈ R𝑛×𝑑 we can obtain a set of model

responses and form a training sample

𝐿 = {x𝑖, 𝑦𝑖 = 𝑓(x𝑖)}𝑛𝑖=1 , {𝑋 ∈ R𝑛×𝑑, 𝑌 = 𝑓(𝑋) ∈ R𝑛}, (1)

which allows us to investigate properties of the computational model.

Let us assume that there is a prescribed probability distribution H with independent marginal

distributions on the design space X (H = H1 × . . . × H𝑑). This distribution represents the uncer-

tainty and/or variability of the input variables, modelled as a random vector �⃗� = {𝑋1, . . . , 𝑋𝑑} with

independent components. In these settings, the model output �⃗� = 𝑓(�⃗�) becomes a stochastic variable.

Assuming that the function 𝑓(�⃗�) is square-integrable with respect to the distribution H (i.e.

E[𝑓2(�⃗�)] < +∞), we have the following unique Sobol’ decomposition of �⃗� = 𝑓(�⃗�) (see [11]) given by

𝑓(�⃗�) = 𝑓0 +
𝑑∑︁

𝑖=1

𝑓𝑖(𝑋𝑖) +
∑︁

1≤𝑖≤𝑗≤𝑑

𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) + . . .+ 𝑓1...𝑑(𝑋1, . . . , 𝑋𝑑),

which satisfies

E[𝑓u(�⃗�u)𝑓v(�⃗�v)] = 0, if u ̸= v,

where u and v are index sets: u,v ⊂ {1, 2, . . . , 𝑑}.
Due to orthogonality of the summands, we can decompose variance of the model output:

𝐷 = V[𝑓(�⃗�)] =
∑︁

u⊂{1,...,𝑑},
u̸=0

V[𝑓u(�⃗�u)] =
∑︁

u⊂{1,...,𝑑},
u̸=0

𝐷u,

In this expansion 𝐷u , V[𝑓u(�⃗�u)] is the contribution of the summand 𝑓u(�⃗�u) to the output variance,

also known as the partial variance.

Definition 1. The sensitivity index (Sobol’ index) of the subset �⃗�u, u ⊂ {1, . . . , 𝑑} of model input

variables is defined as

𝑆u =
𝐷u

𝐷
.
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The sensitivity index describes the amount of the total variance explained by uncertainties in the

subset �⃗�u of model input variables.

Remark 1. In this paper, we consider only sensitivity indices of type 𝑆𝑖 , 𝑆{𝑖}, 𝑖 = 1, . . . , 𝑑, called

first-order or main effect sensitivity indices.

2.2 Polynomial Chaos Expansions

Consider a set of multivariate polynomials {Ψ𝛼(�⃗�), 𝛼 ∈ L } that consists of polynomials Ψ𝛼 having

the form of tensor product

Ψ𝛼(�⃗�) =
𝑑∏︁

𝑖=1

𝜓(𝑖)
𝛼𝑖
(𝑋𝑖), 𝛼 = {𝛼𝑖 ∈ N, 𝑖 = 1, . . . , 𝑑} ∈ L ,

where 𝜓
(𝑖)
𝛼𝑖 is a univariate polynomial of degree 𝛼𝑖 belonging to the 𝑖-th family (e.g. Legendre polyno-

mials, Jacobi polynomials, etc.), N = {0, 1, 2, . . .} is the set of nonnegative integers, L is some fixed

set of multi-indices 𝛼.

Suppose that univariate polynomials {𝜓(𝑖)
𝛼 } are orthogonal w.r.t. 𝑖-th marginal of the probabil-

ity distribution H , i.e. E[𝜓(𝑖)
𝛼 (𝑋𝑖)𝜓

(𝑖)
𝛽 (𝑋𝑖)] = 0 if 𝛼 ̸= 𝛽 for 𝑖 = 1, . . . , 𝑑. Particularly, Legendre

polynomials are orthogonal w.r.t. standard uniform distribution; Hermite polynomials are orthogonal

w.r.t. Gaussian distribution. Due to independence of components of �⃗�, we obtain that multivariate

polynomials {Ψ𝛼} are orthogonal w.r.t. the probability distribution H , i.e.

E[Ψ𝛼(�⃗�)Ψ𝛽(�⃗�)] = 0 if 𝛼 ̸= 𝛽. (2)

Provided E[𝑓2(�⃗�)] < +∞, the spectral polynomial chaos expansion of 𝑓 takes the form

𝑓(�⃗�) =
∑︁

𝛼∈N𝑑

𝑐𝛼Ψ𝛼(�⃗�), (3)

where {𝑐𝛼}𝛼∈N𝑑 are expansion coefficients.

In the sequel we consider a PCE approximation 𝑓𝑃𝐶(�⃗�) of the model 𝑓(�⃗�) obtained by truncating

the infinite series to a finite number of terms:

^⃗
𝑌 = 𝑓𝑃𝐶(�⃗�) =

∑︁

𝛼∈L

𝑐𝛼Ψ𝛼(�⃗�). (4)

By enumerating the elements of L we also use an alternative form of (4):

^⃗
𝑌 = 𝑓𝑃𝐶(�⃗�) =

∑︁

𝛼∈L

𝑐𝛼Ψ𝛼(�⃗�) ,
𝑃−1∑︁

𝑗=0

𝑐𝑗Ψ𝑗(�⃗�) = c𝑇Ψ(�⃗�), 𝑃 , |L |,

where c = (𝑐0, . . . , 𝑐𝑃−1)
𝑇 is a column vector of coefficients and Ψ(x) : R𝑑 → R𝑃 is a mapping

from the design space to the extended design space defined as a column vector function Ψ(x) =

(Ψ0(x), . . . ,Ψ𝑃−1(x))
𝑇
. Note that index 𝑗 = 0 corresponds to multi-index 𝛼 = 0 = {0, . . . , 0}, i.e.

𝑐𝑗=0 , 𝑐𝛼=0, Ψ𝑗=0 , Ψ𝛼=0 = 𝑐𝑜𝑛𝑠𝑡.

The set of multi-indices L is determined by some truncation scheme. In this work, we use hyperbolic

truncation scheme [27], which corresponds to

L = {𝛼 ∈ N𝑑 : ‖𝛼‖𝑞 ≤ 𝑝}, ‖𝛼‖𝑞 ,
(︃

𝑑∑︁

𝑖=1

𝛼𝑞
𝑖

)︃1/𝑞

,
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where 𝑞 ∈ (0, 1] is a fixed parameter and 𝑝 ∈ N∖{0} = {1, 2, 3, . . .} is a fixed maximal total degree of

polynomials. Note that in case of 𝑞 = 1, we have 𝑃 = (𝑑+𝑝)!
𝑑!𝑝! polynomials in L and a smaller 𝑞 leads

to a smaller number of polynomials.

There is a number of strategies for estimating the expansion coefficients 𝑐𝛼 in (4). In this paper,

the least-square (LS) minimization method is used [28]. Unlike (3), the key idea consists in considering

the original model 𝑓(�⃗�) as the sum of a truncated PC expansion 𝑓𝑃𝐶(�⃗�) and a residual 𝜀, i.e.

𝑓(�⃗�) = 𝑓𝑃𝐶(�⃗�) + 𝜀 =
𝑃−1∑︁

𝑗=0

𝑐𝑗Ψ𝑗(�⃗�) + 𝜀 = c𝑇Ψ(�⃗�) + 𝜀, (5)

where thanks to orthogonality property (2) the residual process 𝜀 can be considered as an i.i.d. noise

process with E𝜀 = 0 and V[𝜀] = 𝜎2, such that 𝜀 = 𝜀(�⃗�) and {Ψ𝑗(�⃗�)}𝑃−1
𝑗=0 are orthogonal w.r.t. the

distribution H .

The coefficients c are obtained by minimizing the mean square residual:

c = arg min
c∈R𝑃

E
[︂(︁
𝑓(�⃗�)− c𝑇Ψ(�⃗�)

)︁2]︂
,

which is approximated by using the training sample 𝐿 = {x𝑖, 𝑦𝑖 = 𝑓(x𝑖)}𝑛𝑖=1:

ĉ𝐿𝑆 = arg min
c∈R𝑃

1

𝑛

𝑛∑︁

𝑖=1

[︀
𝑦𝑖 − c𝑇Ψ(x𝑖)

]︀2
. (6)

2.3 PCE post-processing for sensitivity analysis

Consider some PCE model 𝑓𝑃𝐶(�⃗�) =
∑︀

𝛼∈L 𝑐𝛼Ψ𝛼(�⃗�) =
∑︀𝑃−1

𝑗=0 𝑐𝑗Ψ𝑗(�⃗�). According to [25], we have

an explicit form of Sobol’ indices (main effects) for model 𝑓𝑃𝐶(�⃗�):

𝑆𝑖(c) =

∑︀
𝛼∈L𝑖

𝑐2𝛼E[Ψ2
𝛼(�⃗�)]

∑︀
𝛼∈L*

𝑐2𝛼E[Ψ2
𝛼(�⃗�)]

, 𝑖 = 1, . . . , 𝑑, (7)

where L* , L ∖{0} and L𝑖 ⊂ L is the set of multi-indices 𝛼 such that only index on the 𝑖-th position is

nonzero: 𝛼 = {0, . . . , 𝛼𝑖, . . . , 0}, 𝛼𝑖 ∈ N, 𝛼𝑖 > 0.

Suppose for simplicity that the multivariate polynomials {Ψ𝛼(�⃗�), 𝛼 ∈ L } are not only orthogonal

but also normalized w.r.t. the distribution H :

E[Ψ𝛼(�⃗�)Ψ𝛽(�⃗�)] = 𝛿𝛼𝛽,

where 𝛿𝛼𝛽 is the Kronecker symbol, i.e 𝛿𝛼𝛽 = 1 if 𝛼 = 𝛽, otherwise 𝛿𝛼𝛽 = 0. Then (7) takes the form

𝑆𝑖(c) =

∑︀
𝛼∈L𝑖

𝑐2𝛼∑︀
𝛼∈L*

𝑐2𝛼
, 𝑖 = 1, . . . , 𝑑. (8)

Thus, (8) provides a simple expression for calculation of Sobol’ indices in case of the PCEmetamodel.

If the original model of interest 𝑓(�⃗�) is close to its PCE approximation 𝑓𝑃𝐶(�⃗�), then we can use

expression (8) for indices with estimated coefficients (6) to approximate Sobol’ indices of the original

model:

𝑆𝑖 = 𝑆𝑖(ĉ) =

∑︀
𝛼∈L𝑖

𝑐2𝛼∑︀
𝛼∈L*

𝑐2𝛼
, 𝑖 = 1, . . . , 𝑑, (9)

where ĉ , ĉ𝐿𝑆 .
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3 Asymptotic Properties

In this section, we consider asymptotic properties of indices estimates in Eq. (9) if the coefficients c

are estimated by LS approach (6). Let ĉ𝑛 be LS estimate (6) of the true coefficients vector c based on

the training sample 𝐿 = {x𝑖, 𝑦𝑖 = 𝑓(x𝑖)}𝑛𝑖=1. In this section and further, if some variable has index 𝑛,

then this variable depends on training sample (1) of size 𝑛.

Define the information matrix 𝐴𝑛 ∈ R𝑃×𝑃 as

𝐴𝑛 =
𝑛∑︁

𝑖=1

Ψ(x𝑖)Ψ
𝑇 (x𝑖). (10)

Then, we can obtain asymptotic properties of the indices estimates (9) based on model (5) while

new data points {x𝑛, 𝑦𝑛 = 𝑓(x𝑛)} are added to the training sample sequentially. In order to prove

these asymptotic properties we require only that 𝜀 = 𝜀(�⃗�) and {Ψ𝑗(�⃗�)}𝑃−1
𝑗=0 are orthogonal w.r.t. the

distribution H , and we do not need to require that multivariate polynomials{Ψ𝛼(�⃗�), 𝛼 ∈ L } are

orthonormal.

Theorem 1. Let the following assumptions hold true:

1. We assume that there is an infinite sequence of points in the design space {x𝑖 ∈ X }∞𝑖=1, generated

by the corresponding sequence of i.i.d. random vectors, such that a.s.

1

𝑛
𝐴𝑛 =

1

𝑛

𝑛∑︁

𝑖=1

Ψ(x𝑖)Ψ
𝑇 (x𝑖) −→

𝑛→+∞
Σ, (11)

where Σ ∈ R𝑃×𝑃 , where Σ is a symmetric and non-degenerate matrix (Σ = Σ𝑇 and 𝑑𝑒𝑡Σ > 0),

and new design points are added successively from this sequence to the design of experiments

𝑋𝑛 = {x𝑖}𝑛𝑖=1.

2. Let the vector-function be defined by its components according to (8):

S(𝜈) = (𝑆1(𝜈), . . . , 𝑆𝑑(𝜈))
𝑇

and Ŝ𝑛 , S(ĉ𝑛), where ĉ𝑛 is defined by (6).

3. Assume that for the true coefficients c of model (5):

det(𝐵Σ−2Γ𝐵𝑇 ) ̸= 0, (12)

where 𝐵 is the matrix of partial derivatives defined as

𝐵 , 𝐵(c) =
𝜕S(𝜈)

𝜕𝜈

⃒⃒
⃒⃒
𝜈=c

∈ R𝑑×𝑃 , (13)

and Γ = (𝛾𝑟,𝑠)
𝑃−1
𝑟,𝑠=0 ∈ R𝑃×𝑃 with 𝛾𝑟,𝑠 = E

(︁
𝜀2Ψ𝑟(�⃗�)Ψ𝑠(�⃗�)

)︁
,

then √
𝑛 (S(ĉ𝑛)− S(c))

D−→
𝑛→+∞

𝒩 (0, 𝐵Σ−2Γ𝐵𝑇 ). (14)

Proof. Let us denote by 𝜀𝑛 = (𝜀1, . . . , 𝜀𝑛)
𝑇 ∈ R𝑛 the column vector, generated by the i.i.d. residual

process values (see (5)), and by Ψ𝑛 = (Ψ(x1), . . . ,Ψ(x𝑛)) ∈ R𝑃×𝑛 the design matrix. We can easily

get that

ĉ𝑛 = 𝐴−1
𝑛 Ψ𝑛𝑌𝑛 = c+

(︂
1

𝑛
𝐴𝑛

)︂−1 [︂
1

𝑛
Ψ𝑛𝜀𝑛

]︂
.
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We can represent 1
𝑛Ψ𝑛𝜀𝑛 as 1

𝑛

∑︀𝑛
𝑖=1 𝜉𝑖, where (𝜉𝑖)

𝑛
𝑖=1 is a sequence, generated by i.i.d. random

vectors 𝜉𝑖 = 𝜀(�⃗�𝑖)Ψ(�⃗�𝑖) ∈ R𝑃 , 𝑖 = 1, . . . , 𝑛, such that E𝜉𝑖 = 0 thanks to the fact that 𝜀 and Ψ𝑘(�⃗�)

are orthogonal for 𝑘 < 𝑃 , and V[𝜉𝑖] = Γ.

Thus from (11) and the central limit theorem we get that

√
𝑛(ĉ𝑛 − c) =

(︂
1

𝑛
𝐴𝑛

)︂−1
[︃

1√
𝑛

𝑛∑︁

𝑖=1

𝜉𝑖

]︃
D−→

𝑛→+∞
𝒩 (0, Σ−2Γ).

Applying 𝛿-method (see [30]) to the vector-function S(𝜈) at the point 𝜈 = c, we obtain required

asymptotics (14).

Remark 2. Note that the elements of 𝐵 have the following form

𝑏𝑖𝛽 , 𝜕𝑆𝑖

𝜕𝑐𝛽
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2𝑐𝛽
∑︀

𝛼∈L* 𝑐2𝛼−2𝑐𝛽
∑︀

𝛼∈L𝑖
𝑐2𝛼

(
∑︀

𝛼∈L* 𝑐2𝛼)
2 , if 𝛽 ∈ L𝑖,

0, if 𝛽 = 0 , {0, . . . , 0},
−2𝑐𝛽

∑︀
𝛼∈L𝑖

𝑐2𝛼

(
∑︀

𝛼∈L* 𝑐2𝛼)
2 , if 𝛽 /∈ L𝑖 ∪ 0,

(15)

where 𝑖 = 1, . . . , 𝑑 and multi-index 𝛽 ∈ L . The elements of 𝐵 can be also represented as

𝑏𝑖𝛽 , 𝜕𝑆𝑖

𝜕𝑐𝛽
=

−2𝑐𝛽∑︀
𝛼∈L*

𝑐2𝛼
×

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝑆𝑖 − 1, if 𝛽 ∈ L𝑖,

0, if 𝛽 = 0 , {0, . . . , 0},
𝑆𝑖, if 𝛽 /∈ L𝑖 ∪ 0,

(16)

Remark 3. We can see that conditions of the theorem do not depend on the type of orthonormal

polynomials.

Remark 4. In case {Ψ𝛼(�⃗�), 𝛼 ∈ L } are multivariate polynomials, orthonormal w.r.t. the distribu-

tion H , we get that Σ = 𝐼 ∈ R𝑃×𝑃 is the identity matrix.

Remark 5. In the proof of theorem 1 we are trying to make as less assumptions as possible in order

to depart from original polynomial chaos model (3) as little as possible. That is why the only important

assumption is that 𝜀 = 𝜀(�⃗�) and {Ψ𝑗(�⃗�)}𝑃−1
𝑗=0 are orthogonal w.r.t. the distribution H . However, we

can also consider model (5) as a regression one, and so the error term 𝜀 is modelled by a white noise,

independent from {Ψ𝑗(�⃗�)}𝑃−1
𝑗=0 , see the discussion of the polynomial chaos approach from a statistician’s

perspective in [31]. Nevertheless, even in the case of such interpretation of model (5) we still get the

same asymptotic behavior (14).

Remark 6. In case 𝜀 and Ψ𝑘(�⃗�) are not only orthogonal for 𝑘 < 𝑃 , but also are independent, we get

that Γ = 𝜎2Σ. Then asymptotics (14) takes the form

√
𝑛 (S(ĉ𝑛)− S(c))

D−→
𝑛→+∞

𝒩 (0, 𝜎2𝐵Σ−1𝐵𝑇 ). (17)

In applications it seems reasonable to assume that 𝜀 and Ψ𝑘(�⃗�) are approximately independent for

𝑘 < 𝑃 . Then for practical purposes we can use asymptotics (17), for which it is easier to calculate

the asymptotic covariance matrix. Therefore in the sequel for applications we are going to use this

simplified expression.
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4 Design of Experiments Construction

4.1 Preliminary Considerations

Taking into account the results of Theorem 1, the limiting covariance matrix of the indices estimates

depends on

1. Noise variance 𝜎2,

2. True values of PC coefficients c, defining 𝐵,

3. Experimental design 𝑋, defining Σ.

If we have a sufficiently accurate approximation of the original model, then in the above assumptions,

asymptotic covariance in (17) provides a theoretically motivated functional to characterize the quality

of the experimental design. Indeed, generally speaking the smaller the norm of the covariance matrix

‖𝜎2𝐵Σ−1𝐵𝑇 ‖, the better the estimation of the sensitivity indices apparently should be. Theoretically,

we could use this formula for constructing an experimental design that is effective for calculating Sobol’

indices: we could select designs that minimize the norm of the covariance matrix. However, there are

some problems when proceeding this way:

∙ The first one relates to selecting some specific functional for minimization. Informally speaking,

we need to choose “the norm” associated with the limiting covariance matrix;

∙ The second one refers to the fact that we do not know true values of the PC model coefficients,

defining 𝐵; therefore, we will not be able to accurately evaluate the quality of the design.

The first problem can be solved in different ways. A number of statistical criteria for design

optimality (𝐷-, 𝐼-optimality and others, see [32]) are known. Similar to the work [36], we use the

𝐷-optimality criterion, as it a provides computationally efficient procedure for design construction.

𝐷-optimal experimental design minimizes the determinant of the limiting covariance matrix. If the

vector of the estimated parameters is normally distributed then 𝐷-optimal design allows to minimize

the volume of the confidence region for this vector.

The second problem is more complex. The optimal design for estimating sensitivity indices that

minimizes the norm of limiting covariance matrix depends on true values of the indices, so it can be

constructed only if these true values are known. However, in this case design construction makes no

sense.

The dependency of the optimal design for indices evaluation on the true model parameters is a

consequence of the indices estimates nonlinearity w.r.t. the PC model coefficients. In order to underline

this dependency, the term “locally 𝐷-optimal design” is commonly used [33]. In this setting there are

several approaches, which are usually associated with either some assumptions about the unknown

parameters, or adaptive design construction (see [33]). We use the latter approach.

In the case of adaptive designs, new design points are generated sequentially based on current

estimates of the unknown parameters. This allows to avoid prior assumptions on these parameters.

However, this approach has a problem with a confidence of the solution found: if at some step of the

design construction process parameters estimates are significantly different from their true values, then

the design, which is constructed based on these estimates, may lead to new parameters estimates, which

are even more different from the true values.

In practice, during the construction of adaptive design, the quality of the approximation model and

assumptions on non-degeneracy of results can be checked at each iteration and one can control and

adjust the adaptive strategy.
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4.2 Adaptive DoE Algorithm

In this section, we introduce the adaptive algorithm for constructing a design of experiments that is

effective to estimate sensitivity indices based on the asymptotic 𝐷-optimality criterion (see description

of Algorithm 1 and its scheme in Figure 1). As it was discussed, the main idea of the algorithm is

to minimize the confidence region for indices estimates. At each iteration, we replace the limiting

covariance matrix by its approximation based on the current PC coefficients estimates.

Figure 1: Adaptive algorithm for constructing an effective experimental design to evaluate PC-based

Sobol’ indices

As for initialization, we assume that there is some initial design, and we require that this initial

design is non-degenerate, i.e. such that the initial information matrix 𝐴0 is nonsingular (det𝐴0 ̸= 0).

In addition, at each iteration the non-degeneracy of the matrix 𝐵𝑖𝐴
−1
𝑖 𝐵𝑇

𝑖 , related to the criterion to

be minimized, is checked.

Algorithm 1 Description of the Adaptive DoE algorithm

Goal: Construct an effective experimental design for the calculation of sensitivity indices

Parameters: initial and final numbers of points 𝑛0 and 𝑛 in the design; set of candidate design points

Ξ.

Initialization:

∙ initial training sample {𝑋0, 𝑌0} of size 𝑛0, where design 𝑋0 = {x𝑖}𝑛0
𝑖=1 ⊂ Ξ defines a non-degenerate

information matrix 𝐴0 =
∑︀𝑛0

𝑖=1Ψ(x𝑖)Ψ
𝑇 (x𝑖);

∙ 𝐵0 = 𝐵(ĉ0), obtained using the initial estimates of the PC model coefficients, see (13), (15), (16);

Iterations: for all 𝑖 from 1 to 𝑛− 𝑛0:

∙ Solve optimization problem

x𝑖 = argminx∈Ξ det
[︀
𝐵𝑖−1(𝐴𝑖−1 +Ψ(x)Ψ𝑇 (x))−1𝐵𝑇

𝑖−1

]︀
(18)

∙ 𝐴𝑖 = 𝐴𝑖−1 +Ψ(x𝑖)Ψ
𝑇 (x𝑖)

∙ Add the new sample point (x𝑖, 𝑦𝑖 = 𝑓(x𝑖)) to the training sample and update current estimates ĉ𝑖

of the PCE model coefficients

∙ Calculate 𝐵𝑖 = 𝐵(ĉ𝑖)

Output: The design of experiments 𝑋 = 𝑋0 ∪𝑋𝑎𝑑𝑑, where 𝑋𝑎𝑑𝑑 = {x𝑘}𝑛−𝑛0
𝑘=1 , 𝑌 = 𝑓(𝑋)
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4.3 Details of the Optimization procedure

The idea behind the proposed optimization procedure is analogous to the idea of the Fedorov’s algorithm

for constructing optimal designs [34]. In order to simplify optimization problem (18), we use two well-

known identities:

∙ Let 𝑀 be some nonsingular square matrix, t and w be vectors such that 1+w𝑇𝑀−1t ̸= 0, then

(𝑀 + tw𝑇 )−1 =𝑀−1 − 𝑀−1tw𝑇𝑀−1

1 +w𝑇𝑀−1t
. (19)

∙ Let 𝑀 be some nonsingular square matrix, t and w be vectors of appropriate dimensions, then

det(𝑀 + tw𝑇 ) = det(𝑀) · (1 +w𝑇𝑀−1t). (20)

Let us define 𝐷 , 𝐵(𝐴+Ψ(x)Ψ𝑇 (x))−1𝐵𝑇 , then applying (19), we obtain

det(𝐷) = det

[︃
𝐵𝐴−1𝐵𝑇 − 𝐵𝐴−1Ψ(x)Ψ𝑇 (x)𝐴−1𝐵𝑇

1 +Ψ𝑇 (x)𝐴−1Ψ(x)

]︃
,

, det
[︀
𝑀 − tw𝑇

]︀
,

where 𝑀 , 𝐵𝐴−1𝐵𝑇 , t , 𝐵𝐴−1Ψ(x)
1+Ψ𝑇 (x)𝐴−1Ψ(x)

, w , 𝐵𝐴−1Ψ(x). Assuming that matrix 𝑀 is nonsingular

and applying (20), we obtain

det(𝐷) = det(𝑀) · (1−w𝑇𝑀−1t) → min .

The resulting optimization problem is

w𝑇𝑀−1t → max,

or explicitly (18) is reduced to

(Ψ𝑇 (x)𝐴−1)𝐵𝑇 (𝐵𝐴−1𝐵𝑇 )−1𝐵(𝐴−1Ψ(x))

1 +Ψ𝑇 (x)𝐴−1Ψ(x)
→ max

x∈Ξ
.

5 Benchmark

In this section, we validate the proposed algorithm on a set of computational models with different

input dimensions. Several analytic problems and two industrial problems based on finite element models

are considered. Input parameters (variables) of the considered models have independent uniform and

independent normal distributions. For some models, additionally independent gaussian noise is added

to their outputs.

At first, we form non-degenerate random initial design, and then we use various techniques to add

new design points iteratively. We compare our method for design construction (denoted as Adaptive

for SI) with the following methods:

∙ Random method iteratively adds new design points randomly from the set of candidate design

points Ξ;

∙ Adaptive D-opt iteratively adds new design points that maximize the determinant of informa-

tion matrix (10): det𝐴𝑛 → maxx𝑛∈Ξ ([34]). The resulting design is optimal, in some sense, for

estimation of the PCE model coefficients. We compare our method with this approach to prove

that it gives some advantage over usual 𝐷-optimality. Strictly speaking, 𝐷-optimal design is not

iterative but if we have an initial training sample then the sequential approach seems a natural

generalization of a common 𝐷-optimal designs.
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∙ LHS. Unlike other considered designs, this method is not iterative as a completely new design

is generated at each step. This method uses Latin Hypercube Sampling, and it is common to

compute PCE coefficients.

The metric of design quality is the mean error defined as the distance between estimated and true

indices
√︁∑︀𝑑

𝑖=1(𝑆𝑖 − 𝑆 run
𝑖 )2 averaged over runs with different random initial designs (200-400 runs).

We consider not only the mean error but also its variance. Particularly, we use Welch’s t-test (see [35])

to ensure that the difference of mean distances is statistically significant for the considered methods.

Note that lower p-values correspond to bigger confidence.

In all cases, we assume that the truncation set (retained PCE terms) is selected before an experi-

ment.

5.1 Analytic Functions

The Sobol’ function is commonly used for benchmarking methods in global sensitivity analysis

𝑓(x) =
𝑑∏︁

𝑖=1

|4𝑥𝑖 − 2|+ 𝑐𝑖
1 + 𝑐𝑖

,

where 𝑥𝑖 ∼ 𝒰(0, 1). In our case parameters 𝑑 = 3, 𝑐 = (0.0, 1.0, 1.5) are used. Independent gaussian

noise is added to the output of the function. The standard deviation of noise is 0 (without noise),

0.2 and 1.4 that corresponds to 0%, 28% and 194% of the function standard deviation, caused by the

inputs uncertainty. Analytical expressions for the corresponding sensitivity indices are available in [11].

Ishigami function is also commonly used for benchmarking of global sensitivity analysis:

𝑓(x) = sin𝑥1 + 𝑎 sin2 𝑥2 + 𝑏𝑥43 sin𝑥1, 𝑎 = 7, 𝑏 = 0.1

where 𝑥𝑖 ∼ 𝒰(−𝜋, 𝜋). Theoretical values for its sensitivity indices are available in [16].

Environmental function models a pollutant spill caused by a chemical accident [44]

𝑓(x) =
√
4𝜋𝐶(x), x = (𝑀, 𝑑, 𝐿, 𝜏),

𝐶(x) =
𝑀√
4𝜋𝐷𝑡

exp

(︂−𝑠2
4𝐷𝑡

)︂
+

𝑀√︀
4𝜋𝐷(𝑡− 𝜏)

exp

(︂
− (𝑠− 𝐿)2

4𝐷(𝑡− 𝜏)

)︂
𝐼(𝜏 < 𝑡),

where 𝐼 is the indicator function; 4 input variables and their distributions are defined as: 𝑀 ∼ 𝒰(7, 13),
mass of pollutant spilled at each location; 𝐷 ∼ 𝒰(0.02, 0.12), diffusion rate in the channel; 𝐿 ∼
𝒰(0.01, 3), location of the second spill; 𝜏 ∼ 𝒰(30.01, 30.295), time of the second spill. 𝐶(x) is the

concentration of the pollutant at the space-time vector (𝑠, 𝑡), where 0 ≤ 𝑠 ≤ 3 and 𝑡 > 0.

We consider a cross-section corresponding to 𝑡 = 40, 𝑠 = 1.5 and suppose that independent gaussian

noise 𝒩 (0, 0.52) is added to the output of the function.

The Borehole function models water flow through a borehole. It is commonly used for testing

different methods in numerical experiments [42, 43]

𝑓(x) =
2𝜋𝑇𝑢(𝐻𝑢 −𝐻𝑙)

ln(𝑟/𝑟𝑤)(1 +
2𝐿𝑇𝑢

ln(𝑟/𝑟𝑤)𝑟2𝑤𝐾𝑤
+ 𝑇𝑢/𝑇𝑙)

,
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where 8 input variables and their distributions are defined as: 𝑟𝑤 ∼ 𝒰(0.05, 0.15), radius of borehole (m);

𝑇𝑢 ∼ 𝒰(63070, 115600), transmissivity of upper aquifer (𝑚2/yr); 𝑟 ∼ 𝒰(100, 50000), radius of influence
(m); 𝐻𝑢 ∼ 𝒰(990, 1110), potentiometric head of upper aquifer (m); 𝑇𝑙 ∼ 𝒰(63.1, 116), transmissivity of

lower aquifer (𝑚2/yr); 𝐻𝑙 ∼ 𝒰(700, 820), potentiometric head of lower aquifer (m); 𝐿 ∼ 𝒰(1120, 1680),
length of borehole (m); 𝐾𝑤 ∼ 𝒰(9855, 12045), hydraulic conductivity of borehole (m/yr).

Besides the deterministic case, we also consider stochastic one when independent gaussian noise

𝒩 (0, 5.02) is added to the output of the function.

The Wing Weight function models weight of an aircraft wing [38]

𝑓(x) = 0.036𝑆0.758
𝑤 𝑊 0.0035

𝑓𝑤

(︂
𝐴

cos2(Λ)

)︂0.6

𝑞0.006𝜆0.04
(︂

100𝑡𝑐
cos(Λ)

)︂−0.3

(𝑁𝑧𝑊𝑑𝑔)
0.49+

+𝑆𝑤𝑊𝑝,

where 10 input variables and their distributions are defined as: 𝑆𝑤 ∼ 𝒰(150, 200), wing area (𝑓𝑡2);

𝑊𝑓𝑤 ∼ 𝒰(220, 300), weight of fuel in the wing (lb); 𝐴 ∼ 𝒰(6, 10), aspect ratio; Λ ∼ 𝒰(−10, 10),

quarter-chord sweep (degrees); 𝑞 ∼ 𝒰(16, 45), dynamic pressure at cruise (lb/𝑓𝑡2); 𝜆 ∼ 𝒰(0.5, 1), taper
ratio; 𝑡𝑐 ∼ 𝒰(0.08, 0.18), aerofoil thickness to chord ratio; 𝑁𝑧 ∼ 𝒰(2.5, 6), ultimate load factor; 𝑊𝑑𝑔 ∼
𝒰(1700, 2500), flight design gross weight (lb); 𝑊𝑝 ∼ 𝒰(0.025, 0.08), paint weight (lb/𝑓𝑡2).

Besides the deterministic case, we also consider stochastic one when independent gaussian noise

𝒩 (0, 5.02) is added to the output of the function.

Experimental setup: In the experiments, we assume that the set of candidate design points Ξ is

a uniform grid in the 𝑑-dimensional hypercube. Note that Ξ affects optimization quality. Experimental

settings for analytical functions are summarized in Table 1.

Table 1: Benchmark settings for analytical functions

Characteristic Sobol Ishigami Environmental Borehole WingWeight

Input dimension 3 3 4 8 10

Input distributions Unif Unif Unif Unif Unif

PCE degree 9 9 5 4 4

𝑞-norm 0.75 0.75 1 0.75 0.75

Regressors number 111 111 126 117 176

Initial design size 150 120 126 117 186

Added noise std (0, 0.2, 1.4) — 0.5 (0, 5.0) (0, 5.0)

5.2 Finite Element Models

Case 1: Truss model. The deterministic computational model, originating from [39], resembles

the displacement 𝑉1 of a truss structure with 23 members as shown in Figure 2.

Ten random variables are considered:

∙ 𝐸1, 𝐸2 (Pa) ∼ 𝒰(1.68× 1011, 2.52× 1011);

∙ 𝐴1 (𝑚2) ∼ 𝒰(1.6× 10−3, 2.4× 10−3);
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Figure 2: Truss structure with 23 members

∙ 𝐴2 (𝑚2) ∼ 𝒰(0.8× 10−3, 1.2× 10−3);

∙ 𝑃1 - 𝑃6 (N) ∼ 𝒰(3.5× 104, 6.5× 104).

It is assumed that all the horizontal elements have perfectly correlated Young’s modulus and cros-

sectional areas with each other and so is the case with the diagonal members.

Case 2: Heat transfer model. We consider the two-dimensional stationary heat diffusion prob-

lem described in [40]. The problem is defined on the square domain 𝐷 = (−0.5, 0.5)×(−0.5, 0.5) shown

in Figure 3a, where the temperature field 𝑇 (𝑧), 𝑧 ∈ 𝐷 is described by the partial differential equation:

−∇(𝜅(z)∇𝑇 (𝑧)) = 500𝐼𝐴(𝑧),

with boundary conditions 𝑇 = 0 on the top boundary and ∇𝑇n = 0 on the left, right and bottom

boundaries, where n denotes the vector normal to the boundary; 𝐴 = (0.2, 0.3)× (0.2, 0.3) is a square

domain within 𝐷 and 𝐼𝐴 is the indicator function of 𝐴. The diffusion coefficient, 𝜅(𝑧), is a lognormal

random field defined by

𝜅(𝑧) = exp[𝑎𝑘 + 𝑏𝑘𝑔(𝑧)],

where 𝑔(𝑧) is a standard Gaussian random field and the parameters 𝑎𝑘 and 𝑏𝑘 are such that the

mean and standard deviation of 𝜅 are 𝜇𝜅 = 1 and 𝜎𝜅 = 0.3, respectively. The random field 𝑔(𝑧) is

characterized by an autocorrelation function 𝜌(𝑧, 𝑧′) = exp(−‖𝑧− 𝑧′‖2/0.22). The quantity of interest,

𝑌 , is the average temperature in the square domain 𝐵 = (−0.3,−0.2) × (−0.3,−0.2) within 𝐷 (see

Figure 3a).

To facilitate solution of the problem, the random field 𝑔(𝑧) is represented using the Expansion

Optimal Linear Estimation (EOLE) method (see [41]). By truncating the EOLE series after the first

𝑀 terms, 𝑔(𝑧) is approximated by

𝑔(𝑧) =
𝑀∑︁

𝑖=1

𝜉𝑖√
ℓ𝑖
𝜑𝑇𝑖 C𝑧𝜁 .

In the above equation, {𝜉1, . . . , 𝜉𝑀} are independent standard normal variables; C𝑧𝜁 is a vector with

elements C
(𝑘)
𝑧𝜁 = 𝜌(𝑧, 𝜁𝑘), where {𝜁1, . . . , 𝜁𝑀} are the points of an appropriately defined mesh in 𝐷;

and (ℓ𝑖, 𝜑𝑖) are the eigenvalues and eigenvectors of the correlation matrix C𝜁𝜁 with elements C
(𝑘,ℓ)
𝜁𝜁 =

𝜌(𝜁𝑘, 𝜁ℓ), where 𝑘, ℓ = 1, . . . , 𝑛. We select 𝑀 = 53 in order to satisfy inequality

𝑀∑︁

𝑖=1

ℓ𝑖/
𝑛∑︁

𝑖=1

ℓ𝑖 ≥ 0.99.

The underlying deterministic problem is solved with an in-house finite-element analysis code. The

employed finite-element discretization with triangular 𝑇3 elements is shown in Figure 3a. Figure 3b

shows the temperature fields corresponding to two example realizations of the diffusion coefficient.
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(a) Finite-element mesh (b) Temperature field realizations

Figure 3: Heat diffusion problem

Experimental Setup. For these finite element models, we assume that the set of candidate design

points Ξ is

∙ a uniform grid in the 10-dimensional hypercube for the Truss model;

∙ LHS design with normally distributed variables in 53-dimensional space for the Heat transfer

model.

Experimental settings for all models are summarized in Table 2.

Table 2: Benchmark settings for Finite Element models

Characteristic Truss Heat transfer

Input dimension 10 53

Input distributions Unif Norm

PCE degree 4 2

𝑞-norm 0.75 0.75

Regressors number 176 107

Initial design size 176 108

Added noise std — —

5.3 Results

Figures 4a, 4b, 4c, 5, 6, 7a, 7b, 8a, 8b show results for analytic functions. Figures 9 and 10 present

results for finite element models. We provide here mean errors, relative mean errors w.r.t the proposed

method and 𝑝-values to ensure that the difference of mean errors is statistically significant.

In the presented experiments, the proposed method performs better than other considered methods

in terms of the mean error of estimated indices. Particularly note its superiority over standard LHS

approach that is commonly used in practice. The difference in mean errors is statistically significant

according to Welch’s t-test.

Comparison of figures 4a, 4b, 4c with different levels of additive noise shows that the proposed

method is effective when the analyzed function is deterministic or when the noise level is small.
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Because of robust problem statement and limited accuracy of the optimization, the algorithm may

produce duplicate design points. Actually, it’s a common situation for locally 𝐷-optimal designs [33]. If

the computational model is deterministic, one may modify the algorithm, e.g. exclude repeated design

points.

Although high dimensional optimization problems may be computationally prohibitive, the pro-

posed approach is still useful in high dimensional settings. We propose to generate a uniform candidate

set (e.g. LHS design of large size) and then choose its subset for the effective calculation of Sobol’

indices using our adaptive method, see results for Heat transfer model in Figure 10 (note that due to

computational complexity we provide for this model results only for 2 iterations of the LHS method).

It should be noted that in all presented cases the specification of sufficiently accurate PCE model

(reasonable values for degree 𝑝 and 𝑞-norm defining the truncation set) is assumed to be known a priori

and the size of the initial training sample is sufficiently large. If we use an inadequate specification

of the PCE model (e.g. quadratic PCE in case of cubic analyzed function), the method will perform

worse in comparison with methods which do not depend on PCE model structure. In any case, usage

of inadequate PCE models may lead to inaccurate results. That is why it is very important to control

PCE model error during the design construction. For example, one may use cross-validation for this

purpose [29]. Thus, if the PCE model error increases during design construction this may indicate that

the model specification is inadequate and should be changed.

6 Conclusions

We proposed the design of experiments algorithm for evaluation of Sobol’ indices from PCE metamodel.

The method does not depend on a particular form of orthonormal polynomials in PCE. It can be used

for the case of different distributions of input parameters, defining the analyzed computational models.

The main idea of the method comes from metamodeling approach. We assume that the compu-

tational model is close to its approximating PCE metamodel and exploit knowledge of a metamodel

structure. This allows us to improve the evaluation accuracy. All comes with a price: if additional as-

sumptions on the computational model to provide good performance are not satisfied, one may expect

accuracy degradation. Fortunately, in practice, we can control approximation quality during design

construction and detect that we have selected inappropriate model. Note that from a theoretical point

of view, our asymptotic considerations (w.r.t. the training sample size) simplify the problem of accuracy

evaluation for the estimated indices.

Our experiments demonstrate: if PCE specification defined by the truncation scheme is appropriate

for the given computational model and the size of the training sample is sufficiently large, then the

proposed method performs better in comparison with standard approaches for design construction.
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