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Abstract

We introduce the Gaussian process (GP) modelling module developed within the

UQLab software framework. The novel design of the GP-module aims at providing

seamless integration of GP modelling into any uncertainty quantification workflow,

as well as a standalone surrogate modelling tool. We first briefly present the key

mathematical tools at the basis of GP modelling (a.k.a. Kriging), as well as the

associated theoretical and computational framework. We then provide an extensive

overview of the available features of the software and demonstrate its flexibility and

user-friendliness. Finally, we showcase the usage and the performance of the soft-

ware on several applications borrowed from different fields of engineering. These

include a basic surrogate of a well-known analytical benchmark function, a hierar-

chical Kriging example applied to wind turbine aero-servo-elastic simulations and

a more complex geotechnical example that requires a non-stationary, user-defined

correlation function. The GP-module, like the rest of the scientific code that is

shipped with UQLab, is open source (BSD license).

Keywords: UQLab – Gaussian process modelling – Kriging – Matlab – Uncer-

tainty Quantification

1 Introduction

Uncertainty quantification (UQ) through computer simulation is an interdisciplinary

field that has seen a rapid growth in the last decades. Broadly speaking, it aims at

i) identifying and quantifying the uncertainty in the input parameters of numerical

models of physical systems, and ii) quantitatively assessing its effect on the model

responses. Such a general formulation comprises a number of applications, includ-

ing structural reliability (Lemaire 2009), sensitivity analysis (Saltelli et al. 2000),

reliability-based design optimisation (Tsompanakis et al. 2008) and Bayesian tech-

niques for calibration and validation of computer models (Dashti & Stuart 2017).
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Due to the high cost of repeatedly evaluating complex computational models,

analyses with classical sampling techniques such as Monte Carlo simulation are often

intractable. In this context, meta-modelling techniques (also known as surrogate

modelling) allow one to develop fast-to-evaluate surrogate models from a limited col-

lection of runs of the original computational model, referred to as the experimental

design (Santner et al. 2003, Fang et al. 2005, Forrester et al. 2008). Popular sur-

rogate modelling techniques include Kriging (Sacks et al. 1989), polynomial chaos

expansions (Ghanem & Spanos 1991, Xiu & Karniadakis 2002) and support vector

regression (Vapnik 1995).

Kriging is a surrogate modelling technique first conceived by Krige (1951) in the

field of geostatistics and later introduced for the design and analysis of computer

experiments by Sacks et al. (1989) and Welch et al. (1992). The potential appli-

cations of Kriging in the context of civil and mechanical engineering, range from

basic uncertainty propagation to reliability and sensitivity analysis (Marrel et al.

2008, Gaspar et al. 2014, Iooss & Lemâıtre 2015, Le Gratiet et al. 2016, Moustapha

et al. 2018). Beyond approximating the output of a computational model, Kriging

surrogates also provide local estimates of their accuracy (via the variance of the

Kriging predictor). This enables adaptive schemes e.g. in the context of reliability

analysis (Echard et al. 2011, Dubourg & Sudret 2014) or surrogate model- based

design optimisation (Simpson et al. 2001, Moustapha et al. 2016). The local error

estimates of a Kriging surrogate have also led to improved Bayesian calibration of

computer models (see e.g. Bachoc et al. (2014)).

Although in its standard form Kriging is a stochastic interpolation method, cer-

tain extensions have been proposed for dealing with noisy observations. Such exten-

sions have been of particular interest to the machine learning community and they

are commonly referred to as Gaussian process regression (Rasmussen & Williams

2006).

A number of dedicated toolboxes are readily available for calculating Kriging sur-

rogate models. Of interest to this review is general purpose software not targeted to

specific Kriging applications, because they are typically limited to two or three di-

mensional problems (see e.g. gslib (Deutsch et al. 1992)). Within the R community

one of the most comprehensive and well-established Kriging packages is arguably

DiceKriging, developed by the DICE consortium (Roustant et al. 2012). This set of

packages provides Kriging meta-modelling as part of a framework for adaptive exper-

imental designs and Kriging-based optimisation based on the packages DiceDesign

and DiceOptim (Dupuy et al. 2015, Picheny et al. 2016). scikit-learn provides

a python-based, machine-learning-oriented implementation of Gaussian processes

for regression and classification (Pedregosa et al. 2011). Alternatively, PyKriging

(Paulson & Ragkousis 2015) offers a Kriging toolbox in python that offers basic
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functionality with focus on user-friendliness. Gpy (GPy 2012) offers a Gaussian

process framework with focus on regression and classification problems. Within the

Matlab programming language the first Kriging toolbox with widespread use was

DACE (Lophaven et al. 2002). DACE was later extended to ooDACE (Couckuyt

et al. 2014), an object-oriented Kriging implementation with a richer feature set.

Small Toolbox for Kriging (Bect et al. 2014) offers an alternative Kriging implemen-

tation that is mainly focused on providing a set of functions for Kriging surrogate

modelling and design of experiments. GPML (Rasmussen & Nickisch 2010) offers

a library of functions that are directed towards Gaussian processes for regression

and classification in a machine learning context. Finally, recent versions of Mat-

lab (starting from R2015b) provide a rapidly growing Gaussian process library for

regression and classification.

Due to the variety of potential applications of Kriging, different toolboxes tend

to be focused on a specific user niche. There is limited availability of general purpose

Kriging toolboxes that allow for seamless integration within various UQ workflows

ranging from e.g. basic uncertainty propagation to reliability analysis and surrogate-

model-based optimisation. To this end, the Kriging toolbox presented here was

developed as a module of the general purpose UQ framework, UQLab (Marelli &

Sudret (2014), www.uqlab.com). In addition, although most of the aforementioned

toolboxes offer a significant set of configuration options, the support for fully cus-

tomisable Kriging is often limited or not easily accessible, which can be a drawback

in a research environment. Finally, the user experience may vary from user-friendly

to complex (especially to access the most advanced features), often requiring a sig-

nificant degree of programming knowledge. This might be rather inconvenient for

applied scientists and practitioners with limited programming knowledge. Follow-

ing these premises, this paper introduces the UQLab Gaussian process modelling

tool (GP-module) focusing on its unique embedding into a complex uncertainty

quantification environment, its user-friendliness and customisability.

The paper is structured as follows: in Section 2 a theoretical introduction to

Kriging is given to highlight its main building blocks. In Section 3 the key-features

of the GP-module are presented. Finally, a set of application examples is used to

showcase in detail the usage of the software in Section 4, followed by a summary

and a road map of the upcoming developments in Section 5.

2 Kriging theory

2.1 Kriging basics

Any metamodeling approach, such as Kriging, aims at approximating the response

of a computational model given a finite set of observations. In this context, consider

3



a system whose behaviour is represented by a computational modelM which maps

the M -dimensional input parameter space Dx to the 1-dimensional output space,

i.e. M : x ∈ Dx ⊂ RM 7→ y ∈ R where x = {x1, . . . , xM}>.
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Figure 1: Realisations of a prior (left) and posterior Gaussian process (right).

The Gaussian process mean in each case is denoted by a black line.

Kriging is a meta-modelling technique which assumes that the true model re-

sponse is a realisation of a Gaussian process described by the following equation

(Santner et al. 2003):

MK(x) = β>f(x) + σ2Z(x, ω) (1)

where β>f(x) is the mean value of the Gaussian process, also called trend, σ2

is the Gaussian process variance and Z(x, ω) is a zero-mean, unit-variance Gaus-

sian process. This process is fully characterised by the auto-correlation function

between two sample points R(x,x′;θ). The hyperparameters θ associated with the

correlation function R(·;θ) are typically unknown and need to be estimated from

the available observations.

Having specified the trend and the correlation function parameters it is pos-

sible to obtain an arbitrary number of realisations of the so-called prior Gaus-

sian process (see Figure 1 left). In the context of metamodelling the goal is to

calculate a prediction MK(x) for a new point x, given an experimental design

X =
{
x(1), . . . ,x(N)

}
of size N and the corresponding (noise-free) model responses

y = {y(1) =M(x(1)), . . . , y(N) =M(x(N))}>. A Kriging metamodel (a.k.a. Krig-

ing predictor) provides such predictions based on the properties of the so-called pos-

terior Gaussian process conditioned on the available data (see Figure 1 right). The

Kriging prediction on x corresponds to a random variate Ŷ (x) ∼ N
(
µ
Ŷ

(x), σ
Ŷ

(x)
)
,

therefore the approximation of the computational model that is obtained is essen-
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tially an infinite family of such models. Each of these models is a realisation (or

sample) of the posterior Gaussian process. In practice the mean response is used (see

Eq. (6)) as the Kriging surrogate, while its variance (see Eq. (7)) is often interpreted

as a measure of the local error of the prediction. The equations for calculating the

mean and variance of a universal Kriging predictor are given next.

The Gaussian assumption states that the vector formed by the true model re-

sponses, y and the prediction, Ŷ (x), has a joint Gaussian distribution defined by:

{
Ŷ (x)

y

}
∼ NN+1

({
f>(x)β

Fβ

}
, σ2

{
1 r>(x)

r(x) R

})
(2)

where F is the information matrix of generic terms:

Fij = fj(x
(i)) , i = 1, . . . , N, j = 1, . . . , P, (3)

r(x) is the vector of cross-correlations between the prediction point x and each

one of the observations whose terms read:

ri(x) = R(x,x(i);θ), i = 1, . . . , N. (4)

R is the correlation matrix given by:

Rij = R(x(i),x(j);θ), i, j = 1, . . . , N. (5)

The mean and variance of the Gaussian random variate Ŷ (x) (a.k.a. mean

and variance of the Kriging predictor) can be calculated based on the best linear

unbiased predictor properties (Santner et al. 2003):

µ
Ŷ

(x) = f(x)>β + r(x)>R−1 (y − Fβ) , (6)

σ2
Ŷ

(x) = σ2
(

1− r>(x)R−1r(x) + u>(x)(F>R−1F )−1u(x)
)

(7)

where:

β =
(
F>R−1F

)−1
F>R−1y (8)

is the generalised least-squares estimate of the underlying regression problem and

u(x) = F>R−1r(x)− f(x). (9)

Once µ
Ŷ

(x)v and σ2
Ŷ

(x) are available, confidence bounds on predictions can be

derived by observing that:

P
[
Ŷ (x) ≤ t

]
= Φ

(
t− µ

Ŷ
(x)

σ
Ŷ

(x)

)
, (10)

where Φ(·) denotes the Gaussian cumulative distribution function. Based on Eq. (10)

the confidence intervals on the predictor can be calculated by:

Ŷ (x) ∈
[
µ
Ŷ

(x)− Φ−1
(

1− α

2

)
σ
Ŷ

(x) , µ
Ŷ

(x) + Φ−1
(

1− α

2

)
σ
Ŷ

(x)
]

(11)
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and can be interpreted as the interval within which the Kriging prediction falls with

probability 1− α.

The equations that were derived for the best linear unbiased Kriging predictor

assumed that the covariance function σ2R(·;θ) is known. In practice however, the

family and other properties of the correlation function need to be selected a priori.

The hyperparameters θ, the regression coefficients β and the variance σ2 need to

be estimated based on the available experimental design. This involves solving an

optimisation problem that is further discussed in Section 2.4. The resulting best

linear unbiased predictors are called empirical in Santner et al. (2003) because they

typically result from empirical choice of various Kriging parameters that are further

discussed in Sections 2.2 - 2.4.

2.2 Trend

The trend refers to the mean of the Gaussian process, i.e. the β>f(x) term in

Eq. (1). Using a non-zero trend is optional but it is often preferred in practice (see

e.g. Rasmussen & Williams (2006), Schöbi et al. (2015)). Note that the mean of

the Kriging predictor in Eq. (6) is not confined to be zero when the trend is zero.

In the literature, it is customary to distinguish between Kriging metamodels

depending on the type of trend they use (Stein 1999, Santner et al. 2003, Rasmussen

& Williams 2006). The most general and flexible formulation is universal Kriging,

which assumes that the trend is composed of a sum of P arbitrary functions fk(x),

i.e.

β>f(x) =
P∑

k=1

βkfk(x). (12)

Some of the most commonly used trends for universal Kriging are given for reference

in Table 1. Simple Kriging assumes that the trend has a known constant value, i.e.

P = 1, f1(x) = 1 and β1 is known. In Ordinary Kriging the trend has a constant

but unknown value, i.e. P = 1, f1(x) = 1 and β1 is unknown.

Trend Formula

constant (ordinary Kriging) β0

linear β0 +
M∑
i=1

βixi

quadratic β0 +
M∑
i=1

βixi + ΣM
i=1Σ

M
j=1βijxixj

Table 1: Formulas of the most commonly used Kriging trends.
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2.3 Correlation function

The correlation function (also called kernel in the literature, or covariance function

if it includes the Gaussian process variance σ2) is a crucial ingredient for a Krig-

ing metamodel, since it contains the assumptions about the function that is being

approximated. An arbitrary function of (x,x′) is in general not a valid correlation

function. In order to be admissible, it has to be chosen in the set of positive definite

kernels. However, checking for positive definiteness of a kernel can be a challenging

task. Therefore it is usually the case in practice to select families of kernels known

to be positive definite and to estimate their parameters based on the available ex-

perimental design and model responses (see Section 2.4). A usual assumption is to

consider kernels that depend only on the quantity h =‖ x − x′ ‖ which are called

stationary. A list of stationary kernels commonly used in the literature can be found

in Table 2. Different correlation families result in different levels of smoothness for

the associated Gaussian processes, as depicted in Figure 2 (Rasmussen & Williams

2006).

Name Formula

Linear R(h; θ) = max
(

0, 1− |h|
θ

)

Exponential R(h; θ) = exp
(
− |h|

θ

)

Matérn 3/2 R(h; θ) =
(

1 +
√
3|h|
θ

)
exp

(
−
√
3|h|
θ

)

Matérn 5/2 R(h; θ) =
(

1 +
√
5|h|
θ

+ 5h2

3θ2

)
exp

(
−
√
5|h|
θ

)

Gaussian (squared exponential) R(h; θ) = exp
(
−∑M

i=1

(
h
θ

)2)

Table 2: List of available correlation families.

In case of multidimensional inputs (M > 1) it is common practice to obtain

admissible kernels as functions of one-dimensional correlation families as the ones

in Table 2. Two standard approaches in the literature are the separable correlation

type (Sacks et al. 1989):

R(x,x′;θ) =

M∏

i=1

R(xi, x
′
i, θi) (13)

and the ellipsoidal type (Rasmussen & Williams 2006):

R(x,x′;θ) = R(h) , h =

√√√√
M∑

i=1

(
xi − x′i
θi

)2

. (14)

Although typically θ ∈ RM this is not necessarily true in the general case,

since the number of components of θ that correspond to each input dimension may
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Figure 2: Realisations of Gaussian processes, characterised by various correla-

tion families and the same length-scale (θ) value.

vary. In the current stage, it is assumed however that one element of θ is used per

dimension for notational clarity.

In certain scenarios (e.g. based on prior knowledge), isotropic correlation func-

tions can be used for multidimensional inputs. In that case the same correlation

function parameters θ are used for each input dimension in Eq. (13) and Eq. (14).

2.4 Estimating the hyperparameters

In most practical applications of Kriging surrogate modelling, the hyperparameters

θ are estimated given an experimental design X and model responses y. Maximum

likelihood and cross-validation are the most commonly used methods for doing so

and further discussed next.

The maximum likelihood approach aims at finding the set of parameters β,θ, σ2

such that the likelihood of the observations y = {M(x1), . . . ,M(xN )}> is maxi-

mal. Since y follows a multivariate Gaussian distribution, the likelihood function

reads:

L(y | β, σ2,θ) =
det(R)−1/2

(2πσ2)N/2
exp

[
− 1

2σ2
(y − Fβ)>R−1(y − Fβ)

]
. (15)

For any given value of θ, the maximisation of the likelihood w.r.t. β and σ2

is a convex quadratic programming problem. Consequently, it admits closed form

generalized least-squares estimates of β and σ2 (for proof and more details see e.g.

Santner et al. (2003)):

β = β(θ) =
(
F>R−1F

)−1
F>R−1y , (16)
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σ2 = σ2(θ) =
1

N
(y − Fβ)>R−1 (y − Fβ) . (17)

The value of the hyperparameters θ is calculated by solving the optimisation

problem:

θ = arg min
Dθ

(
− logL(y | β, σ2,θ)

)
. (18)

Based on Eqs (15) - (17) the optimisation problem in Eq. (18) can be written as

follows:

θ = arg min
Dθ

(
1

2
log(det(R)) +

N

2
log(2πσ2) +

N

2

)
. (19)

The cross-validation method (also known as K-fold cross-validation) is based

instead on partitioning the whole set of observations S def
= {X ,y} into K mutually

exclusive and collectively exhaustive subsets {Sk, k = 1, . . . ,K} such that

Si ∩ Sj = ∅ , ∀(i, j) ∈ {1, . . . ,K}2 and
K⋃

k=1

Sk = S. (20)

The k-th set of cross-validated predictions is obtained by calculating the Kriging

predictor using all the subsets but the k-th one and evaluating its predictions on that

specific k-th fold that was left apart. The leave-one-out cross-validation procedure

corresponds to the special case that the number of classes is equal to the number of

observations (K = N).

In the latter case the objective function is (Santner et al. 2003, Bachoc 2013):

θ = arg min
Dθ

K∑

i=1

(
M(x(i))− µ

Ŷ ,(−i)(x
(i))
)2

(21)

where µ
Ŷ ,(−i)(x

(i)) is the mean Kriging predictor that was calculated using S \{
x(i),y(i)

}
evaluated at point x(i). Notice that for the case of leave-one-out cross-

validation, i is an index but in the general case i is a vector of indices. Calculating

the objective function in Eq. (21) requires the calculation of K Kriging surrogates.

The computational requirements for performing this operation can be significantly

reduced as shown in Dubrule (1983).

The estimate of σ2 is calculated using the following equation (Cressie 1993,

Bachoc 2013):

σ2 = σ2(θ) =
1

K

K∑

i=1

(
M(x(i))− µ

Ŷ ,(−i)(x
(i))
)2

σ2
Ŷ ,(−i)(x

(i))
(22)

where σ2
Ŷ ,(−i)(x

(i)) denotes the variance of a Kriging predictor that was calcu-

lated using S \
{
x(i),y(i)

}
, evaluated at point x(i). When i is a set of indices, the

division and the squared operations in Eq. (22) are performed element-wise.
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Numerically solving the optimisation problems described in Eq. (19) (maxi-

mum likelihood case) or Eq. (21) (cross-validation case) relies on either local (e.g.

gradient-based) or global (e.g. evolutionary) algorithms. On the one hand, local

methods tend to converge faster and require fewer objective function evaluations

than their global counterparts. On the other hand, the existence of flat regions and

multiple local minima, especially for larger input dimension, can lead gradient meth-

ods to poor performance when compared to global methods. It is common practice

to combine both strategies sequentially to improve global optimisation results with

a final local search (which is also known as hybrid methods).

It can be often the case in engineering applications that different components of

the input variable x take values that differ by orders of magnitude. In such cases,

potential numerical instabilities can be avoided by scaling X 7→ U , e.g. as follows:

u
(i)
j =

x
(i)
j − E [Xj ]√

Var [Xj ]
, i = 1, . . . , N , j = 1, . . . ,M (23)

where u
(i)
j (resp. x

(i)
j ) refer to the i-th sample of the j-th component of U (resp.

of X ) and E [Xj ] and Var [Xj ] refer to the empirical mean and variance of the j-th

component of X .

3 The UQLab Gaussian process modelling mod-

ule

3.1 The UQLab project

UQLab is a software framework developed by the Chair of Risk, Safety and Un-

certainty Quantification at ETH Zürich (Marelli & Sudret 2014). The goal of this

project is to provide an uncertainty quantification tool that is accessible also to a

non-highly-IT trained scientific audience. Due to the broadness of the UQ scope,

a correspondingly general theoretical framework is required. The theoretical back-

bone of the UQLab software lies in the global uncertainty framework developed by

Sudret (2007), De Rocquigny et al. (2008), sketched in Figure 3a. According to this

framework, the solution of any UQ problem can generally be decomposed into the

following steps:
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Step A Define the physical model and the quantities of interest for the analysis.

It is a deterministic representation of an arbitrarily complex physical

model, e.g. a finite element model in civil and mechanical engineering.

In this category also lie metamodels, such as Kriging, since once they

are calculated they can be used as surrogates of the underlying “true”

model.

Step B Identify and quantify the sources of uncertainty in the parameters of

the system that serve as input for Step A. They are represented by

a set of random variables and their joint probability density function

(PDF).

Step C Propagate the uncertainties identified in Step B through the compu-

tational model in Step A to characterise the uncertainty in the model

response. This type of analyses include moments analysis, full PDF

characterisation, rare events estimation, sensitivity analysis, etc.

Step C’ Optionally, exploit the by-products of the analysis in Step C to update

the sources of uncertainty, e.g. by performing model reduction based

on sensitivity analysis.

These components introduce a clear semantic distinction between the elements

involved in any UQ problem: model, input and analysis. This theoretical frame-

work provides the ideal foundation for the development of the information flow

model in a multi-purpose UQ software.

At the core of UQLab lies a modular infrastructure that closely follows the

semantics previously described, graphically represented in Figure 3b. The three

steps identified in Figure 3a are directly mapped to core modules in Figure 3b:

model corresponds to Step A (physical modelling, metamodeling), input to Step

B (sources of uncertainty) and analysis to Step C (uncertainty analysis). Within

the UQLab framework, a module refers to some particular functionality, e.g. the

GP-module provides Kriging surrogate modelling. Each module extends the func-

tionalities of one of the core modules. It can be either self-contained or capitalise

on other modules for extended functionalities.

The real “actors” of a UQ problem are contained in the objects connected to

each of the core modules. A typical example of such objects would be an input

object that generates samples distributed according to arbitrary PDFs, a model

object that runs a complex FEM simulation, or an analysis object that performs

reliability analysis. The platform allows one to define an arbitrary number of objects

and select the desired ones at various stages of the solution of a complex UQ problem.

UQLab first became freely available to the academic community on July 2015

as a beta version. On April 2017 the version 1.0 of UQLab was released. Starting

from version 1.0 all the scientific code of the software is open-source (BSD license).
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By May 2018 around 1300 users have already registered and used it.

(a) The theoretical UQ framework based on which any UQ problem can be described.

(b) The modular structure of the UQLab framework. An arbitrary number of objects

(Input, Model, Analysis) can be connected at any stage of the UQ problem.

Figure 3: An abstract illustration of the UQLab architecture (b) based on

the theoretical UQ framework in (a) by Sudret (2007).

3.2 The GP-module

Kriging is one of the metamodelling modules available in UQLab (Lataniotis et al.

2017). Following the semantics described in the previous section, it is attached

to the model core module. Although the GP-module itself can be used by other

modules, e.g. an analysis module performing reliability analysis combining Kriging

and Monte Carlo Simulation (AK-MCS) (Echard et al. 2011, Marelli et al. 2017),

the focus of this work is on the capabilities of the GP-module itself.

An overview of the available features of the GP-module is given in Table 3. The

GP-module incorporates the four ingredients identified in Section 2.1:

• Trends: Universal Kriging trends are fully supported, including simple, ordi-

nary, or polynomial of arbitrary degree. In addition, custom basis functions

f(x) or a completely custom trend function may be specified

12



• Correlation functions: Standard correlation families from the literature are

readily available as well as the possibility of creating user-defined ones. For

multi-dimensional inputs ellipsoidal and separable correlation functions can be

used, allowing also for isotropic ones. Fully user-specified correlation functions

are also supported

• Estimation methods: Maximum likelihood (Eq. (19)) and cross-validation (Eq. (21))

methods can be used for estimating the hyper-parameters

• Optimisation methods: Matlab’s built-in local and global optimisation meth-

ods are offered, namely BFGS and genetic algorithm as well as genetic algo-

rithm with BFGS refinement (hybrid).

In addition, various scaling operations are allowed for avoiding numerical instabili-

ties during the hyperparameters estimation. Such operations may vary from simple

zero-mean scaling to more advanced ones such as isoprobabilistic transformations

by interfacing with other UQLab modules.

Following the general design principle of UQLab concerning user-friendliness,

all the possible configuration options have default values pre-assigned to allow basic

usage of the module with very few lines of code (see Section 4.1). A Matlab

structure variable is used to specify a Kriging configuration, called KOptions in the

following sections.

To showcase the minimal working code for obtaining a Kriging surrogate a simple

application is considered. The experimental design consists of 8 random samples

in the [0, 15] interval and it is contained in the variable XED. The “true” model is

M(x) = x sin(x) and the corresponding model responses are stored in the variable

YED. The minimal code required for obtaining a Kriging surrogate, given XED and

YED is the following:

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

KOptions.ExpDesign.X = XED;

KOptions.ExpDesign.Y = YED;

myKriging = uq_createModel(KOptions);

The first line clarifies the type of UQLab object that is being requested. Following

the general UQ Framework in Figure 3a a model object of type ’Metamodel’ is cre-

ated. The next line specifies the type of metamodel, followed by the manual specifi-

cation of the experimental design. Finally the UQLab command uq_createModel is

used in order to create a model object using the configuration options in KOptions.

The resulting Kriging metamodel object myKriging contains all the required

information to compute the mean and variance of the Kriging predictor on new test

points (X). This can be done using the following command:
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[meanY, varY] = uq_evalModel(myKriging, X);

where meanY corresponds to the mean and varY to the variance of the Kriging

predictor on the test points (see Eqs. (6), (7)).

Once the metamodel is created, a report of the main properties of the Kriging

surrogate model can be printed on screen by:

uq_print(myKriging);

%-------------- Kriging metamodel --------------%

Object Name: Model 1

Input Dimension: 1

Experimental Design

Sampling: User

X size: [8x1]

Y size: [8x1]

Trend

Type: ordinary

Degree: 0

Gaussian Process

Corr. Type: ellipsoidal(anisotropic)

Corr. family: matern-5_2

sigma^2: 4.787983e+01

Estimation method: Cross-Validation

Hyperparameters

theta: [ 0.00100 ]

Optim. method: Hybrid Genetic Algorithm

Leave-one-out error: 4.3698313e-01

%-----------------------------------------------%

It can be observed that the default values for the trend, correlation function,

estimation and optimisation method have been assigned (see Table 3). A visual

representation of the metamodel can be obtained by:

uq_display(myKriging);

Note that the uq_display command can only be used for quickly visualising Kriging

surrogates when the inputs are one- or two-dimensional. The figure produced by
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uq_display is shown in Figure 4.

Figure 4: The output of uq display of a Kriging model object having a

one-dimensional input.

4 Application examples

4.1 Basic example

The goal of this introductory example is to calculate a Kriging surrogate of a well-

known surrogate modelling benchmark, the Branin-Hoo function. This function has

been traditionally used as a benchmark for global optimisation methods (see e.g.

Jones et al. (1998)). A slightly modified version is considered this work, that was

first proposed as a surrogate modelling benchmark by Forrester et al. (2008) due to

its representative shape with respect to engineering applications. It is an analytical

function given by:

M(x) = a
(
x2 − bx21 + cx1 − r2

)2
+ s (1− t) cos(x1) + s , x ∈ R2. (24)

Some standard values of the parameters are used, namely a = 1, b = 5.1(4π2),

c = 5/π, r = 6, s = 10 and t = 1/(8π). The function is evaluated on the square

x1 ∈ [−5, 10], x2 ∈ [0, 15].

By taking advantage of the input and model modules of UQLab, the experi-

mental design and model responses that will be used for calculating the surrogate
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Figure 5: From left to right: the Branin-Hoo function (true model) followed by

the mean and standard deviation of the Kriging predictor. The experimental

design is illustrated by red dots.

can be generated with minimal effort. First, the probabilistic input model and the

true model are defined as follows:

% Start the UQLab framework

uqlab;

% Specify the probabilistic input model

IOptions.Marginals(1).Type = ’Uniform’;

IOptions.Marginals(1).Parameters = [-5, 10];

IOptions.Marginals(2).Type = ’Uniform’;

IOptions.Marginals(2).Parameters = [0, 15];

myInput = uq_createInput(IOptions);

% Specify the computational model

MOptions.mString = [’(X(:,2) - 5.1/(2*pi)^2*X(:,1).^2 + 5/pi*X(:,1) - 6).^2’ ...

’+ 10*(1-1/(8*pi))*cos(X(:,1)) + 10’];

myModel = uq_createModel(MOptions);

Note that the model object of the Branin-Hoo function can be equally coded in

a Matlab m-file or written as a string (which is a useful feature for simple demo

functions only).

Next, the experimental design XED is generated along with the corresponding

true model responses YED. The Latin Hypercube Sampling (LHS) method is used

to obtain a space-filling experimental design of 15 samples (McKay et al. 1979):

% Draw 15 samples using Latin Hypercube Sampling

XED = uq_getSample(15, ’LHS’);

% Calculate the corresponding model responses

YED = uq_evalModel(myModel, XED);

A Kriging surrogate model using the XED, YED variables can be created as follows:
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KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

KOptions.ExpDesign.Sampling = ’user’;

KOptions.ExpDesign.X = XED;

KOptions.ExpDesign.Y = YED;

myKriging = uq_createModel(KOptions);

All the required ingredients for obtaining a Kriging surrogate are assigned default

values unless specified by the user (see Section 3.2). The surrogate that is obtained

can be visually inspected by issuing the command:

uq_display(myKriging);

The result of the uq_display command is shown in Figure 5. The Kriging

surrogate myKriging can be used like any other model (e.g. myModel) to calculate

its response given a new sample of the input X using the uq_evalModel function.

For example, the mean predictor, meanY, of 100 samples generated by Monte Carlo

sampling can be computed as follows:

X = uq_getSample(100);

meanY = uq_evalModel(myKriging, X);

More information can be extracted from the Kriging predictor using a slightly

different syntax. The following code:

[meanY, varY, covY] = uq_evalModel(myKriging, X);

allows to retrieve the 100× 1 Kriging mean meanY, the 100× 1 Kriging variance

varY and the 100 × 100 full covariance matrix of the surrogate model responses

covY.

4.2 Hierarchical Kriging

To further illustrate the flexibility that can be achieved with the use of arbitrary

trend functions, a hierarchical Kriging application is showcased. Hierarchical Krig-

ing (Han et al. 2012) is one Kriging extension aiming to fuse information from

experimental designs related to different physical models of different fidelity. This

is achieved by first calculating a Kriging surrogate using the low-fidelity observa-

tions and then using it as the trend of the high-fidelity surrogate. This approach

can be extended to more fidelity levels in a similar fashion. A set of observations

and model responses is used that originates from aero-servo-elastic simulations of a

wind-turbine as presented in Abdallah et al. (2015). Given a set of input parameters

related to the wind flow, the output of interest is the maximal bending moment at

the blade root of a wind turbine.
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Two types of simulators are available for estimating the maximal bending mo-

ment given the wind conditions. A low-fidelity simulator can generate estimates

of the output with minimal computation time at the cost of lower accuracy. On

the other hand a high-fidelity simulator can more accurately predict the maximal

bending moment at a significantly higher computational cost. In this example a

total of 300 low-fidelity and 15 high-fidelity simulations are available. First a Krig-

ing surrogate is computed on the low-fidelity dataset that is contained in variables

XED_LF, YED_LF as follows:

2000 4000 6000 8000
1000

2000

3000

4000

5000

6000

7000

8000

Low-fidelity Kriging 
 (RMSE = 0.552)

2000 4000 6000 8000
1000

2000

3000

4000

5000

6000

7000

8000

 
High-fidelity Kriging 

 (RMSE = 0.545)

2000 4000 6000 8000
1000

2000

3000

4000

5000

6000

7000

8000

 

Hierarchical Kriging 
 (RMSE = 0.174)

Figure 6: Comparison of true model output (from high fidelity simulations)

versus various Kriging surrogates on a validation set of size 150.

% Create the low-fidelity surrogate

KOptions_LF.Type = ’Metamodel’;

KOptions_LF.MetaType = ’Kriging’;

KOptions_LF.ExpDesign.X = XED_LF;

KOptions_LF.ExpDesign.Y = YED_LF;

KOptions_LF.Corr.Family = ’Matern-3_2’;

myKriging_LF = uq_createModel(KOptions_LF);

Using the same configuration options, another Kriging surrogate is computed

using the high-fidelity dataset (XED_HF and YED_HF):

% Create the high-fidelity surrogate

KOptions_HF.Type = ’Metamodel’;

KOptions_HF.MetaType = ’Kriging’;

KOptions_HF.ExpDesign.X = XED_HF;

KOptions_HF.ExpDesign.Y = YED_HF;

KOptions_HF.Corr.Family = ’Matern-3_2’;

myKriging_HF = uq_createModel(KOptions_HF);
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Now a hierarchical Kriging surrogate is computed which is trained on the high-

fidelity dataset but uses the low-fidelity Kriging surrogate (i.e. its mean predictor)

as trend:

% Create the hierarchical Kriging surrogate

KOptions_Hier.Type = ’Metamodel’;

KOptions_Hier.MetaType = ’Kriging’;

KOptions_Hier.ExpDesign.X = XED_HF;

KOptions_Hier.ExpDesign.Y = YED_HF;

KOptions_Hier.Corr.Family = ’Matern-3_2’;

KOptions_Hier.Trend.Type = ’custom’;

KOptions_Hier.Trend.CustomF = @(x) uq_evalModel(myKriging_LF, x);

KOptions_Hier.Scaling = false;

myKriging_Hier = uq_createModel(KOptions_Hier);

The option KOptions_Hier.Scaling refers to the scaling of the input space before

computing the surrogate model. In case of hierarchical Kriging scaling should be

disabled because the low-fidelity surrogate is calculated on the original data and

needs to be used “as is”.

The performance of the different surrogate models is tested on a separate vali-

dation set of 150 high-fidelity simulations that is contained in the variables XVAL_HF

and YVAL_HF. The output mean Kriging predictor on the validation set is calculated

as follows:

meanY_LF = uq_evalModel(myKriging_LF, XVAL_HF);

meanY_HF = uq_evalModel(myKriging_HF, XVAL_HF);

meanY_Hier = uq_evalModel(myKriging_Hier, XVAL_HF);

where meanY_LF, meanY_HF and meanY_Hier correspond to the low-fidelity, high-

fidelity and hierarchical Kriging predictors respectively.

In Figure 6 a comparison of the true model output YVAL_HF versus the mean

Kriging predictors is made. In each case the Root Mean Square Error (RMSE) is

reported for quantifying the predictive performance of the surrogate:

ERMSE =
1

NVar [Y ]

N∑

i=1

(
Y (i) − µ(i)

Ŷ

)2
(25)

where Y denotes the true model outputs (in this case YVAL_HF), µ
Ŷ

the Kriging

predictor mean (in this case variables meanY_LF, meanY_HF and meanY_Hier for each

surrogate, respectively) and N the number of samples in the validation set.

In this example, by taking advantage of the low-cost, low-fidelity observations,

the hierarchical Kriging predictor achieves a 68% decrease of the RMSE on the
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validation set compared to the Kriging model that was solely based on the high-

fidelity measurements. Moreover, by inspecting the mean responses of each Kriging

predictor in Figure 6 it is clear that the hierarchical Kriging surrogate significantly

reduces the prediction bias compared to the low- and high-fidelity ones taken as

standalone. As demonstrated by this application, building a hierarchical Kriging

surrogate model requires minimal effort thanks to the customisability of the GP-

module.

4.3 Kriging with custom correlation function

This example illustrates how the correlation function customisation capabilities of

the GP-module can be used to apply Kriging in a non-standard setting.

Consider the discontinuous subsurface model given in Figure 7, which may rep-

resent the distribution of some soil property (e.g. porosity) in the presence of a

fault. The true model consists in two realisations of two distinct random processes

on the two regions A1 and A2 at the left and right of the fault, respectively:

Figure 7: Graphical visualisation of the subsurface model. The unknowns

(length scales of each random field and the fault angle) are denoted by red

colour.

M(x) =

{
Z1(x, R(θ1)), x ∈ A1

Z2(x, R(θ2)), x ∈ A2

(26)

where x = {x1, x2} represents the spatial coordinates in the 2D domain, Z1

(resp. Z2) are realisations of a Gaussian process characterised by a correlation

function with length scales θ1 = {θ11, θ12} (resp. θ2 = {θ21, θ22}).
A Kriging surrogate model will be calculated using the following correlation

function:
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R(x,x′;θ) =





R(x,x′; θ̂1), (x,x′) ∈ A1 ×A1

R(x,x′; θ̂2), (x,x′) ∈ A2 ×A2

0 otherwise

(27)

where θ = {θ1,θ2, α}. There is a smooth dependence on x1, x2 within each

region, but no correlation between points that belong to different regions. The

boundary between the two regions is fully defined by the crack angle, α, which is

unknown and the fault location that is assumed to be known ({x1, x2} = {0.6, 1}).
The goal here is to use Kriging to interpolate the measurements taken at bore-

hole locations A,B and C and estimate the 5 unknown parameters θ = {θ1,θ2, α}.
The correlation function of each region is the same, both in the true model and the

Kriging surrogate, i.e. it is assumed to be known. In particular, the correlation func-

tion is separable Matérn 3/2 (see Eq. (13) and Table 2). The maximum-likelihood

method is selected for estimating θ. Due to the complexity of the underlying opti-

misation problem a hybrid genetic algorithm with a relatively large population size

and maximum number of generations is selected.

A Matlab implementation of the correlation function in Eq. (27) is given in

Appendix A. This Matlab function is called my_eval_R in the following code

snippet.

The Kriging surrogate is created next, based on a limited set of observations

contained in the variables BoreholeLocations and BoreValues, which contain the

locations of the measurements along the boreholes and the value of the desired

property, respectively.

Figure 8: From left to right: The true permeability of the soil, followed by

the mean and standard deviation of the Kriging predictor. The experimental

design is illustrated by red dots.

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;
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KOptions.ExpDesign.X = BoreholeLocations;

KOptions.ExpDesign.Y = BoreValues;

KOptions.Corr.Handle = @my_eval_R;

% Add upper and lower bounds on the optimization variables

BoundsL = [0.3 0.1 0.3 0.1 pi/6] ;

BoundsU = [0.9 0.5 0.9 0.5 5*pi/6] ;

KOptions.Optim.Bounds =[BoundsL ;BoundsU];

KOptions.Optim.Method = ’HGA’;

KOptions.Optim.HGA.nPop = 60;

KOptions.Optim.MaxIter = 50;

KOptions.EstimMethod = ’ML’;

KOptions.Scaling = False;

myKriging = uq_createModel(KOptions);

Once the Kriging metamodel has been computed, the mean and standard devi-

ation of the Kriging predictor can be quickly visualised for 1D and 2D models using

the uq_display command, which produces a plot similar to Figure 8, except in a

smaller domain determined by the range of the points in the experimental design. A

comparison between the true and the estimated values of θ is given in Table 4. As

expected, the accuracy of the hyperparameters estimation is low due to the limited

dispersion of the experimental design. The error of the length scale estimates along

the x1 direction is consistently larger due to the lack of samples along that direc-

tion. From a coding perspective, although the correlation function that is used is

relatively complex, it is straightforward to use in a Kriging surrogate once coded as

a Matlab function (by setting the KOptions.Corr.Handle value appropriately).

Moreover, custom correlation functions are allowed to have an arbitrary number of

hyperparameters. The only requirement is that the optimisation bounds (or initial

value, depending on the optimisation method that is used) must have the same

length as the number of the hyperparameters.

5 Summary and Outlook

In this paper the GP-module of the UQLab software framework was presented.

This UQLab module enables practitioners from various disciplines to get started

with Kriging metamodelling with minimal effort as was illustrated in the introduc-

tory application in Section 4.1. However, it is also possible to access more advanced

customisation, e.g. for research purposes. This was showcased in Section 4.2 where a

hierarchical Kriging metamodel was developed and in Section 4.3 where a relatively

complex, non-stationary correlation function was used to solve a geostatistical in-
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verse problem. The GP-module is freely available to the academic community since

the first beta release of UQLab in July 2015.

The current version of the GP-module only allows for computing Kriging models

on noisy data by explicitly providing the noise level via the nugget effect. The

general case where the noise level is unknown and needs to be estimated (a.k.a.

Gaussian process regression) is currently under development and will be addressed

in an upcoming release. In addition, the current version of the GP-module relies

on additional Matlab toolboxes for performing the hyperparameter optimisation.

This may be a limiting factor to some users.

In addition to the modules currently exploiting its functionality (Polynomial

Chaos-Kriging and Reliability analysis (Marelli et al. 2017, Schöbi et al. 2017)), new

UQLab modules that interface with the GP-module are currently under active de-

velopment. The upcoming random fields module will offer several random field types

(conditional and unconditional) together with advanced sampling methodologies

and will be interfaced with the GP-module to offer trajectory resampling capabili-

ties. Similarly, the upcoming Reliability-Based Design Optimisation (RBDO) mod-

ule uses the surrogate modelling capabilities of the GP-module for solving RBDO

problems as described in Moustapha et al. (2016).

A Kriging with custom correlation function:

implementation details

The aim of this section is to provide some additional implementation details on

the application example in Section 4.3, in terms of the Matlab code involved.

The correlation function described in Eq. (27) can be translated to the following

Matlab function:

function R = my_eval_R( x1,x2,theta,parameters )

xc = 0.6; % the x-location of the crack on the surface

yc = 1 ; % the y-location of the crack on the surface

length_scales_1 = theta(1:2);

length_scales_2 = theta(3:4);

crack_angle = theta(5) ;

% find the angles of each sample of x1

angles_x1 = acos( (xc - x1(:,1))./sqrt((x1(:,1) - xc).^2 + ...

(x1(:,2) - yc).^2 ) );
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% find the indices of x1 that belong to first region

idx_x1_1 = angles_x1 <= crack_angle;

% find the indices of x1 that belong to second region

idx_x1_2 = ~idx_x1_1;

% find the angles of each sample of x2

angles_x2 = acos( (xc - x2(:,1))./sqrt((x2(:,1) - xc).^2 + ...

(x2(:,2) - yc).^2 ) );

% find the indices of x2 that belong to first region

idx_x2_1 = angles_x2 <= crack_angle;

% find the indices of x2 that belong to second region

idx_x2_2 = ~idx_x2_1;

% set-up various correlation function options so that we can re-use the

% build-in UQLab function for evaluating R in each region

CorrOptions.Type = ’separable’;

CorrOptions.Family = ’Matern-3_2’;

CorrOptions.Isotropic = false;

CorrOptions.Nugget = 1e-2;

% initialize R matrix

R = zeros(size(x1,1), size(x2,1));

% Compute the R values in region 1

R(idx_x1_1,idx_x2_1) = uq_Kriging_eval_R( x1(idx_x1_1,:), x2(idx_x2_1,:), ...

length_scales_1, CorrOptions);

% Compute the R values in region 2

R(idx_x1_2,idx_x2_2) = uq_Kriging_eval_R( x1(idx_x1_2,:), x2(idx_x2_2,:), ...

length_scales_2, CorrOptions);

end

The provided code, although vectorised, is optimised for readability and not perfor-

mance. To that end, the internal function of the GP-module uq_Kriging_eval_R

is used for calculating the correlation function value in each of the regions.
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Feature Specification Value Description

Trend Simple A constant term specified by the

user (simple Kriging)

Ordinary A constant term estimated using

Eq. (8) (ordinary Kriging)

Polynomial basis The trend in Eq. (12) consists of

polynomial basis functions fk of ar-

bitrary degree

Custom basis The trend in Eq. (12) consists of

arbitrary functions fk

Custom trend Custom trend function that com-

putes F directly

Correlation Types Separable As described in Eq. (13). Both

isotropic and anisotropic variants

are supported.

Ellipsoidal As described in Eq. (14). Both

isotropic and anisotropic variants

are supported.

Custom Custom correlation function that

computes R directly

Families Commonly used All the correlation families re-

ported in Table 2 are available

Custom A custom correlation family can be

specified

Estimation ML Maximum-likelihood estimation

(see Eq. (19))

CV K-fold Cross-Validation method

(see Eq. (21)). Any K value is sup-

ported

Optimisation BFGS Gradient-based optimisation

method (Broyden-Fletcher-

Goldfarb-Shanno algorithm).

Matlab built-in

GA Global optimisation method (ge-

netic algorithm). Matlab built-in

HGA Genetic algorithm optimisation

with BFGS refinement

Table 3: List of features of the UQLab GP-module. The default values for each property

is in bold.
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Parameter θ11 θ12 θ21 θ22 α

True value 0.600 0.250 0.900 0.350 1.309

Estimated value 0.310 0.271 0.310 0.374 1.342

Relative error (%) 48.3 8.2 65.6 6.9 2.5

Table 4: Listing of the true and estimated correlation function parameters, θ, for the

Kriging surrogate of the subsurface model.
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