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Abstract

Rice crops are important in the global food economy, and new techniques are being

implemented for their effective management. These techniques rely mainly on the changes in

the phenological cycle, which can be investigated by remote sensing systems. High frequency

and high spatial resolution Synthetic Aperture Radar (SAR) sensors have great potential in

all-weather conditions for detecting temporal phenological changes. This study focuses on a

novel approach for growth stage determination of rice fields from SAR data using a parameter

space search algorithm. The method employs an inversion scheme for a morphology-based

electromagnetic backscattering model. Since such a morphology-based model is complicated

and computationally expensive, a surrogate metamodel-based inversion algorithm is proposed

for the growth stage estimation. The approach is designed to provide estimates of crop

morphology and corresponding growth stage from a continuous growth scale. The accuracy

of the proposed method is tested with ground measurements from Turkey and Spain using

the images acquired by the TerraSAR-X (TSX) sensor during a full growth cycle of rice

crops. The analysis shows good agreement for both datasets. The results of the proposed

method emphasize the effectiveness of X-band PolSAR data for morphology-based growth

stage determination of rice crops.

1 Introduction

Temperate climatic conditions with easy access to water sources provide optimum conditions

for rice cultivation. In the history of agricultural practices, rice farming goes back to

almost 8000 BC. Currently, rice is a major source of income for the rural communities all

around the world. According to the International Rice Research Institute (IRRI), worldwide

rice production totaled 969 million tons in 2010 GRiSP (Global Rice Science Partnership)

(2011). Frequent and efficient monitoring strategies are necessary for the optimization of

economic competitiveness and the estimation of the associated environmental impacts (e.g.,
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methane emissions). Concerning these issues, researchers have focused on finding sustainable

monitoring methods for agricultural fields.

In the last decade, remote sensing techniques have frequently been used as a viable method

to monitor agricultural areas Atzberger (2013); Mulla (2013). To this end, two main data

sources are presented: optical and Synthetic Aperture Radar (SAR) systems. Optical systems

measure reflected sunlight and provide spectral properties of their targets. Additionally, due

to short wavelengths (λ < 2500 nm), they are mainly susceptible to atmospheric factors.

On the other hand, SAR systems are superior compared to optical systems concerning their

temporal coverage with their “all-weather” day and night imaging capability. Furthermore,

they play a significant role in environmental monitoring with their sensitivity to the physical

alterations in monitored objects. However, to provide a clear explanation of such changes,

one has to understand the relation between the object and the backscattered energy in SAR

systems. This relation can be a complex interaction between the object and the sensor

parameters including frequency, polarization setting and incidence angle.

The selection of appropriate sensor parameters is crucial for agricultural monitoring.

For instance, with SAR systems, one should match the size of the structural parts of the

crops with the available wavelength (frequency) of the system to identify the effects of

morphological changes. Furthermore, the use of different frequencies and incidence angles

changes the scattering behavior and the attenuation of the waves inside the canopy Lim

et al. (2007). Thus, in crop monitoring, high-frequency (f > 5 GHz), in other words low

wavelength (λ < 6 cm), systems are expected to be more sensitive to morphological changes

than low-frequency systems.

Several studies monitoring paddy rice fields show that plant morphological structures have

a high correlation with the backscattering behavior of high frequency electromagnetic (EM)

waves Ulaby et al. (1984); Bouman (1991); Inoue and Sakaiya (2013); Inoue et al. (2014);

Rossi and Erten (2015); Yuzugullu et al. (2017); Erten et al. (2017). There are currently

two mainstream approaches to monitor crops, namely backward and forward. The first class

of approaches is based on the statistics of the polarimetric parameters Shao et al. (2001);

Sakamoto et al. (2005); Lopez-Sanchez et al. (2012); Inoue et al. (2002); Koppe et al. (2013);

Vicente-Guijalba et al. (2014); Lopez-Sanchez et al. (2014); Ribbes (1999); Yonezawa et al.

(2012); Inoue et al. (2014); Erten et al. (2015). Among these, Inoue et al. (2002, 2014) have

completed the most comprehensive work to date by observing the full phenological cycle

with different frequencies, polarizations and incidence angles. Such methods also depend on

several factors including temporal variations in the structural density, type of crop or the

use of seeds with different genotypes. In the literature, similar temporal trends have been

observed for polarimetric descriptors during the phenological cycle, such as intensity, entropy,

alpha and phase differences Inoue et al. (2002); Lopez-Sanchez et al. (2012). The statistical

classification methods in the literature are cost-effective and easy to implement. However,
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the high dynamic range of the polarimetric parameters makes it not trivial to develop widely

applicable approaches that cover the full growth period in different locations. Consequently,

current thresholding-based statistical methods need to be adjusted for each new monitoring

campaign depending on the region of the world in which they take place. Additionally, they

usually require a full-time series for each new campaign. Therefore, most of the current

statistical methods are not capable of explaining the growth cycle of rice crops in different

areas while avoiding high training costs.

Unlike the statistical ones, the second class of approaches is based on the scattering

behavior of an EM wave inside the canopy. This behavior can be explained by analytical

relations between the crop physical structure (i.e., morphology) and the backscattering

coefficients Toan et al. (1997); Stiles and Sarabandi (2000); Bouman et al. (1999); Koay

et al. (2007); Wang et al. (2005). Such backscattering models take the plant morphology as

input and provide the scattering properties of the EM wave (i.e., backscattering coefficients)

as output Lin and Sarabandi (1999). Since they consider the geometrically-simplified crop

morphology, they usually have sophisticated mathematical algorithms. With such a level of

complexity, knowing the sensitivity of the model outputs on the input parameters is essential

to understand the dynamics of the model. Global Sensitivity Analysis (GSA) provides the

necessary quantitative tools to assess it properly Sobol (1993); Sudret (2008). However, the

implementation of GSA can result in high computational costs due to the large number of

model evaluations needed in standard sampling-based approaches Sobol (1993). An effective

strategy to significantly reduce this computational burden is by using Polynomial Chaos

Expansion (PCE), a surrogate modeling technique that has exceptional convergence properties

for the estimation of Sobol indices for complex models Sudret (2008). It reduces the total

computational cost to that of its training set, which is typically relatively small. Therefore,

PCE makes GSA computationally efficient. Finally, after the assessment of the importance of

model parameters, it is possible to develop an inversion scheme for the crop morphology from

polarimetric observations. Despite their higher complexity (mathematical and computational),

inverse methods have the potential to provide a much deeper insight into the actual growth

stage of a crop field, as they take into account the quantitative interaction between the plants

and the EM field. Additionally, they can provide a continuous estimate of the growth stage,

because they are directly sensitive to the underlying plant morphology.

An incoherent EM backscattering model Toan et al. (1997) is chosen for this study. The

model considers a simplified plant morphology with a higher number of unknowns than the

number of measurables. For such an ill-posed problem, an analytical inversion approach

is infeasible. Furthermore, the presence of speckle noise in the measured intensity data

makes pixel-sized inversion algorithms less efficient. In this paper, a parameter search space

algorithm combined with a PCE surrogate of the full EM model is considered as a powerful

option to handle these issues for the model inversion scheme.
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This article proposes a new and effective method to determine the growth stage of flooded

and broadcast-sown rice fields in large-scale cultivation areas using Polarimetric SAR (PolSAR)

data. Apart from the previously-mentioned growth phase determination methods for the

rice fields, the proposed method focuses on the effect of the changes in crop morphology on

the polarimetric backscattering intensities during the phenological cycle. It extends the a

priori growth phase information with an EM backscattering model in a computationally-

efficient framework. The EM model inversion consists of a PCE-based parameter space search

algorithm. Finally, the results are combined to determine the growth stage of the field from

its morphology.

The paper provides the theory behind the proposed inversion approach in detail along

with concise information about PCE metamodels and GSA in Section 2. Section 3 covers

the test areas with the ground measurements and TerraSAR-X (TSX) campaigns. Section 4

presents the main results of GSA and growth stage estimation. Section 5 summarizes the

work with an overall view on the proposed growth stage estimation approach in the context

of precise agriculture.

2 Growth Stage Determination

Understanding the growth phases of the rice growth cycle is crucial in explaining their effect

on the SAR system responses. The most common rice cultivation practice begins by flooding

the fields several weeks before sowing. There are two main planting methods: transplanting

and broadcasting. In transplanting, the seedlings are prepared and then transplanted to the

fields to provide regular spacing between the plants. On the contrary, with broadcast sowing,

the seeds are thrown on the flooded fields, resulting in spatial morphological heterogeneity

GRiSP (Global Rice Science Partnership) (2011).

Three significant growth periods can be identified in rice cultivation: vegetative,

reproductive and maturative. The full cycle takes between 120–150 days depending on

agricultural and environmental factors. In the literature, the rice growth cycle is defined by

two distinct scales: International Rice Research Institute (IRRI) GRiSP (Global Rice Science

Partnership) (2011) and Biologische Bundesanstalt, Bundessortenamt und CHemische

Industrie (BBCH) Lancashire et al. (1991). The IRRI scale divides the growth cycle into five

phases, while the BBCH scale uses 100 stages between 0 and 99. A general overview of the

growth cycle is presented in Figure 1 with sample morphologies. In this research, the IRRI

scale is chosen as the a priori growth phase information.

• Vegetative period: The crops increase in height and structural density, depending on

several factors such as soil properties, temperature and seeding density. The stalk

orientation stays mostly vertical. Since the plants are structurally weak, the duration

of this period strongly depends on the environmental conditions and the genotype of
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Figure 1: Growth cycle of a rice plant with the corresponding International Rice Research

Institute (IRRI), Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH)

scale and sample structure.

the crops.

• Reproductive period: As the plants become stronger, they become less sensitive to the

environmental stresses. Plant height and density continue to increase heterogeneously

together with increasing wet biomass, which leads to varying orientation in leaves and

stalks due to increasing weight. The flag leaf forms through the end of the period.

• Maturative period: Excess water in the fields is drained, leading to a reduction in plant

total biomass due to lower moisture content. Grains become more mature and heavier.

In this study, the growth stages of the fields are determined using the approach shown in

Figure 2. This method uses three different inputs: PolSAR data, growth information and the

backscattering (EM) model. PolSAR data are used in two steps of the algorithm: feature

clustering of polarimetric parameters for BBCH assignment and the parameter space search

algorithm. Phenological data with a priori growth phase information are used for determining

the growth boundaries and trends and training a first PCE metamodel that predicts the

BBCH scale based on the available morphological parameter (PCEBBCH). The backscattering

model is then surrogated by an additional PCE metamodel for each of the various growth

phases (PCEEM). Later, the outputs of the feature clustering, PCEEM and growth trends as

natural limitations are integrated into the parameter search space algorithm. Finally, the

growth stages are estimated using clustered PolSAR data and the PCEBBCH.

2.1 Backscattering Model

In this study, the canopy is modeled as uniformly-distributed individual plants over a half

space that represents the flooded ground used in broadcast seeding. The backscattering

coefficients are estimated using the first order solution of the radiative transfer equation.

The chosen model provides a structural description of the plants including their simplified

crop morphology (e.g., stalks, tillers, leaves and panicles). The model also includes the

backscattering enhancements and resulting wave clustering effects from the scatterers Toan
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Figure 2: Block diagram of the proposed approach.

et al. (1997). The resulting backscattering intensities are estimated for different polarimetric

channels by performing Monte Carlo (MC) simulations using Foldy–Lax multiple scattering

equations Tsang et al. (1995).

In the simulations, rice plants with vertically-oriented stalks are placed randomly in a unit

area A, as in broadcast seeding. The locations of the plants are randomized automatically in

each iteration of the MC simulation to provide spatial heterogeneity. Inside A, there are ns

plants with nt tillers with average height hs and diameter ds. Each tiller has nl leaves with

length ll and width wl and np panicles with length lp and width wp. The complex dielectric

constants are εs,l for all plant structures (e.g., tillers, leaves and panicles) and εg for the

underlying ground.

Figure 3: The scattering mechanisms involved in the chosen EM model.

The current first order solution of the electromagnetic scattering problem considers four

major scattering mechanisms (Pn), visualized in Figure 3:

1. Direct scattering from the scatterers

2. Scattering from the canopy followed by reflection from the ground

3. Reflection from the ground followed by scattering from the canopy

4. Reflection from the ground followed by scattering from the canopy, again followed by

reflection from the ground:
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The top surface of the canopy is indicated as z = 0 and the underlying surface as z = −h.

It is possible to model the behavior of an incident wave Ēi in the direction (θi, φi), of the

incidence and look angle, using (1). The model follows the finite cylinder approximation

Karam and Fung (1988); Karam et al. (1988) for stems, tillers and panicles and the physical

optics approximation Karam and Fung (1989) for leaves. Additionally, the model variables

are listed as: type of the morphological structure, t ; scattering matrix element where q and p

are polarization channels (q, p for H,V) for scattered and incident waves, f tqp; propagation

vector of the incident and scattered wave, k̄i,sp ; Fresnel reflection coefficients, Rp(θ) and Rq(θ).

Lastly, the effect of the attenuation due to mixed structural scatterers inside the canopy is

considered by the Mqp term:

Mqp =
i2πnsnt
k0Ah

(〈f tillerqp 〉+ nl〈f leafqp 〉+ np〈fpanicleqp 〉) (2)

where the angular brackets represent configurational average, h is the height of the canopy and

k0 is the free space wave number. Structural location vectors are given as: kix = k0sinθicosφi,

kiy = k0sinθisinφi, k
i
z = k0cosθi. The backscattering coefficients for the polarimetric channel,

qp, are estimated from the ratio between the amplitudes of the scattered and incident electrical

waves (3).

σoqp =
4πr2

Ai

〈|Esq |2〉
|Eip|2

(3)

where Ai is the illuminated area and r is the distance between the sensor and the target. For

the MC simulation, the backscattering coefficients are averaged over 200 realizations.

2.2 Polynomial Chaos Expansion and Global Sensitivity Analysis

Sparse polynomial chaos expansions (PCE) are a well-known technique in the uncertainty

quantification literature, and they are well suited to inversion problems. Compared to other

surrogate modeling techniques such as Gaussian process modeling (also known as kriging,

Thomas J. Santner (2013)) or support vector regression Vapnik (1995), they are particularly

well suited for the solution of inverse problems. Indeed, their global approximation character

combined with the strict relation they share with Sobol variance decomposition Sudret (2008);
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Marelli and Sudret (2015), as well as and their built-in error estimators can be directly applied

to assess the identifiability of parameters in inverse problems.

2.2.1 Polynomial Chaos Expansion

To reduce the high costs associated with the MC simulation of morphology-based scattering,

the computational model can be substituted with a metamodel, a computationally inexpensive

analytical approximation of the full computational model. Due to its versatility and relatively

low training costs, sparse PCE Blatman and Sudret (2010) is an ideal candidate. PCE is a

spectral decomposition technique that allows one to represent a finite-variance scalar-output

function Y = M(ξ) as:

Y =M(ξ) =

∞∑

j=0

ajΨj(ξ) (4)

where ξ ∈ RM is the random vector of morphological parameters, aj ∈ R is a set of scalar

coefficients and the Ψj(ξ) ∈ R form a polynomial orthonormal basis with respect to the

functional scalar product (expectation value):

〈g(ξ)h(ξ)〉 =

∫

Dξ

g(ξ)h(ξ)fξ(ξ)dξ (5)

where Dξ is the support of ξ and fξ(ξ) the Probability Density Function (PDF) of the input

random vector ξ. Due to the linearity of Equation (4), the aj coefficients can be

non-intrusively and efficiently calculated using compressive-sensing-based least-square

minimization techniques (e.g., least angle regression-based selection Blatman and Sudret

(2010)) from a training set of full model evaluations of M(ξ). The size of the training set

determines the maximal complexity and the accuracy of the resulting metamodel. PCE was

implemented in MATLAB® within the UQLab framework Marelli and Sudret (2014, 2015).

2.2.2 Global Sensitivity Analysis: Sobol Indices

GSA allows one to quantify the effect of the variability of each of the input parameters in ξ on

the variability of the model response M(ξ). A widely-accepted global sensitivity measure in

the uncertainty quantification literature is given by the variance-decomposition-based Sobol

indices Sobol (1993).

The basic form of variance decomposition consists in representing a computational model

M(ξ) as a sum of functions depending only on increasingly larger subsets of the input vector

ξ as follows:

M(ξ) =M0 +
M∑

i=1

Mi(ξi) +
∑

i 6=j
+...+M12...M (ξ1, ξ2, ..., ξM ) (6)

where theMij...s are scalar functions depending on the subset of input variables {ξi, ξj , ..., ξs}.
In Sobol Sobol (1993), it is demonstrated that such a decomposition exists for every finite-

variance functional and that it is orthonormal, hence yielding unique coefficients. Sobol

indices are defined as the ratio of the variance of each term Dij...s in Equation (6) to the

total variance D:
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Sij...s = Dij...s/D. (7)

It is demonstrated that a close relation exists between variance decomposition and PCE

coefficients, which allows for the calculation of Sobol indices directly from the PCE coefficients

aj without the need for additional sampling Sudret (2008). Therefore, the total costs of the

GSA reduce to the calculation of the PCE training set.

2.3 Feature Clustering for BBCH Assignment

Agricultural fields are known to have spatial morphological heterogeneity due to growth

competition. This condition is observed mostly in fields with broadcast seeding practices.

Therefore, this structural heterogeneity is also expected for all growth stages at any time t in

a field. The definition of the BBCH scale takes this heterogeneity into account and states

that BBCH growth stage assignment must be done on the dominant morphology within the

field Lancashire et al. (1991). In other words, the assigned BBCH value of a field has to

represent at least 50% of all crops. Due to the same growth stage and similar morphology,

crops are expected to have similar polarimetric scattering behaviors. Thus, to provide this

requirement for the BBCH value assignment, the PolSAR data are clustered to obtain the

smallest group with 50% of the samples using the well-known K-means algorithm in the space

of statistically independent PolSAR parameters (i.e., σoHH, σoVV and ρ). Details about the

clustering methodology are given in Yuzugullu et al. (2015).

2.4 Parameter Space Search Algorithm

The proposed solution is designed as a constrained optimization problem by considering the

ill-posed condition of the scattering model. In the literature, there are two different ways

to handle similar optimization problems: deterministic and distribution-based approaches.

The former approach converges to a single optimum value Smith (1995), whereas the latter

converges to a distribution of values Dupacova (2013). In this case, because SAR data have

high variance, mainly due to speckle noise, a method that converges to a single intensity

value would be ineffective. Especially for deterministic methods, the presence of variance

reduces the rate of convergence and increases the degree of classification error. On the

other hand, distribution-based approaches are capable of handling problems with different

levels of variance. The proposed parameter search space algorithm links the a priori IRRI

growth phase (i.e., phase S) and the backscattering model Toan et al. (1997). The proposed

parameter space search approach follows the flow scheme given in Figure 4.

The method starts with the simulation of the parameter space using the growth-phase-

specific PCEEM. At this step, the growth phase, S, also determines the parametric range

(min-max) of the morphological descriptors. The corresponding parameter space, PS , can

be visualized as a hyper-grid (8). For any S, the coordinate of a single point in the grid has

the information to define a rice canopy with morphology and structural density. However,
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Figure 4: Block diagram of the proposed parameter space search algorithm.

the biologically-impossible structures present in the data cloud of the ground measurement

database need to be eliminated. For this purpose, the PS is constrained using the convex-

hull method based on the morphological growth information, which was collected from the

literature and ground campaigns.

PS = ( ~hs
S
, ~ds

S
, ~nt

S , ~ll
S
, ~wl

S , ~nl
S , ~lp

S
, ~wp

S , ~np
S) (8)

After preparing the PS , the PCEEM is used to simulate PS and obtain the corresponding

observable spaces for each polarimetric channel OSqp, including the backscattering intensities.

The fitness function of the distribution-based optimization problem in a constrained parameter

space is given by:

minZσ =
[E(σqp −OSqp)]2

Number of qp combinations
(9)

In (9), the σqp and E (•) represent the measured backscattering intensity and the expected

value of the difference between measured and observable SAR intensities, respectively. In the

proposed method, there are two constraints on the PS , which explain the relation between

PS and OSqp.

1. Backscattering intensity: Each OSqp covers a wide range of intensities based on the

corresponding morphologies in the PS . However, the intensity values obtained from the

SAR data only cover a small range of OSqp. In order to consider the spatial heterogeneity

of the field, the mean (µσqp
) and standard deviation (νσqp

) of the measured backscattering

intensities are calculated for each data cluster of polarimetric channels. Each OSqp is
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then bounded according to the intensity constraints given by (10).

Cqp = OSqp[µσqp
− 2νσqp

, µσqp
+ 2νσqp

] (10)

The confined observable space Cqp has the same dimensionality as OSqp, but fewer samples.

The link between the OSqp and PS is used to select the corresponding morphologies from

the PS for each polarimetric channel to obtain the constrained parameter spaces, Bqp.

Thus, the morphological structures that are included in each Bqp have a similar σqp

with respect to the measured SAR intensity values.

2. Morphological consistency: In PolSAR data, a particular intensity value may correspond

to different physical structures. This constraint resolves the ambiguity by taking the

intersection of all Bqp sets of each N polarimetric channels as seen in (11).

I =

N⋂

i=1

Biqp = B1
qp ∩ B2

qp ∩ B3
qp ∩ . . . (11)

The resulting set I includes the multidimensional parameter distributions for the nine

inputs in (8). The morphology vectors are kept intact to preserve the plant morphologies

for the last step of the analysis.

2.5 Assignment of Growth Stages by PCEBBCH

The last step of the proposed approach considers the sample distribution of resulting

morphologies that are included in set I. Since the BBCH stage is not physically measurable

and strongly subjective, there is a need for a relation between morphological parameters and

the BBCH stage. This link has a complex and non-linear behavior. Moreover, subjective

decision criteria of the BBCH scale lead to a high degree of variation due to the variation in

biophysical parameters. Therefore, PCEBBCH is trained by taking samples from the

morphological measurements as input, X, on the corresponding BBCH stages as output, Y.

This metamodel is then used to estimate the BBCH stages (BBCHest) for the set of I.

Finally, the growth stage of the field is determined by calculating the mode of the

distribution of BBCHest.

3 Ground Campaign and SAR Data

3.1 Test Area and Ground Measurements

This study was carried out in two independent rice cultivation sites located in Spain and Turkey.

Figure 5 shows the location of the fields. Both sites are sowed by the broadcast technique

over the flooded ground. Figure 6 summarizes the timeline of the ground measurements and

SAR acquisitions for both datasets with IRRI phases.
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Figure 5: Study areas with white framed test fields: (a) Isla Major, Spain, and (b) Ipsala, Turkey.

Figure 6: Accordance plot of SAR acquisition and ground measurement dates (day of year) given

with color-coded IRRI stages for both test sites.

Isla Major, Spain The site is located in the Isla Major region, South of Seville, centered

at N37°7′53′′ and E6°19′32′′. The region has a flat topography and covers an area with

an average radius of 20 km. The ground campaign was conducted in 2009 to measure the

phenological stage, canopy height, plant and tiller density for the whole cultivation period

(May–October). Figure 5 (a) presents the location of the test area and the fields that were

chosen for the ground measurements.

Ipsala, Turkey The site is located in the Thrace region, North West of Istanbul, centered

at N40°47′59′′ and E26°13′14′′. The region has a flat topography and covers an area with

an average radius of 15 km. The ground campaign was conducted in 2014 to measure the

phenological stage, morphological parameters (stalk diameter and length, leaf width and

length), plant, tiller and leaf density for the whole cultivation period (May–September).

Figure 5 (b) presents the location of the test area and the fields that were chosen for ground

measurements.

3.2 SAR Dataset

In this study, data from the TerraSAR-X (TSX) mission are used. It operates at a central

frequency of 9.65 GHz with a wavelength of 31 mm. As an advantage to the other systems,

12



TSX allows frequent monitoring of environmental changes with a temporal resolution of

11 days. Therefore, it is one of the best options on the market for agriculture monitoring

purposes.

All data were acquired in descending strip map mode and processed by the German

Aerospace Center to the standard product Level 1b, i.e., single look complex (SLC) data (16-

bit) with a n~2-m pixel-size. Later, the data were co-registered by using bi-linear interpolation

with an average root mean squared (RMS) accuracy of 0.1 pixels. Before the analysis, multi-

looking was applied on the data with a boxcar of 11 × 11 pixels to reduce the speckle noise.

Figure 6 presents the acquisition plan of the dual polarization (HH and VV) SAR data with

a central incidence angle of 31° for both test sites.

4 Results and Discussion

In this paper, a stack of HH/VV dual-polarization descending TSX images over rice fields

located in Spain and Turkey was employed to check the effectiveness of the proposed

methodology. This section presents the GSA analysis of the EM backscattering model and

the accuracy assessments of the growth stage determination algorithm. Since the algorithm

has a stepwise scheme, the accuracy analysis is provided separately for each step. The

discussions about the analysis outcomes are given in their specific sub-sections.

Figure 7 presents the boundaries of six crop morphology parameters from the Ipsala 2014

campaign with their quantiles and max-min values for each growth phase, S. For the PS ,

boundaries are further extended by 5% as a safety factor to consider morphological anomalies,

such as over- or under-growth conditions.

4.1 Accuracy Assessment: Backscattering Model

In this study, the theoretical backscattering model estimates the HH and VV backscattering

intensities of the rice canopies, at a central frequency of 9.65 GHz and at an average incidence

angle of 31° to be consistent with the TSX beam. The effect of the variation in the incidence

and look angle during the acquisitions is assumed as constant along the scene.

Before applying the proposed inversion-based classification, GSA was used to identify

the parameters that most affect the backscattering coefficients; this step is known as model-

reduction. During this step, the sensitivity of the backscattering coefficients to environmental

parameters such as plant and ground dielectric values has been evaluated. The results are

reported in Table 1. The variability in both the real and imaginary parts of the dielectric

constants within the given boundaries ([22.0 + 6.0i∼30.0 + 10i] for the canopy and [60.0

+ 15i∼80.0 + 25.0i] for the ground) has a significantly low impact on the model response.

Indeed, the corresponding Sobol indices are much lower than, e.g., those of the stalk height

parameter. Therefore, the dielectric constants were kept constant during the analysis by
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Figure 7: Variation of biophysical parameters in different growth phases. Data are obtained from

the 2014 Ipsala ground campaigns. (a) Stalk height [cm], (b) Leaf length [cm], (c) Leaf count

[1/m2], (d) Stalk diameter [mm], (e) Leaf width [mm], (f) Tiller count [1/m2]

setting them to values based on Wang et al. (2005).

Table 2 summarizes the values of the parameters assumed to be constant during the

simulations of the ground measured data for the estimation of backscattering intensities. The

reported values of the parameters are determined either from the SAR settings or the existing

literature Toan et al. (1997). Constant parameters can represent the average properties of a

rice canopy compared to real environmental conditions.

Figure 8 shows the correlation between the results of the theoretical morphology-based

backscattering model from the simulation of the Ipsala ground measurements from 2014

and the acquired TSX data in dB. The results as the mean and standard deviation of the

estimated values are grouped into three available growth phases in two polarimetric channels,

i.e., HH and VV. In the corresponding figure, each growth phase is represented by a different

color and symbol. Good agreement is obtained between the SAR measurements and the

model simulations for both polarimetric channels.

There is clearly a strong correlation between measured and estimated backscattering

intensity values for both polarimetric channels. For the full dataset, the 2D coefficient of

determination (R2) and the root mean square error (RMSE) are calculated to be 87.1% and

2.02 dB for the HH channel and 84.6% and 1.91 dB for the VV channel. Additionally, when

the growth phases are considered separately, for the HH channel, the RMSE values of the

first three stages are calculated as 2.69, 1.83 and 1.96 dB, respectively. For the VV channel,

they are calculated as 2.21, 1.91 and 1.58. The implementation of the backscattering model
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Table 1: Calculated Sobol indices for the real and imaginary parts of the di-electric constant for

plants and the underlying ground.

E.Veg. L.Veg. E.Rep. L.Rep. Mat.

HH VV HH VV HH VV HH VV HH VV

hrstalk 0.753 0.934 0.361 0.398 0.473 0.446 0.411 0.576 0.223 0.595

εrstalk 0.009 0.008 0.007 0.006 0.006 0.007 0.001 0.002 0.003 0.005

εistalk 0.006 0.009 0.003 0.002 0.008 0.010 0.002 0.002 0.007 0.011

εrleaf 0.007 0.004 0.005 0.003 0.101 0.008 0.002 0.004 0.003 0.004

εileaf 0.003 0.008 0.002 0.003 0.008 0.003 0.006 0.005 0.006 0.005

εrpanicle - - - - - - 0.011 0.009 0.012 0.008

εipanicle - - - - - - 0.014 0.012 0.009 0.010

εrground 0.112 0.069 0.074 0.053 0.009 0.007 0.008 0.005 0.038 0.013

εiground 0.124 0.085 0.092 0.069 0.013 0.014 0.011 0.009 0.024 0.007

does not include the underlying surface nor the morphological 3D orientation information.

The underlying surface is assumed to be water all through the cultivation cycle with high

dielectric constant. The 3D orientation of the morphological components is neglected because

the model has been shown to provide reasonable accuracy even without their inclusion (see

Figure 8). Including the rotational parameters for each plant would result in additional

scatter of the EM response, comparable to the effect of the stochastic placement of the plants

in the area described in Section 2.1.

4.2 PCEEM and Global Sensitivity Analysis

A PCEEM is generated by preparing a sample of size 2000 of the full model for each of

the five growth stages identified previously, hence at a total training cost of 10,000 model

evaluations. Note that this is a one-time cost: after the PCEEM is trained, no new full model

evaluations are necessary to evaluate the PCEEM on new sets of morphological parameters.

The PCEEM surrogates the mean and the variance of the forward backscattering model of

the MC simulations in all polarimetric channels.

Regarding computational costs, the evaluation of the PCEEM is comparatively inexpensive.

In other words, while the original implementation of the backscattering model required

approximately 22 hours to calculate the response to 2000 simulations on a computer with

24 GB RAM and 8 cores, the PCEEM needed only 0.04 seconds with a single core on the

same hardware. Therefore, such an improvement allows increasing the size of the parameter
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Table 2: Input parameters that are kept constant for the backscattering model evaluations.

Parameter Value

Central frequency 9.65 GHz

Dielectric constant (εs,l) 25 + 8j

Dielectric constant (εg) 70 + 20j

Average incidence angle (θ) 31°

Look angle 90°

Distance to target 514 km

Illuminated area x-size 2.58 m

Illuminated area y-size 1.79 m

Number of MC iterations 200

Figure 8: The TSX measured versus the theoretical backscattering model (1) predicted HH and

VV channel backscattering intensities from the Ipsala 2014 campaign.

and the observable spaces significantly, which in turn enhances the variation in the crop

morphology input vectors.

Figure 9 shows the results of the accuracy and GSA of the PCEEM. The figure is

structured as an array with the first two rows visualizing the accuracy analysis and the

last row visualizing the GSA results. Each column corresponds to a growth phase with

all chosen crop morphological parameters. Accuracy analysis of the PCEEM is given with

a corresponding polynomial degree (P.Deg.), R2, RMSE and Leave-One-Out (LOO) error

Blatman and Sudret (2010). The results are discussed below in detail for each growth phase.

Early vegetative: For both polarimetric channels, the stage-specific PCEEM can approximate

the backscattering coefficients perfectly. For HH and VV channels, the R2 values are

calculated to be 99.4% and 98.3%, respectively. The estimated RMSE values are 0.25 dB
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and 0.34 dB for HH and VV channels, respectively. The GSA of the theoretical model

shows that stalk height is the primary source of the variance in the model output.

Besides, the sensitivity to the variation in stalk diameter is observed to be stronger in

the HH channel.

Late vegetative: During this stage, the significant growth in the plants increases the dynamic

range of the intensity values in both polarimetric channels. This variance is also detected

in the stage-specific PCEEM outputs. The results of the accuracy analysis show that

R2 and RMSE values are calculated to be 89.2% and 1.78 dB for HH and 83.5% and

1.93 dB for the VV channel. GSA shows that the major source of the variance in the

model output originates from the stalk height, stalk diameters and the number of tillers.

In addition, the HH channel is slightly more sensitive to stalk density compared to the

VV channel.

Early reproductive: As the plant enters this phase, head leaves and panicles are observed.

The accuracy assessment of the PCEEM reports the R2 and RMSE for the HH channel

as 89.1% and 0.94 dB and the VV channel as 80.0% and 0.97 dB. Concerning GSA,

the model is observed to be sensitive to stalk height in both polarimetric channels.

Additionally, the HH channel is sensitive to the changes in the number of tillers. On the

other hand, the VV channel is found to be sensitive to the variation in panicle width

and number of panicles.

Late reproductive: For each polarimetric channel, the accuracy assessment of the stage-

specific PCEEM provides R2 and RMSE values as 81.9% and 0.95 dB for the HH

channel and 89.9% and 0.56 dB for the VV channel. For the GSA, the source of the

model variability is related to the changes in stalk height for both polarimetric channels.

Furthermore, the number of tillers and the number of panicles are other sources of

variability for the HH and VV channels, respectively.

Maturative: During the last stage of the growth cycle, the accuracy of the stage-specific

PCEEM is estimated for R2 and RMSE values as 84.4% and 0.96 dB for HH and 89.8%

and 0.58 dB for the VV channel. Moreover, the sources of the variation in the model

outputs are found to be stalk height for HH and VV and the number of tillers for HH.

To sum up, growth-phase-specific PCEEM can estimate the outputs of the theoretical

backscattering model with high accuracy. Minimum R2 and maximum RMSE values for

the full cycle are calculated to be 80.0% and 1.98 dB. Therefore, the replacement of the

backscattering model with the surrogate PCEEM is acceptable. While the highest accuracy

is observed in the early vegetative stage, the lowest accuracy is in the late vegetative stage

due to ranges of corresponding parameter spaces as shown in Figure 7. GSA shows that

throughout the growth cycle, model outputs in both polarimetric channels (HH and VV)

are most sensitive to the stalk height. However, for the HH channel, the number of tillers
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and stalks become important starting from the late vegetative phase due to their effect in

increasing the attenuation inside the canopy.

4.3 Structures of the Parameter and Observable Spaces

The proposed approach follows a search algorithm that depends on two multi-dimensional

spaces, parameter P and observable Oqp. The first space is built up based on the morphological

parameters as a regular grid. In the current case, the increments of the grid were chosen

as 1 cm for stalk height and leaf length, 1 mm for stalk diameter and leaf width, 1 unit for

tiller and leaf number and, finally, 10 units for plant number. For each growth phase P, a

different number of possible samples is obtained. Table 3 summarizes the remaining sample

sizes throughout the analysis. The reason behind the different number of samples is due

to the varying ranges (maximum and minimum values) of parameters as seen in Figure 7.

Later, when the biologically unrealistic morphologies are eliminated in accordance to the crop

morphology database, the sample sizes reduce to the values shown in Row 3 of Table 3. Here,

it is observed that several morphologies in the parameter space are not biologically favored.

In the next step, intensity and matching morphology constraints are implemented. Table 3

provides the average values from this study for the minimum and the maximum number of

samples remaining after each constraint is applied. These values can change based on the

variance of the data, which is either due to the structural heterogeneity of the region or due

to the size of the smoothing window. Finally, the remaining samples are used as an input to

the PCEBBCH.

Table 3: An average sample size of parameter space during each step of the search algorithm

procedure.

Process Step
Growth Phase

1 2 3 4 5

S
a
m
p
le

S
iz
e P Space 48300 1492920 204160 338328 181350

Pos. Morp. 7010 343800 47330 120780 26330

Cons. 1: B 2000-2500 25000-40000 8000-11000 17000-23000 4000-7000

Cons. 2: I 1500-2200 12000-30000 4000-10000 9000-20000 2000-6000

4.4 Accuracy Assessment: PCEBBCH

A random growth stage can correspond to several different plant morphologies. Besides,

the variance of the crop morphology can affect the BBCH results. Therefore, this relation is

achieved using a PCE metamodel that relates ground measurements to their corresponding
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BBCH stages by PCEBBCH.

Figure 10 shows the results of the accuracy analysis of the PCEBBCH. The plot is given

for the BBCH stages measured in the field versus the ones estimated by the PCEBBCH. For

the training, 200 randomly chosen ground measurements are taken into consideration from

the 2014 Ipsala ground campaign. The coefficient of determination is calculated to be 94.0%.

The overall RMSE value is found to be 5.80 stages, with the lowest variance in the early

vegetative stage and the highest in the maturative stage. This can be explained by the degree

of the morphological complexity. In other words, as the structure gets more complicated, a

lower accuracy for the PCEBBCH is observed. Lastly, the proposed scheme can provide a

continuous growth trend in the BBCH scale.

4.5 Accuracy Assessment: BBCH Assignment

The growth stage determination method proposed in this study makes the BBCH scale directly

available for broadcast seeded rice monitoring using PolSAR. In other words, the phenological

stage of a rice field of interest can be estimated by observing its polarimetric response and

that of the surrounding area. Therefore, to prove the consistency of the approach, the PCE

metamodel-based inversion method is independently applied to each test field present in each

TSX acquisition from Isla Major and Ipsala.

The accuracy analysis through correlation plots of the proposed algorithm applied to all

test fields of the available TSX data is shown in Figure 11a,b for the Isla Major and the

Ipsala sites, respectively. The value of R2 between ground measured and estimated BBCH

is 94.1% for the Isla Major and 84.1% for the Ipsala test sites. Additionally, the RMSE

deviation from the measured value is found to be 7.66 BBCH stages for Isla Major and 5.24

BBCH stages for Ipsala data. Unfortunately, the Ipsala data are not available for the full

cycle. The analysis shows that, while the proposed algorithm tends to overestimate the earlier

stages, it underestimates the later stages. This can be explained by crop morphology and

subjective assignment of the BBCH stages. The inclusion of the PCEBBCH-based growth stage

assignment improves the overall accuracy. Field- and full-scale growth maps are visualized in

Figures 12 and 13, respectively.

5 Conclusions

This paper has demonstrated that X-band HH/VV dual-polarization SAR data are suitable

for the estimation of flooded and broadcast-sowed rice field growth stages on a continuous

scale, in terms of BBCH. This is due to the sensitivity of the X-band polarimetric descriptors

to small-scale morphological changes. The validation of the proposed approach carried out at

the field level provided an error of less than 10 BBCH stages. Additionally, the R2 between

the ground measurements and the algorithm estimation is found to be consistently higher
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than 80.0%.

Since the proposed methodology gives promising results, it may encourage agriculturists

and local authorities to use products based on SAR data for their monitoring purposes. The

main strengths, limitations and opportunities of the proposed methodology are:

5.1 Strengths

• The algorithm depends on the rice crop morphology. The proposed approach extends

the usage of existing classification algorithms. The results of the current classification

algorithms can be used instead of the a priori growth phase information as a coarse

classifier. The proposed method introduces the PCEEM-based parameter search space

approach, resulting in an estimate of the BBCH based on crop morphology.

• Several genotype variations are available for rice crops. The range of admissible

morphological parameters (e.g., crop height vs. leave size) may, therefore, need to be

extended should data on new/additional crop morphologies become available. The

proposed method can easily be updated automatically with each new crop morphology

dataset by appropriately extending the allowed morphological parameter space.

Therefore, each new dataset will contribute to the preservation of the plant

morphological growth principles for different genotypes. The possibility to extend the

base morphological datasets allows the proposed approach to be extended to include

new morphologies.

• The proposed method can make detection of in-field heterogeneities possible for observing

growth abnormalities. The included feature clustering approach handles polarimetrically

similar regions of the field separately, and therefore, spatially-localized problems (e.g.,

sickness or overgrowth) can be handled, unless they have statistically a representative

number of samples.

5.2 Limitations

• Even though the results are promising, some aspects were omitted in the chosen

backscattering model such as the 3D orientation of the scatterers, the curvature of the

leaves and panicles and the agronomical exceptions as extreme water loss from the plants.

Besides, according to the Directorate of Trakya Agricultural Research Institute, the rice

fields located in Turkey are kept flooded until 10–15 days before harvesting. Therefore,

the current implementation of the model only considers the flooded conditions and

misses the non-flooded periods.

• The performance of the morphology estimation strongly depends on the performance

of the backscattering model and the environmental conditions. The slight bias in

the EM model predictions that can be observed in Figure 8 may be related to the
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slight bias in the reconstruction response w.r.t. the ground truth in Figure 11a,b. A

quantitative study of the effects of model bias on the inversion results would require

additional high-quality ground truth measurements. Nevertheless, it is expected that

improvements in the model predictivity, especially when effective at reducing model

bias, could similarly improve the accuracy of the inversion results.

• Since the proposed approach was developed for fields with flooded or strongly moist

underlying surfaces, further studies are needed to assess its applicability for fields with

dry or slightly moist soil.

5.3 Opportunities

• The chosen theoretical backscattering model can be replaced by any other morphology-

based EM backscattering model. The alternative models may lead to higher accuracies

with a higher number of parameters. However, the uncertainties of the inputs should also

be taken into account. Therefore, it is possible to state that, for an improvement in the

inversion accuracy, the alternative models should have lower variance in their outputs,

which can be achieved by inclusion of the cross-polarimetric channels (HV and VH).

Additionally, the proposed approach is also applicable to the monitoring of different

crop types by simulating their morphology and the underlying ground information with

the theoretical EM backscattering model.

• With the inclusion of the metamodels, the computational cost of the inversion algorithms

decreases significantly. This may lead to the development and integration of new

backscattering models with realistic crop morphology.

Future work will focus on the evaluation of the proposed methodology using different

frequencies, crop types, as well as incidence angles. Ongoing and future missions such as

Tandem-L and Sentinel-1 will be excellent opportunities for these evaluations.
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Figure 9: [Row 1&2] Relationship between backscattering model and PCEEM simulated σo (in

dB) values given for five growth stages with corresponding polynomial degree (P.Deg.), R2,

RMSE and LOO values. True value indicates the scattering model simulated values. [Row 3]

GSA results given for five growth stages with corresponding Total Sobol’ indices for each input

parameter.
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Figure 10: Relationship between ground measured and PCEBBCH simulated BBCH values with

corresponding R2 for the training data.

(a) (b)

Figure 11: Relationship between ground measured and algorithm estimated BBCH stages with

R2 values. (a) Isla Major; (b) Ipsala.
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Figure 12: Phenological stage estimation results of the proposed algorithm obtained over two

different Region Of Interest (ROI) located in the Ipsala 2014 dataset. The growth stages are

given as estimated/measured BBCH stage.
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Figure 13: Growth maps with the phenological stage estimation with the BBCH scale in two

different areas exploiting their temporal behavior. The date of the images is given as Day of

Year (DoY).
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