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Abstract

In surrogate modeling, polynomial chaos expansion (PCE) is popularly utilized to repre-

sent the random model responses, which are computationally expensive and usually obtained

by deterministic numerical modeling approaches including finite element and finite-difference

time-domain methods. Recently, efforts have been made on improving the prediction per-

formance of the PCE-based model and building efficiency by only selecting the influential

basis polynomials (e.g., via the approach of least angle regression). This paper proposes an

approach, named as resampled PCE (rPCE), to further optimize the selection by making

use of the knowledge that the true model is fixed despite the statistical uncertainty inherent

to sampling in the training. By simulating data variation via resampling (k-fold division

utilized here) and collecting the selected polynomials with respect to all resamples, polyno-

mials are ranked mainly according to the selection frequency. The resampling scheme (the

value of k here) matters much and various configurations are considered and compared. The

proposed resampled PCE is implemented with two popular selection techniques, namely least

angle regression and orthogonal matching pursuit, and a combination thereof. The perfor-

mance of the proposed algorithm is demonstrated on two analytical examples, a benchmark

problem in structural mechanics, as well as a realistic case study in computational dosimetry.

Keywords: Surrogate Modeling, Sparse Polynomial Chaos Expansion, Resampled

Polynomial Chaos Expansion, Data Resampling, Sensitivity Analysis,

Double Cross Validation
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1 Introduction

Mathematical modeling is common practice nowadays for better understanding real-world

phenomena. However, a closed-form solution of the governing equations is unavailable in gen-

eral and numerical modeling schemes, such as finite-difference time-domain (FDTD) Taflove

and Hagness (2005) and finite element method (FEM) Bathe and Wilson (1976), are com-

monly employed. The computational method can be considered as a black-box code that

takes a vector of parameters as input and yields a vector of quantities of interest that can be

further used to assess the system under consideration. However, the real-world system may

not be accurately modeled, one critical factor being the uncertainty of input parameters

Barton (2012), which can be taken into account by setting a probabilistic model of these

parameters.

Describing inputs by random variables which follow specific probabilistic density func-

tions (PDFs) Kolmogorov (1956), the propagation of such random inputs through the system

yields random outputs and the investigation of such uncertainty propagation is known as un-

certainty quantification (UQ) Iman and Helton (1988). Monte Carlo simulations (MCS) can

be applied/used to run the UQ analysis, however, it becomes intractable when the computa-

tional cost of a single simulation is high (which corresponds to the cases focused onto here).

Surrogate model (a.k.a. metamodel) is popularly utilized as a remedy to emulate the system

response. Among various approaches, such as Gaussian process (Kriging method) Kleijnen

(2009), neural networks MacKay (1992), etc., surrogate modeling based on polynomial chaos

expansion (PCE) Sudret (2007); Sepahvand et al. (2010); Kersaudy et al. (2014) is of interest

here due to its advantages in both interpretation and versatility.

Representing the finite-variance random output on a Hilbert space spanned by multivari-

ate basis polynomials orthogonal to the joint PDF of input variables, the numerical modeling

of the system response is replaced by the computation of a PCE, while the expansion coeffi-

cients can be obtained by two different methodologies. For the so-called intrusive methods,

taking the spectral finite element method Ghanem and Spanos (2003) as an example, the

classical FEM is combined with the Karhunen-Loève expansion of input random fields and

the coefficients are obtained by a Galerkin scheme which results in a system of deterministic

equations Sudret et al. (2004). In contrast, without modifying the underlying code, hence as

non-intrusive methods, coefficients can be obtained based on an experimental design (ED) by

two popularly utilized approaches. While minimizing the mean square error of data discrep-

ancy leads to the solution of regression method Berveiller et al. (2006), projection method

Le Mâıtre et al. (2002); Gilli et al. (2013) exploits the orthogonality of basis functions, the

expansion coefficient being the solution of multidimensional integrations which can computed

by quadrature methods.

A PCE, as an infinite series, should be truncated for the computational purpose. How

to make this truncation optimally is the major issue, which is addressed in this paper.
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In the literature, a maximum value is commonly set to the total degree of multivariate

polynomials Blatman (2009). However, the number of basis polynomials, as well as the

required ED size, dramatically increases with the number of input variables, which is known

as the curse-of-dimensionality. Thus, the so-called sparse PCE Blatman and Sudret (2010,

2011); Doostan and Owhadi (2011); Jakeman et al. (2015) has been developed by only

including the most influential polynomials in the truncation. Measuring this influence by

correlation, the classical greedy algorithms, orthogonal matching pursuit (OMP) Tropp and

Gilbert (2007) and least angle regression (LARS) Efron et al. (2004), have been utilized to

rank the polynomials.

This contribution is aimed at reducing the variance of the sparse PCE model while keep-

ing or improving the level of bias, through refining the truncation of a PCE. Based on the

available sparse PCE modeling methods, the refined modeling approach takes advantage of

the knowledge that the true model is fixed despite the variation of training data and the

associated influential polynomials should be frequently selected during replications. Simulat-

ing the variation of ED via the resampling technique (e.g., bootstrap Efron and Tibshirani

(1994), leave-many-out Geisser (1975)), a PCE truncation can be generated for each resam-

pled data set by LARS or OMP. Merging involved polynomials of all PCE truncations into

one set, the influence of each candidate base is mainly decided by the frequency of appear-

ance. Such a building process of the PCE-based surrogate model is named as resampled

PCE (rPCE). This name refers to the fact that the variation of ED through resampling is

fully exploited in the analysis.

Let us emphasize that the technique to stabilize the PCE modeling method in rPCE is

different from bagging (a.k.a. bootstrap aggregating) Breiman (1996), which is a popular

approach, especially for decision tree methods, to reduce the modeling variance by training

multiple regression models based on resampling samples and taking the final prediction as

the mean of all predictions. Since different sets of resampling samples are based on the same

experimental design, the optimal polynomials in the construction of different PCEs might

have a correlation, which is however not considered by bagging. In contrast, such correlation

is considered as an additional knowledge in rPCE to refine the selection of expansion bases.

Once the basis polynomials have been selected, the expansion coefficients are computed with

the whole set of original data and the prediction is only made by the refined PCE model.

This paper itself is organized as follows. A general framework of the PCE-based surrogate

modeling is introduced in Section 2. Section 3 gives the concept of the full and sparse PCE

truncation, where the building processes based on LARS and OMP are briefly described,

respectively. The methodology of rPCE is illustrated in Section 4. Resampling data through

the random division into k parts, based on the generated candidate polynomials by LARS

and/or OMP, the relative importance of polynomials is evaluated through the selection fre-

quency. The value of k matters and the determination strategy is discussed in Section 5,
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where the strategy to select the source of candidate polynomials (LARS, OMP, or their

combination) is also presented. The improved performances in prediction and sensitivity

analysis by rPCE are shown via application to two classical analytical functions, one finite-

element model and one finite-difference-time-domain model in Section 6. Conclusions and

perspectives follow in Section 7.

2 Surrogate model based on polynomial chaos expan-

sion

2.1 Probabilistic modeling

Consider a physical model represented by a deterministic function y =M (x), where x ∈ RM

and y ∈ RQ, M , Q being the number of input and output quantities, respectively. The

uncertainty of inputs and the propagation to responses lead to the description of x and y as

random vectors, X and Y . Here, since each component of Y can be separately analyzed in

statistical learning, only cases with scalar response, i.e., Q = 1, are considered for simplicity.

Describing the random vector X by the joint probability density function (PDF) pX and

assuming that Y has a finite variance, the latter belongs to a Hilbert space L2(RM ,BM ,PX),

BM being the Borel σ-algebra of the event space RM and PX being the probability measure

of X. The Hilbert space is equipped with the following inner product

〈f, g〉 = E [f(X)g(X)] =

∫

X
f(x)g(x)pX(x)dx, (1)

and can be represented by a complete set of orthogonal basis functions.

2.2 Polynomial chaos expansion

Polynomial chaos expansion is a spectral representation of Y taking polynomials as basis

functions,

Y =
∑

α∈NM

βαψα(X), (2)

where α is a vector of non-negative integers indicating the order of multivariate polynomials

ψα and βα is the corresponding expansion coefficient.

How to build ψα(X) is recalled now Soize and Ghanem (2004); Sudret (2007). Assuming

that the input random variables are independent, the joint PDF is a multiplication of the

marginal ones,

pX(x) =
M∏

i=1

pXi
(xi), (3)

where pXi
is the marginal PDF of random variable Xi. Such a property gives the composition

of orthogonal multivariate polynomials as a tensor product of univariate polynomials παi ,

i.e.,

ψα(X) = πα1
(X1)× . . .× παM

(XM ), (4)
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while παi should satisfy the following orthogonality

〈παj
, παk

〉 = E
[
παj

(Xi)παk
(Xi)

]
= δj,k, (5)

where δj,k equals 1 when j = k and 0 otherwise. The following derivation

〈ψα, ψγ〉 = E [ψα(X)ψγ(X)] = δα,γ (6)

can be made, which indicates the orthogonality of the constructed multivariate polynomials

ψα.

Earlier on, the normal input variables have been considered with the corresponding Her-

mite polynomial basis Wiener (1938). Then, the extension to other types of random variables

has been proposed as the generalized PCE (gPCE) Xiu and Karniadakis (2002); Soize and

Ghanem (2004), where a specific family of polynomials is matched to some common PDFs

(uniform, exponential, etc.). For PDFs not included in gPCE, a nonlinear mapping of input

variables to the known ones can be made with the technique of isoprobabilistic transfor-

mation Lebrun and Dutfoy (2009); Lemaire (2013) or specific orthogonal polynomials are

computed numerically via the Stieltjes procedure (Gautschi, 2004).

The PCE coefficients βα is obtained in a non-intrusive way by the regression approach.

A data set {x(n), n = 1, . . . , N} sampled from the input PDF pX and the corresponding

response {y(n) = M(x(n))} compose altogether the ED. With notations of column vector

y = [y(n)], β = [βα] and matrix ψ = [ψα(x(n))], the PCE coefficients can be obtained from

β̂ = arg min
β
||y −ψβ||22, (7)

which yields the ordinary least square (OLS) Rao et al. (1973) solution as

β̂ =
(
ψTψ

)−1
ψTy, (8)

the superscript “T” denoting the transpose operation.

Remark that, although only cases with independent inputs are considered in the above

analysis, it is possible to describe the mutual dependence by a copula Nelsen (2007) and use

Rosenblatt transformation Lebrun and Dutfoy (2009) to cast the problem as a function of

auxiliary independent variables.

2.3 Estimation of prediction performance

Once the surrogate model is obtained, the prediction performance can be estimated via the

generalization error,

ε = E

[(
M(X)− M̂(X)

)2]
, (9)

where M̂ denotes the surrogate model. The estimation of ε is often obtained by Monte Carlo

simulations when a large set of validation data, which are independent from the experimental
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design, are available. Denoting the input vector and response of the n-th validation data as

x
(n)
val and y

(n)
val , respectively, the mean square error of data discrepancy

εval =
1

Nval

Nval∑

n=1

(
M(x

(n)
val )− M̂(x

(n)
val )
)2
, (10)

converges to ε if the data size Nval tends to infinity. For an easier interpretation of εval, the

associated coefficient of determination R2
val is computed by

R2
val = 1− εval

Var(yval)
, (11)

where Var(yval) =
∑Nval

n=1(y
(n)
val − ȳval)2/(Nval− 1) and ȳval =

∑Nval

n=1 y
(n)
val /Nval. Therefore, the

closer R2
val is to one, the more accurate is the prediction by M̂.

However, in scenarios with high computational cost for a single simulation, it is often

intractable to have a large validation set. Then, the same data as for training are often reused

for validation. However, the underestimation of the generalization error is well-known in the

case of overfitting Blatman (2009). Cross validation was thus proposed and is commonly

advocated Kohavi et al. (1995); Konakli and Sudret (2016).

Randomly dividing the data of the ED into a training set and a validation set, cross

validation means the prediction of the validation set by the surrogate model built from the

training set. Here, rather than random division, k-fold cross validation is utilized so that

the information in the whole set of data is fully considered in both training and validation.

For this purpose, one divides the ED into k approximately equal-sized subsets. Leaving

the l-th subset out for validation, a surrogate model is trained with the remaining data.

Varying l from 1 to k, the cross-validation error is computed based on all validation results.

Specifically, letting k = N , one obtains the so-called leave-one-out cross validation, whose

error reads:

εLOO =
1

N

N∑

n=1

(
M(x(n))− M̂−(n)(x(n))

)2
, (12)

where M̂−(n) denotes the surrogate model trained by leaving the n-th data out. Remark

that εLOO is also known as predicted residual of squares (PRESS) or jacknife error Efron

(1982) and it can be computed fast in single training process Blatman (2009) by

εLOO =
1

N

N∑

n=1

(
M(x(n))− M̂(x(n))

1− hn

)2

, (13)

where hn is the n-th diagonal element of the matrix ψ
(
ψTψ

)−1
ψT .

3 Surrogate modeling based on full PCE and sparse

PCE

The accurate PCE of the true model is an infinite series and needs a truncation for the sake

of computation. From Eq. (2), one sees that truncating a PCE is actually selecting a subset
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Table 1: Sparse PCE model based on orthogonal matching pursuit.

1. Initialization: residual R0 = y, active set Aa
0 = ∅, candidate set Ac

0 = Afull.

2. For j = 1, . . . , Pmax = min{N − 1, card(Afull)},
1) Find the basis most correlated with Rj−1, αj = arg maxα∈Ac

j−1

∣∣∣RT
j−1ψα

∣∣∣.

2) Update Aa
j = Aa

j−1 ∪αj and Ac
j = Ac

j−1 \αj .

3) With ψAa
j
, compute βj as the OLS solution.

4) Update residual Rj = y −ψT
Aa
j
βj .

End

3. Based on ψAa
j

and βj , compute εjLOO, j = 1, . . . , Pmax.

4. P = arg minj ε
j
LOO and the PCE model corresponding to ψAa

P
is selected.

of NM for α such that the system response can be represented by the associated polynomials

at a sufficient accuracy. Assuming the selected α vectors compose the set A, the truncated

PCE can be written as

M̂(X) =
∑

α∈A
βαψα(X). (14)

The usual way to decide about A leads to the so-called full PCE model, which suffers from

the curse-of-dimensionality Friedman et al. (2001), meaning that the cardinality of A sharply

increases with the number of input parameters, as explained below. Recently, least angle

regression (LARS) Blatman and Sudret (2011); Marelli and Sudret (2018) and orthogonal

matching pursuit (OMP) Tropp and Gilbert (2007); Marelli and Sudret (2018) have been

used to downsize the truncation and achieve the so-called sparse PCE model.

3.1 Full PCE model

A is commonly selected by setting a maximum to the total degree of multivariate polynomials,

i.e., Afull = {α ∈ NM ,
∑M
i=1 αi ≤ p}, p a positive integer. The PCE-based surrogate model

with this setup is named in the sequel as the full PCE model. However, the cardinality of

Afull, denoted by Pfull, equals
(
p+M
p

)
and polynomially increases with the value of p and

M . Moreover, to ensure the well-conditioning of the information matrix ψ in Eq. (8), the

ED size N should be larger than Pfull. As a result, the resulting curse of dimensionality

prevents the application of the full PCE model in scenarios with large p and M . This problem

is addressed by downsizing A through the use of greedy algorithms, so that only the most

influential polynomials are included in the truncated PCE.
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Table 2: Sparse PCE model based on least angle regression.

1. Initialization: residual R0 = y, active set Aa
0 = ∅, candidate set Ac

0 = Afull.

2. For j = 1, . . . , Pmax = min{N − 1, card(Afull)},
If j equals 1, define u1 = ψα1 , α1 = arg maxα∈Ac

0

∣∣RT
0ψα

∣∣, and update

Aa
1 = {α1}, Ac

1 = Ac
0 \α1.

Otherwise,

1) update Rj−1 = Rj−2 + γj−1uj−1, γj−1 the smallest step length when

Rj−1 has the same correlation with a basis polynomial (denoted by ψαj ,

αj ∈ Ac
j−1) as those with all polynomials in ψAa

j−1
.

2) update Aa
j = Aa

j−1 ∪αj and Ac
j = Ac

j−1 \αj .

3) compute the equiangular vector of all polynomials in ψAa
j

as uj .

End

3. Based on ψAa
j
, compute βj as the OLS solution and associated εjLOO,

j = 1, . . . , Pmax.

4. P = arg minj ε
j
LOO and the PCE model corresponding to ψAa

P
is selected.

3.2 Sparse PCE model based on orthogonal matching pursuit

The PCE model based on orthogonal matching pursuit (OMP) is iteratively built and the

iterative procedure is summarized in Table 1. At each iteration, the influence of each poly-

nomial term ψα is measured by its correlation with the data residual R (the initial value

being y). The α corresponding to the most correlated basis term ψα becomes a member of

the active set Aa. Then, computing the basis function ψAa supported by the active set, the

associated coefficients are obtained by minimizing the least-square error and R is updated

as the new residual. The most influential polynomials are sequentially selected by repeating

the procedure above.

The number of selected polynomials, P , needs an optimization, considering that the flexi-

bility of the surrogate model increases with P and too flexible a model might lead to the over-

fitting problem. Leave-one-out cross-validation is utilized in Table 1 to assess the quality of

the obtained surrogate models. Setting the maximum number of P as min{N−1, card(Afull)}
(otherwise the least-square problem becomes ill-posed), the optimal P corresponds to the

PCE model with the minimal εLOO.
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3.3 Sparse PCE model based on least angle regression

Least angle regression (LARS) is a less greedy version of traditional forward selection meth-

ods. It is known that different flavors of LARS yield efficient solutions of LASSO Tibshirani

(1996) (which constrains both the data discrepancy by ordinary least square and the spar-

sity of regression coefficients by `1-norm) and forward stagewise linear regression Weisberg

(2005) (another promising model-selection method), respectively.

The iterative algorithm of sparse PCE modeling based on LARS (originally proposed

in Blatman and Sudret (2011)) is given in Table 2, where details on how to compute step

length γj−1 and equiangular vector uj can be found in Efron et al. (2004). As seen from

this short summary, the building process is similar with the one based on OMP, except that

from the second iteration since the residual R evolves along the equiangular directions of

basis functions other than along basis functions themselves.

4 Surrogate modeling based on resampled PCE

Resampled PCE (rPCE) is proposed to refine standard PCE truncation schemes by taking

advantage of the heuristic observation that the influential polynomials associated with the

true model are frequently selected by LARS and OMP during replications with resampled

training data. Simulating the data resampling via k-fold division, the rank of polynomials

is mainly decided by the selection frequency. Efforts to combine results by LARS and OMP

to further improve the performance of rPCE are now presented.

4.1 Resampled PCE based on LARS or OMP

A fixed set of data is only available in practice for surrogate modeling and the statistical

variation of training data is simulated by dividing the whole set of data into k subsets, all

with approximately same size. Of k subsets, the l-th subset is left out and the remaining

k − 1 subsets are used for the PCE construction. Varying l from 1 to k, one have k PCE

models built by LARS/OMP and the associated active sets are denoted by AaP,l, l = 1, . . . , k.

The subscript “P” and superscript “a” are ignored in AaP,l to be Al in the followings.

To search for the most frequent α indices within the k different sets Al, l = 1, . . . , k,

one can merge the latter into a single set Am = {A1, . . . ,Ak}. Then the selection frequency

of α in the k building processes is equal to the number of its duplicates in Am. Then we

can save the selection frequency as the vector sf , the elements of which are integers in the

interval [1, k], and denote A as the copy of Am but without duplications. The elements

in A are sorted according to the descending sf , named in the sequel the frequency score,

and compose the new set A∗. Then, following the same procedures as the step 3 and 4

in Table 2 for LARS or Table 1 for OMP, except for replacing the active set by A∗, the

refined truncation of PCE is obtained, while the optimal number of basis polynomials is still
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determined by cross-validation errors.

However, during the running of rPCE, different muti-indicies α might have the same

frequency, which introduces some uncertainty in the ranking of polynomials. To avoid this

uncertainty, one more factor, namely the effect of each basis polynomial on εLOO, is consid-

ered.

From the LARS/OMP procedures, one can see that the correlated polynomials are se-

quentially added into the active set, thus the increment of εLOO by adding αj into Aaj−1
equals ∆εjLOO = εjLOO − εj−1LOO for j ≥ 1, where ε0LOO is set as 0. Denoting ∆εl,jLOO as the

∆εjLOO at the l-th PCE construction and Em the set composed of all ∆εl,jLOO, the elements

in Am have a unique mapping to those in Em. Based on this relation, the so-called error

score se can be computed as the mean of all terms ∆εl,jLOO mapping to the same element of

A, i.e.,

sie =
1

sif∆εmax
LOO

∑

{l,j|αl,j=αi}
∆εl,jLOO, i = 1, . . . , card{A} (15)

where αl,j stands for the α corresponding to ∆εl,jLOO and the superscript “i” for the i-th

element of a vector or set. The normalization by ∆εmax
LOO, the maximum element in |Em|, is

to confine the value of sie between −1 and 1 such that the ranking of polynomials by the

total score

s = sf + se, (16)

is mainly affected by sf in rPCE.

4.2 Resampled PCE combining LARS and OMP

The way to rank polynomials in rPCE allows the possibility to combine the results by LARS

and OMP. Following the procedures in Section 4.1, Am and Em can be obtained by LARS

and OMP separately, denoted by ALARSm , ELARSm and AOMP
m , EOMP

m , respectively. Then,

merging results by LARS and OMP into a single set, ALARS+OMP
m = {ALARSm ,AOMP

m } and

ELARS+OMP
m = {ELARSm ,EOMP

m }, from which ALARS+OMP and the associated total score

sLARS+OMP can be computed. Then, the basis polynomials of the surrogate model are

selected based on ALARS+OMP , sLARS+OMP and the coefficients are the OLS solution.

5 Parameter settings

5.1 Resampling scheme

The k-fold division is used to simulate the data variation in rPCE and the value of k matters

on the performance. A tradeoff lies behind the determination of k. With a small k (e.g.,

k = 2), a large portion (half) of data is apart from the building process. As a result, some

information of the true system might be lost or not accurately learned by the surrogate

model and the selected polynomials may not be truly influential. On the other side, a large
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k, (e.g., k = N) cannot sufficiently simulate the data statistical variation and the selected

polynomials in the construction of the k different PCEs might have a high correlation. This

way, the polynomials selected by rPCE would be almost the same as those with LARS or

OMP and the prior knowledge, from which rPCE is to benefit, cannot be well exploited.

The proposed strategy is to merge Am obtained for different values of k suggested in

literature, including k = 3, 5, 10, 20, N . Denoting Aqm the set Am when k = q, rPCE will

run based on the set ACm = [A3
m,A5

m,A10
m ,A20

m ,ANm]. This strategy considers both the data

variation and the bias of generated candidates polynomials and is revealed robust in the

various application examples.

Denote AC as the copy of ACm but without element duplication and skf as the frequency

score w.r.t. Akm. For each α in AC , the frequency score can be computed by

sif =
∑

k={3,5,10,20,N}
sk,if , i = 1, . . . , card(AC), (17)

where the superscript “i” stands for the i-th element of a vector and sk,if equals zero if the

i-th α of AC is not in Akm. However, since sk,if is upper bounded by k, the polynomials

selected with small values of k (e.g., elements in A3
m) will have small frequency scores and

be less likely to have high ranks in rPCE.

To solve this problem, instead of (17), the frequency score of elements in ACm is computed

as a summation of weighted sk,if :

sif =
∑

k={3,5,10,20,N}
sk,if

lcm(3, 20, N)

k
, i = 1, . . . , card(AC), (18)

where lcm(3, 20, N) computes the least common multiple of 3, 20, N (same for 3, 5, 10, 20, N).

The weights give rise to the same maximum value of the summands in (18). Consequently,

the candidate polynomials w.r.t. different values of k are equally considered in rPCE.

Finally, the set of k values, i.e., {3, 5, 10, 20, N}, needs an adjustment for a small N . For

instance, k can only be 3, 5, 10, N when N = 15.

5.2 Source of candidate polynomials

Section 4 presents the rPCE based on candidate polynomials generated by three sources,

LARS, OMP or their combination, and one needs to decide which source is the optimal

option. The polynomials commonly and frequently selected by two different approaches are

believed influential and more likely to be included in rPCE. However, if one approach has

a much worse performance than the other, the combination scheme would not be recom-

mended, since the candidate polynomials generated by the worse approach might deteriorate

the performance of rPCE. Therefore, if LARS is much better than OMP, only candidate

polynomials by LARS participate into the ranking in rPCE, and vice versa. Otherwise, the

combination scheme is used.
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The criterion of “much better” should be properly set. Assuming a large set of validation

data is available, as illustrated in Section 2.3, R2
val can be computed as the unbiased estima-

tion of the prediction performance. Here, the comparison of two building approaches is con-

ducted with the analysis of the distribution of R2
val. Varying the training data, a sequence of

surrogate models is built and the associated R2
val values are computed. Representing R2

LARS

and R2
OMP as the sets of R2

val values obtained by LARS and OMP respectively, the first

and third quartile of these two sets are computed and denoted by QLARS1 , QOMP
1 , QLARS3 ,

QOMP
3 . Then, if QLARS3 > QOMP

1 , one considers that LARS is much better than OMP, and

vice versa. Otherwise, LARS and OMP are considered with similar performances and the

combination scheme would be adopted.

However, again a large set of validation data is usually not available due to the high

computational costs. Here, R2
val is approximated through the validation on the data left out

in the k-fold division. With different values of k and l, the validations generate a set of de-

termination coefficient R̂2
l,k as the approximations to R2

val, l = 1, . . . , k, k ∈ {3, 5, 10, 20, N}.
Denoting R̂2

LARS and R̂2
OMP as the sets of R̂2

l,k values obtained by LARS and OMP, the

distribution of sets R2
LARS and R2

OMP is then simulated by R̂2
LARS and R̂2

OMP , respectively.

Remark that two layers of cross validations now have been operated in rPCE. The outer

cross validation is just illustrated to simulate the distribution of R2
LARS and R2

OMP . The

inner one is embedded in the running of LARS and OMP to compute εLOO in Table 1

and 2. The two-layer cross validation here is indeed an realization of the known double-

cross-validation (DCV) Baumann and Baumann (2014) or cross model validation (CMV)

Anderssen et al. (2006); Gidskehaug et al. (2008). The related literature shows the unbiased

estimation of R2
val by the determination coefficient from the outer cross-validation errors,

i.e., R̂2
l,k.

The procedures to build a PCE-based surrogate model by rPCE are summarized in Fig. 1.

Benefiting from the obtained PCE model, the global sensitivity analysis, which measures the

impacts of input variables to the response, can be conducted via the computation of Sobol’

indices Sobol (1993); Homma and Saltelli (1996) for independent variables or Kucherenko

indices Kucherenko et al. (2012) for dependent cases by Monte-Carlo simulations. Note that

in the case of independent inputs, Sobol’ indices are readily available from PCE coefficients,

as shown in Sudret (2008).

6 Application examples

The knowledge that the influential polynomials are to be frequently selected during replica-

tions is first checked on a specially designed function, the true basis polynomials of which

are known. Then, to present the performance of surrogate modeling based on rPCE and

the comparisons to LARS and OMP, two benchmark functions (with dimension M = 3 and

M = 8, respectively), a finite-element model (with M = 10) and a finite-difference-time-
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for 𝑘 = {3,5,10,20,𝑁} 

Initialization 

Set the ED= { 𝒙 𝑛 ,𝒚 𝑛  ,𝑛 = 1,… ,𝑁}  

Resampling 

Divide ED into 𝑘 subsets and each subset is in turn 

left out for the PCE construction  

Candidate-polynomial generation 

Surrogate modeling based on LARS and OMP, save 

associated 𝔸𝑚
𝑘 ,𝔼𝑚

𝑘 , ℝ 𝑘
2 = {𝑅𝑙,𝑘

2 , 𝑙 = 1,… ,𝑘}   

Configuration optimization 

 Merge 𝔸𝑚
𝑘 ,𝔼𝑚

𝑘 , ℝ 𝑘
2  by LARS to compose 𝔸𝑚

𝐿𝐴𝑅𝑆,𝔼𝑚
𝐿𝐴𝑅𝑆, ℝ 𝑚

𝐿𝐴𝑅𝑆, and those by OMP  to 

compose 𝔸𝑚
𝑂𝑀𝑃 ,𝔼𝑚

𝑂𝑀𝑃, ℝ 𝑚
𝑂𝑀𝑃. 

 Compute 𝑄1
𝐿𝐴𝑅𝑆,𝑄3

𝐿𝐴𝑅𝑆,𝑄1
𝑂𝑀𝑃,𝑄3

𝑂𝑀𝑃 based on ℝ 𝑚
𝐿𝐴𝑅𝑆 and ℝ 𝑚

𝑂𝑀𝑃. 

 If 𝑄3
𝐿𝐴𝑅𝑆 > 𝑄1

𝑂𝑀𝑃, 𝔸𝑚 = 𝔸𝑚
𝐿𝐴𝑅𝑆,𝔼𝑚 = 𝔼𝑚

𝐿𝐴𝑅𝑆. If 𝑄3
𝑂𝑀𝑃 > 𝑄1

𝐿𝐴𝑅𝑆, 𝔸𝑚 = 𝔸𝑚
𝑂𝑀𝑃 ,𝔼𝑚 =

𝔼𝑚
𝑂𝑀𝑃. Otherwise, 𝔸𝑚 = {𝔸𝑚

𝐿𝐴𝑅𝑆,𝔸𝑚
𝑂𝑀𝑃},𝔼𝑚 = {𝔼𝑚

𝐿𝐴𝑅𝑆,𝔼𝑚
𝑂𝑀𝑃}. 

Composition of PCE model 

 Compute 𝒔𝑓 and 𝒔𝑒 based on 𝔸𝑚 and 𝔼𝑚. 

 Ranking basis according to total score 𝒔 = 𝒔𝑓 + 𝒔𝑒, the number of basis in the 

final surrogate model is decided by cross validation. 

 Based on selected basis, the PCE coefficients are computed as the OLS solution. 

Figure 1: Computational flowchart of building a PCE model based on resampled PCE.

domain model (with M = 4) are analyzed. The PCE models based on LARS and OMP

are obtained with the Matlab package UQLab Marelli and Sudret (2014). Using resampling,

UQLab provides the candidate polynomials to rPCE.

Latin-Hypercube sampling McKay et al. (1979) is used to sample the input random

variables. Since cases with a small ED are concerned in this paper, the size of ED N is

chosen between 10 and 50 here. The maximum degree of multivariate polynomials p decides

the flexibility of the obtained PCE model based on LARS and OMP, through the setting of

Afull in Table 1 and 2. To optimize the value of p, the modeling process starts with p = 1

and early stops when εPLOO increases for two consecutive degrees. The maximum degree p is

equal to 20.

As mentioned in Section 2.2, dependent variables can be analyzed after the transforma-

tion into the corresponding independent ones through the generalized Nataf transformation,

so only examples with independent variables are presented in this section and the global

sensitivity is analyzed with the computation of Sobol’ indices.

Sobol’ indices can be simply computed based on the PCE coefficients, following the

ANOVA (analysis of variance) decomposition of the PCE expansion Eq. (14) as (see Sudret
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(2008))

M̂(x) =β0 +
M∑

i=1

∑

α∈A{i}

βαψα(xi) +
∑

1≤i<j≤M

∑

α∈A{i,j}

βαψα(xi, xj) + . . .+

∑

α∈A{1,...,M}

βαψα(x1, . . . , xM ),

(19)

where A{i} is defined as a subset of A, within which only the i-th component αi has a nonzero

order:

A{i} = {α ∈ A, αi 6= 0, αj 6=i = 0}. (20)

A{i,j}, . . . ,A{1,...,M} have similar definitions:

A{i1,...,is} = {α ∈ A, αk 6= 0 if k ∈ {i1, . . . , is};αk = 0 otherwise} . (21)

The orthogonality of basis polynomials gives the estimation of the total and partial variances,

D̂ =
∑

α∈A
β2
α − β2

0, D̂i1,...,is =
∑

α∈A{i1,...,is}

β2
α − β2

0, (22)

and the ratio between them yields the Sobol’ indices

Si1,...,is =
Di1,...,is

D
. (23)

While Si estimates the influence of the i-th variable taken alone, the so-called total Sobol’

indices Homma and Saltelli (1996) assess the total influence of an input variable and are

computed as the summation of all Sobol’ indices involving this variable, i.e.,

STi =
∑

Ii
Si1,...,is , Ii = {{i1, . . . , is} ⊃ {i}} and s ∈ {1, . . . ,M}. (24)

6.1 Summation of multivariate polynomials

To show that the influential polynomials associated with the true model are frequently se-

lected, the surrogate modeling of the following expression,

Y = 1 +X1 +X1X2 +X1X
2
2 +X1X

3
2 , (25)

which is a summation of five multivariate polynomials (including the constant term), is

conducted. X1 and X2 are independent variables that follow the Gaussian distributions

N (0, 1) and N (6, 1), respectively. OMP is used to build a sparse PCE model with 12 data

points for training and 104 data for independent validation. A total of 100 PCE constructions

are made to test the selection frequency of polynomials.

Due to the Gaussian distribution of input variables, Hermite polynomials are used to

compose the basis, where the bivariate polynomials are indexed by α = (α1, α2). The

constant term corresponds to α = (0, 0), while the other four terms in Eq. (25) are with

(1, 0), (1, 1), (1, 2), (1, 3), respectively. Labeling α by integers, the selection frequency during
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Figure 2: Example 1: Summation of multivariate polynomials - (a) the selection frequency of α by

OMP and (b) the associated R2
val in all replications

the 100 PCE constructions is plotted in Fig. 2(a), where the dashed lines indicate the five true

α indices. Remark that, the selection frequency is smaller than 2 when the labels are larger

than 45 and only the results with labels ≤ 45 are displayed for a better visualization. As

observed, although the true indices of α are not always selected, they are the most frequent

ones during replications. Making use of this knowledge and selecting the most frequent α

(also the associated polynomial) may improve the performance of the obtained PCE model

and avoid the outliers (for example the 98-th replication with R2
val = 0.51 in Fig. 2(b), where

X2, X1, X3
1 are selected as the basis).

6.2 Ishigami function

The Ishigami function, which is defined by

Y = sinX1 + a sin2X2 + bX4
3 sinX1, (26)

is widely used for benchmarking in uncertainty and sensitivity analysis. The parameters

are set to a = 7, b = 0.1 and the input random variables Xi, i = 1, 2, 3, are independent

and uniformly distributed over [−π, π]. Legendre polynomials are thus used as the basis

according to the principle of the generalized PCE.

First, 50 data points are used for building the surrogate model and 104 points for estimat-

ing the prediction performance. The analysis is repeated 100 times in order to investigate

the statistical uncertainty of different modeling approaches. The prediction of all validation

data (106 data over 100 replications) by the surrogate models built based on LARS, OMP

and rPCE is shown in Fig. 3, where y stands for the true value, ŷ for the predicted one,

and the solid line indicates the case when ŷ exactly equals y. As observed, although rPCE

and OMP provide unbiased estimations of the Ishigami function, OMP suffers from more

outliers and a higher variance. LARS tends to have larger predictions (relative to the true

values) when y < 0 and smaller predictions when y > 8. Meanwhile, the prediction variance

of LARS is not as small as rPCE.
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(a) rPCE (R2
val = 0.9971) (b) LARS (R2

val = 0.8724) (c) OMP (R2
val = 0.8790)

Figure 3: Ishigami function - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP

with 50 data points (100 replications).
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Figure 4: Ishigami function - box plots of R2
val using different values of k in k-fold division with 50

data points (100 replications).

As mentioned in Section 5, statistical uncertainty is emulated via the k-fold division in

rPCE and the value of k matters. The suggested configuration of rPCE is combining the

polynomial-selection results with k = {3, 5, 10, 20, N}. To show the effects of k, R2
val is

computed at each replication and 100 values of R2
val yield the box plots of Fig. 4, where

k = 1 indicates the surrogate modeling with the whole set of training data but without the

refinement by rPCE and “all k” denotes the rPCE results by combining results with different

values of k. As observed, when k = 1, although the interquartile range (IQR), i.e., the span

between the first quartile to the third quartile, of LARS is larger than that of OMP, more

outliers appear with OMP and the minimum R2
val is even smaller than −1.5. With rPCE,

except the case of k = 3, improvements can be observed from the reduced outliers and/or

prediction variance. The combination of LARS and OMP, denoted by “LARS+OMP” (see
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Section 4.2), seems to have advantages over the rPCE based on LARS or OMP and the

advantages are more obvious with cases k = 3 and 5.

Table 3: Ishigami function - mean of R2
val over 100 replications with 50 data points (100 replications).

LARS OMP LARS+OMP

k = 1 0.8723 0.8788

k = 3 0.7890 0.7734 0.8935

k = 5 0.9281 0.9566 0.9817

k = 10 0.9542 0.9972 0.9974

k = 20 0.9630 0.9919 0.9969

k = N 0.9686 0.9918 0.9978

all k 0.9619 0.9947 0.9971

As quantitative comparisons, Table 3 gives the mean of R2
val over 100 replications. Gen-

erally, OMP is better than LARS. However, the advantage of OMP is not large and, as

a result, the combination of LARS and OMP in rPCE generates better surrogate models.

Remark that the means in Table 3 are obtained by fixing the value of k and the source of

candidate polynomials (LARS, OMP, or LARS+OMP) during all replications. Selecting the

“all k” option and optimizing the polynomial source at each replication with the suggested

configuration in Section 5, the obtained mean of R2
val equals 0.9972, only 6 × 10−4 smaller

than the highest value when k = N with LARS+OMP. Simulations with N = 20, 30, 40 are

also operated with the same configurations and the means of R2
val are plotted as the line

graph in Fig. 5, which shows the better performance of rPCE compared to LARS and OMP

in the cases with small EDs.
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Figure 5: Ishigami function - mean of R2
val versus different values of N (100 replications).
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Figure 6: Ishigami function - the estimation error of Sobol’ indices with 50 data points (100 repli-

cations).

Table 4: Ishigami function - mean of Sobol’ indices 50 data points (100 replications).

Reference rPCE LARS OMP

S1 0.3139 0.3141 0.3553 0.3017

S2 0.4424 0.4422 0.4152 0.4239

S3 0.0000 0.0000 0.0114 0.0028

S1,2 0.0000 0.0000 0.0017 0.0052

S2,3 0.0000 0.0001 0.0096 0.0042

S1,3 0.2437 0.2435 0.2019 0.2363

S1,2,3 0.0000 0.0001 0.0049 0.0258

The Sobol’ sensitivity indices can be analytically computed according to

D =
a2

8
+
bπ4

5
+
b2π8

18
+

1

2
, D1 =

bπ4

5
+
b2π8

50
+

1

2
, D2 =

a2

8
, D1,3 =

8b2π8

225
,

D3 = D1,2 = D2,3 = D1,2,3 = 0.

(27)

Taking the analytical solution as the reference, the estimation error of the Sobol’ indices by

the PCE-based surrogate model is computed by

∆Si = SPCE
i − Sref

i , (28)

where the superscripts of S indicate the generation approach. With N = 50 and 100 repli-

cations, the box plots of all ∆Si are shown in Fig. 6. The variance of ∆Si is relatively large

with LARS when the Sobol’ indices are non zero, i.e., ∆S1, ∆S2, ∆S1,3, and the outliers are

efficiently avoided by rPCE. The mean of Si is given by Table 4, from which the superiority

of rPCE in the sensitivity analysis of the Ishigami function is obviously observed. The accu-
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racy of rPCE for estimating Sobol’ indices is in the order of 10−4 when using 50 data points

in the experimental design.

6.3 Borehole function

Table 5: Borehole function - description and distribution of input variables Xiong et al. (2013).

Name Distribution Bounds Description

rw (m) N (0.10, 0.0161812) [0.05, 0.15] radius of borehole

r (m) Lognormal(7.71, 1.0056) [100, 50000] radius of influence

Tu (m2/yr) Uniform [63070, 115600] transmissivity of upper aquifer

Hu (m) Uniform [990, 1110] potentiometric head of upper aquifer

Tl (m2/yr) Uniform [63.1, 116] transmissivity of lower aquifer

Hl (m) Uniform [700, 820] potentiometric head of lower aquifer

L (m) Uniform [1120, 1680] length of borehole

Kw (m/yr) Uniform [1500, 15000] hydraulic conductivity of borehole

(a) rPCE (R2
val = 0.9723) (b) LARS (R2

val = 0.9517) (c) OMP (R2
val = 0.1472)

Figure 7: Borehole function - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP

with 40 data points (100 replications).

The Borehole funtion with expression

Y =
2πTu(Hu −Hl)

ln(r/rw) (1 + Tu/Tl) + 2LTu/r2wKw
(29)

models the water flow through a borehole and is a benchmark for emulation and prediction

tests. This function has 8 independent variables, the description and distribution of which

are presented in Table 5, where the range of kw is set as [1 500, 15 000], rather than the usual

[9 855, 12 045], to make this function more nonlinear and non-additive. For the composition of

multivariate polynomials, Hermite polynomials are used for rw and r (after an isoprobabilistic
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transformation into a standard normal variable) whereas Legendre polynomials are used for

the other variables.
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Figure 8: Borehole function - box plots of R2
val using different values of k with 40 data points (100

replications).

Making use of 40 data points in the model training and 104 points for validation at each

replication, the prediction of validation data obtained from 100 replications is shown in Fig. 7.

As seen, the PCE models constructed by the three methods are unbiased approximations

of the Borehole function when y < 150. The underestimation when y > 150 is due to the

small portion (1.63 percents for all replications) of data in this range. In prediction variance,

rPCE is much better than OMP and slightly superior to LARS. The latter may be explained

by observing the box plots in Fig. 8.

Building the PCE model with the whole set of data, i.e., k = 1, the third quartile of R2
val

with LARS is obviously larger than the first quartile with OMP. As explained in Section

5.2, the candidate polynomials will be generated by LARS in rPCE, rather than OMP and

LARS+OMP, and the results in Fig. 8 provide good arguments for this strategy. As seen,

the performance of OMP is remarkably improved after the refinement by rPCE. However,

no matter the value of k, OMP is still the worst polynomial selection scheme for rPCE and

LARS seems to be the best option, except that LARS+OMP is slightly better than LARS

when taking the “all k” option.

Similar phenomena maybe more clearly observed from Table 6. The mean of R2
val with

LARS is significantly larger than the one with OMP and consequently the rPCE based

on LARS is preferred. Applying this strategy and automatically selecting the candidate-

polynomial source at each replication, the obtained mean of R2
val = 0.9724. Fig. 9 provides

more results when N ∈ {20, 30, 40, 50}. Since OMP has been shown much worse than rPCE

and LARS, its associated line graph is not displayed for a clear view of the comparison
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Table 6: Borehole function - mean of R2
val with 40 data points (100 replications).

LARS OMP LARS+OMP

k = 1 0.9517 0.1467

k = 3 0.9072 0.5852 0.8859

k = 5 0.9451 0.6434 0.9239

k = 10 0.9673 0.7293 0.9587

k = 20 0.9736 0.7506 0.9704

k = N 0.9743 0.7633 0.9697

all k 0.9719 0.8112 0.9723
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Figure 9: Borehole function - mean of R2
val versus different values of N (100 replications).

between LARS and rPCE. The improvements are reached with rPCE in general except for

the case of N = 20.
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Figure 10: Borehole function - the estimation error of total Sobol’ indices with 40 data points (100

replications).

Global sensitivity analysis is then considered and the total Sobol’ indices are computed
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Table 7: Borehole function - mean of the total Sobol’ indices with 40 data points (100 replications).

Reference rPCE LARS OMP

rw 0.3127 0.3072 0.2962 0.4127

r 0.0000 0.0010 0.0023 0.1967

Tu 0.0000 0.0010 0.0015 0.1635

Hu 0.0487 0.0418 0.0420 0.1995

Tl 0.0000 0.0011 0.0018 0.1802

Hl 0.0487 0.0431 0.0427 0.1751

L 0.0472 0.0423 0.0427 0.2026

Kw 0.6369 0.6376 0.6322 0.6259

∑
1.0942 1.0751 1.0614 2.1562

from the various PC expansions. The reference values are obtained by the Monte Carlo

method with 107 data and presented in Table 7. The importance of variables r, Tu and Tl

can be neglected and the response uncertainty mainly comes from the variation of rw and

Kw. The same conclusions can be drawn from the estimation results by rPCE and LARS.

The summation of reference values is close to 1, which indicates weak variable interactions.

However, the estimation by OMP leads to the opposite conclusion. The stochastic property

of the estimation deviation ∆ST is revealed by Fig. 10. The estimation variance by OMP is

large, especially when the true value of ST is small, and rPCE outperforms LARS in terms

of the estimation variance and the control of outliers.

6.4 Maximum deflection of a truss structure

Figure 11: Sketch of a truss structure made of 23 bars Blatman and Sudret (2011).

In Fig. 11, six vertical loads denoted by P1 ∼ P6 are put on a truss structure composed

of 23 bars, the cross-sectional area and Young’s modulus of which are respectively denoted

by A and E, the subscripts “h” and “o” standing for the horizontal and oblique bars. The

response quantity of interest, the mid-span deflection V , is computed with the finite-element

method.

22



Table 8: Truss deflection - description and distribution of input variables Blatman and Sudret

(2011).

Variable Distribution Mean Std Description

Eh, Eo (Pa) Lognormal 2.1× 1011 2.1× 1010 Young’s moduli

Ah (m2) Lognormal 2.0× 10−3 2.0× 10−4 cross-section area of horizontal bars

Ao (m2) Lognormal 1.0× 10−3 1.0× 10−4 cross-section area of oblique bars

P1 ∼ P6 (N) Gumbel 5.0× 104 7.5× 103 vertical loads

To analyze the uncertainty of the response, the input parameters are modeled by ten

independent random variables following the distributions in Table 8. Transforming the input

variables into standard normal ones with the isoprobabilistic transformation, LARS, OMP

and rPCE surrogate models are built with basis composed of Hermite polynomials.

(a) rPCE (R2
val = 0.9770) (b) LARS (R2

val = 0.9631) (c) OMP (R2
val = −6.2257)

Figure 12: Truss deflection - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP

with 50 data points (100 replications).

With N = 50 and 104 data for validation at each replication, Fig. 12 shows the prediction

results by the surrogate models over 100 replications and the solid line indicates the true

values of V . OMP definitely fails in this scenario. Although the predictions are unbiased,

the variance is high due to the too much flexibility of the PCE model built by OMP. In

contrast, LARS and rPCE achieve a much better trade-off between the variance and bias.

Moreover, rPCE is slightly superior to LARS in variance and the number of outliers. The

poor prediction performance when V < −0.11 is a consequence of a small portion (0.78

percent for all replications) of data in this range.

Based on the validation data, R2
val is computed at each replication and the distribution

of R2
val over 100 replications is given in Fig. 13. The results with k = 1 indicate the running

of LARS and OMP with the whole set of data, thus no refinement of the basis by rPCE

and “all k” means that rPCE is run based on the combination of candidate polynomials

generated with k = [3, 5, 10, 20, N ]. Although the performance of OMP is much enhanced
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Figure 13: Truss deflection - box plots of R2
val using different values of k with 50 data points (100

replications).

LARS OMP LARS+OMP

k = 1 0.9631 -6.2248

k = 3 0.9651 0.3873 0.9641

k = 5 0.9658 0.7915 0.9660

k = 10 0.9692 0.8273 0.9693

k = 20 0.9726 0.8721 0.9735

k = N 0.9735 0.8974 0.9741

all k 0.9744 0.9315 0.9762

Table 9: Truss deflection - mean of R2
val with 50 data points (100 replications).
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Figure 14: Truss deflection - mean of R2
val versus different values of N (100 replications).

with the application of rPCE, LARS is still better than OMP, whatever the value of k. The

rPCE model combining LARS and OMP seems to have the same performance with the rPCE
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model based on LARS itself. Table 9 presents the associated mean of R2
val. As seen, the

highest mean appears with LARS+OMP when all k values are considered, but, with the same

configurations, the difference between LARS and LARS+OMP is only 0.0018. Optimizing

the selection of candidate polynomials at each replication, as displayed in Fig. 14, the mean

value reaches 0.9770 for the “all k” option. The slight superiority of rPCE to LARS is also

seen with N = 20, 30, 40.

Table 10: Truss deflection - mean of the total Sobol’ indices with 50 data points (100 replications).

Reference rPCE LARS OMP

Eh 0.367 0.3713 0.3748 0.4295

Eo 0.010 0.0121 0.0135 0.2290

Ah 0.388 0.3695 0.3715 0.4037

Ao 0.014 0.0127 0.0135 0.2291

P1 0.004 0.0046 0.0057 0.2105

P2 0.031 0.0359 0.0365 0.2251

P3 0.075 0.0750 0.0759 0.2808

P4 0.079 0.0756 0.0751 0.2557

P5 0.035 0.0355 0.0361 0.2271

P6 0.005 0.0048 0.0061 0.1891

∑
1.008 0.9969 1.0086 2.6795

Global sensitivity analysis is conducted by computing the total Sobol’ indices based on the

PCE coefficients. The reference values listed in Table 10 are obtained with 5.5× 106 Monte

Carlo simulations Blatman and Sudret (2011). Since the characteristics of the horizontal bars

impact more the displacement at midspan than the oblique ones, the total Sobol’ indices of

Eh and Ah are much larger than those of Eo and Ao. Moreover, due to the same type of

probabilistic distribution and the fact that the products EhAh (resp. EoAo) are the physically

meaningful quantities in the analysis, Eh and Ah (resp. Eo and Ao) have similar importance

to the response. Considering the variables of Pi, i = 1, . . . , 6, Pi and P7−i play the same role

due to the geometric symmetry of the structure and greater sensitivities are observed for

loads closer to the midspan. The above conclusions are clearly supported by the estimations

of rPCE and LARS. In contrast, the largely biased estimation by OMP might give a wrong

understanding of the physical phenomena. For instance, one may falsely conclude that the

actually negligible interactions among inputs have great effects on the midspan deflection,

since the sum of the total Sobol’ indices obtained by OMP is much larger than 1.

The distribution of the prediction error of total Sobol’ indices ∆ST is given in Fig. 15.
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Figure 15: Truss deflection - the estimation error of total Sobol’ indices with 50 data points (100

replications).

In addition to the largely biased and scattered OMP, rPCE and LARS has similar ∆ST

distribution with relatively small variances.

6.5 Estimation of specific absorption rate

Figure 16: Sketch of the human-exposure estimation in an indoor down-link scenario.

The population is surrounded by a increasing number of wireless local area networks

(WLAN) and the electromagnetic exposure of human body by WLAN access points needs to

be estimated to make sure the exposure level is under the limit Van Deventer et al. (2011).

Here, an indoor down-link scenario is considered, as sketched in Fig. 16. A high-resolution

model of a 8-year girl (1.36 m high), named as “Eartha”, from the Virtual Classroom Gosselin

et al. (2014), is standing inside a 4×3×2 m3 room, which is equipped with a WLAN source

operating at 2.4 GHz. The field emitted by the source is measured using the StarLab near-

field-measurement system, which is based on spherical wave expansion Hansen (1988), by

Microwave Vision Group (MVG R©). With an in-house finite-difference-time-domain (FDTD)

code, the whole-body specific absorption rate (SAR) Liorni et al. (2016), which is the system
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response here, is computed as the ratio of the total power absorbed in the body to the mass

of the human model and with the unit mW/kg.

The parameters considered are the position of the emitting source and the human model,

whose coordinates are denoted by (xs, ys, zs) and (xp, yp, zp), respectively. zp is set as 0,

since we consider that the human model is standing on the ground. The human orientation

θp, which is defined as the angle between the direction faced by the human model and x-

axis, may matter and is taken into account.The reflection by the walls, ceiling and ground

is neglected in the simulation and the WLAN source is attached to the walls. Thus, six

parameters are involved. xs, ys, zs, xp, yp are assumed to be uniformly distributed over

[0.3, 3.7], [0.3, 2.7], [0.25, 2], [0.05, 3.95], [0.05, 2.95] in meters and θp over [0, 360) in degrees,

where the lower bound value 0.3 m is the minimum distance between the human model and

the wall, 0.25 m is the minimum height of the source and 0.05 m is the minimum distance

of the WLAN source to the wall.

The number of input variables can be reduced via a coordinate transformation. Without

the reflection by the walls, the system response is actually driven by the relative position

between the source and the human model. Leaving zs as an independent input, the relative

position is represented in the (x, y) plane. In the local coordinate system of the source,

as shown in Fig. 16, position and orientation of the human model are denoted by polar

coordinates (rps , φ
p
s) and θps . Thus, four parameters rps , φps , θ

p
s , and zs are used in the

following uncertainty analysis.

(a) rPCE (R2
val = 0.9102) (b) LARS (R2

val = 0.8688) (c) OMP (R2
val = 0.7269)

Figure 17: SAR estimation - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP

with 340 data points (100 replications).

Sampling 350 points from the input space with the Latin-Hypercube sampling method,

the prediction performance of the obtained surrogate models is estimated with the leave-

many-out approach, where 10 data are randomly chosen from the experimental design for

validation and an approximation of R2
val is yielded by repeating this process 100 times.

Consequently, with the remaining 340 data, surrogate models are obtained with LARS,

OMP and rPCE. Then, a validation set of size 103 is computed and the results are shown

in Fig. 17. As seen, the whole-body SAR is smaller than 0.2 for most of cases (90 percents
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Figure 18: SAR estimation - box plots of R2
val with different values of k (100 replications).

LARS OMP LARS+OMP

k = 1 0.8799 0.7500

k = 3 0.9085 0.8186 0.9046

k = 5 0.9067 0.8771 0.9182

k = 10 0.8995 0.8854 0.9171

k = 20 0.9033 0.8628 0.9157

k = N 0.8995 0.8521 0.8893

all k 0.9068 0.8794 0.9178

Table 11: SAR estimation - mean of R2
val with 340 data points (100 replications).

for all replications) in this scenario. However, the three approaches can provide unbiased

estimations when the SAR value is larger than 0.2, in addition to the the superiority of rPCE

to LARS and OMP in variance and suppression of outliers. The associated box plots of R2
val

is given in Fig. 18. The refinement by rPCE reduces the variance of modeling by LARS and

OMP with different values of k, except for the case with OMP and k = 3. The combination

of LARS and OMP seems to be the best option for rPCE and actually is selected by the

suggested scheme in Section 4.2 during all replications (although three options are available

at each replication), since LARS has the same-level performances with OMP. Table 11 shows

the mean of R2
val.

The total Sobol’ indices are computed based on the PCE coefficients and the mean values

are presented in Table 12. As seen, the whole-body human exposure is mainly impacted by

the relative distance rps and the height of the source zs has a smaller influence. The small

value w.r.t. the relative angle between the human model and the source, φps , might be
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rPCE LARS OMP

rps 0.9809 0.9714 0.9761

φps 0.0128 0.0357 0.0984

zs 0.2175 0.1954 0.2925

θps 0.0098 0.0316 0.0743

∑
1.2210 1.2341 1.4412

Table 12: SAR estimation - mean of the total Sobol’ indices with 340 data points (100 replications).

(a) (b)

Figure 19: SAR estimation - contour of electric-field intensity (a) in the (x, y) plane and (b) its

representation in the polar coordinate system, zs = 0.
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Figure 20: SAR estimation - the prediction of whole-body SAR with 340 data points (100 replica-

tions).

explained by looking at the contours of electric-field intensity in Fig. 19, where the WLAN

source locates at the center of a wall and field values are sampled in the (xs, ys) plane with

zs = 0. As observed, the dependency of wave strength on radiation directions is weak. The

human orientation θps affects the distribution of SAR in the human body. However, as the

mean value of this distribution, the whole-body SAR is not much affected by θps . The sum
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of the total Sobol’ indices in Table 12 is larger than 1 and the excess values indicate that

zs impacts the response mainly through its interaction with rps . Such an interaction can be

viewed from the map of predicted SAR in Fig. 20, where φps , θ
p
s are fixed to zero and rps , zs

are uniformly sampled over [0.25, 1], [0.25, 2], respectively. The amplitude of each pixel in

the map is a mean of 100 predictions by the built PCE models during all replications. The

three approaches provide similar results.
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Figure 21: SAR estimation - the estimation of first-order and second-order Sobol’ indices with 340

data points (100 replications).

Considering the height of the human model is 1.36 m, tissues mainly locate at the heights

between 0.4 m ≤ zs ≤ 1.0 m. One observes that the whole-body SAR is rather small when

the source is farther from this influential region of the human model. rps and zs model

the distance between the source and this influential region together and their interactions

happen. The distribution of the estimated first-order and second-order Sobol’ indices is

proposed in Fig. 21, which presents that rps and its interaction with zs contribute the most

to the uncertainty of the response.

7 Conclusions

A new polynomial selection approach, called resampled PCE, has been investigated herein to

refine the ranking of importance of candidate polynomials in the context of sparse polynomial

chaos expansions. Based on the selected polynomials by LARS and OMP, with the simulation

of data variation by resampling, both the selection frequency and the increment on cross-

validation error associated with each basis polynomial are arguments in the computation of

a total score used in the ranking process. With the PCE model based on rPCE, sensitivity

analysis is conveniently performed via the analytical computation of the Sobol’ indices based

on the expansion coefficients.

Two factors impact the performance of rPCE. First, the data resampling is conducted by
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dividing the whole set of data into k similar-sized subsets. The value of k needs to be opti-

mized and set as a combination of good candidates {3, 5, 10, 20, N}. Second, the candidate

polynomials can be generated by LARS, OMP or both. If LARS performs much better than

OMP, the resulting selection of polynomials is based on LARS, and vice versa. Otherwise,

both the polynomials selected by LARS and OMP would all be treated as candidates in

rPCE.

The performance of rPCE, LARS and OMP is tested on two analytical functions, the

maximum deflection of a truss structure and the estimation of the whole-body SAR (specific

absorption rate). In terms of prediction and sensitivity analysis, OMP-based PCE modeling

seems the worst among these three methods, especially when the size of ED is small. In

contrast, the LARS-based approach generally generates a better model and the refinements

by rPCE are obvious in terms of prediction variance and the number of outliers. In any case,

rPCE performs as least as well as LARS for global sensitivity analysis.

Although the size of ED is fixed here, the samples can be automatically enriched to

reach a certain accuracy in a specific estimation (e.g., moments) Picheny et al. (2010);

Blatman and Sudret (2011); Dubreuil et al. (2014); Fajraoui et al. (2017). Moreover, since

the building processes with multiple resamples are independent in rPCE, the technique of

parallel computations can be applied to ensure the building efficiency of rPCE at the same

level with LARS or OMP.

In forthcoming investigations, more complex scenarios (e.g., electromagnetic dosimetry

for human models in the telecommunications network Liorni et al. (2015); Kersaudy et al.

(2015); Huang and Wiart (2017)) are to be analyzed, where a high-order PCE model is often

required and the classical approaches easily sink into the overfitting problem. Resampled

PCE has the potential to avoid this problem. The refined selection of polynomials reduces

the possibility of including redundant or irrelevant basis polynomials in the expansion, thus

would have better chances to reach a model with a proper complexity.
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