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Abstract

Constructing approximations that can accurately mimic the behavior of complex models

at reduced computational costs is an important aspect of uncertainty quantification. Despite

their flexibility and efficiency, classical surrogate models such as Kriging or polynomial chaos

expansions tend to struggle with highly non-linear, localized or non-stationary computational

models.

We hereby propose a novel sequential adaptive surrogate modeling method based on re-

cursively embedding locally spectral expansions. It is achieved by means of disjoint recursive

partitioning of the input domain, which consists in sequentially splitting the latter into smaller

subdomains, and constructing a simpler local spectral expansions in each, exploiting the trade-

off complexity vs. locality. The resulting expansion, which we refer to as “stochastic spectral

embedding” (SSE), is a piece-wise continuous approximation of the model response that shows

promising approximation capabilities, and good scaling with both the problem dimension and

the size of the training set.

We finally show how the method compares favorably against state-of-the-art sparse polyno-

mial chaos expansions on a set of models with different complexity and input dimension.

Keywords: surrogate modeling – spectral expansions – sparse regression – uncertainty quan-

tification

1 Introduction

In the era of machine learning (ML) and uncertainty quantification (UQ), it is not surprising

to see their boundary getting progressively blurred. Cross-fertilization between the two disci-
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plines is nowadays the norm, rather than an exception, and for good reasons. Physics-informed

neural networks are reaching unprecedented approximation power in UQ applications (see, e.g.,

(Raissi et al., 2019; Pang et al., 2019)), while sparse polynomial chaos expansions are used as

denoising regressors in Torre et al. (2019a), as high-dimensional regression tools in Lataniotis

et al. (2020), and on real-world experimental data in Abbiati et al. (2019). UQ-born Gaussian

process modeling Santner et al. (2003); Rasmussen and Williams (2006) is now a staple tool

in ML Rasmussen and Williams (2006), while support vector machines (Vapnik, 2013) found

their way in rare event estimation (Bourinet, 2016; Moustapha et al., 2018). This list could be

extended arbitrarily, as does the rich literature on the two topics, but this task lies outside the

scope of the current paper.

A common aspect across all of these works is the use of efficient and accurate functional

approximation tools. Regardless of the specific technique, the general concept is straightforward:

given a finite set of input realizations and their corresponding model responses, known as the

training set (ML) or experimental design (UQ), a suitable parametric function is calibrated

such that it accurately approximates the underlying (possibly unknown) input-output map. For

the sake of consistency, and a little bias towards UQ, we will refer to this process as surrogate

modeling, acknowledging that it is also known as emulation, metamodeling, reduced order- or

response surface- modeling, or sometimes simply regression. A variety of methods is available in

the surrogate modeling literature, which we cluster here in two classes:

• Localized surrogates: this includes interpolants (e.g. Gaussian process modeling Santner

et al. (2003), spline interpolation Reinsch (1967), sparse grids (Bungartz and Griebel,

2004)), but also local regression methods (e.g. Gaussian process regression Rasmussen and

Williams (2006), multivariate moving averages Lowry et al. (1992) or support vector ma-

chines (Vapnik, 2013)). These techniques rely on the availability of local information, e.g.

through kernels on point-wise distance measures or support vectors, to provide predictions

that are more accurate closer to the points in the training set. They therefore tend to

perform better in interpolation, rather than extrapolation, tasks.

• Global surrogates: they provide global approximations without capitalizing on locally avail-

able information. Examples in this class include spectral methods (e.g. polynomial chaos

expansions (PCE) Xiu and Karniadakis (2002); Blatman and Sudret (2011)), linear regres-

sion methods (e.g. compressive sensing Donoho et al. (2006); Lüthen et al. (2020), gen-

eralized linear models Nelder and Wedderburn (1972)). These techniques tend to achieve

better global accuracy (e.g. in terms of generalization error), thus offering some degree of

extrapolation capabilities, but also worse local accuracy than their localized counterparts.

Each of the two classes have advantages and disadvantages, but they both tend to perform

well on models that show homogeneous complexity throughout the input parameter space. Some
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models of practical engineering relevance, however, can show a highly localized behavior in

different regions of the parameter space. Common examples include likelihood functions used

in Bayesian inference Nagel and Sudret (2016), crash test simulations Serna and Bucher (2009),

snap-through models Hrinda (2010), and discontinuous models in general.

Different approaches with varying degree of complexity have been proposed in the UQ and ML

literature to address this kind of behavior. Examples include regression trees (Chipman et al.,

2010; Breiman, 2017), multivariate adaptive regression splines (MARS, (Friedman, 1991)), vari-

ous combinations of Kriging and PCE (PC-Kriging, Schöbi et al. (2015); Kersaudy et al. (2015)),

multi-resolution/multi-element polynomial chaos expansions Mâıtre et al. (2004); Wan and Kar-

niadakis (2006); Foo et al. (2008) and deep neural networks Goodfellow et al. (2016), among

others. Such methods can be broadly classified in two macro-families: global approximations

with local refinements (e.g. PC-Kriging), or domain-decomposition-based methods (regression

trees, MARS, multi-element polynomial chaos expansions). The class of global approximations

with local refinements rely on efficiently combining global surrogates (e.g. spectral decomposi-

tions as polynomial chaos expansions, or global regression models) with local interpolation tech-

niques (e.g. Gaussian processes or splines), to provide surrogates with acceptable extrapolation

capabilities and good local accuracy. The class of domain-decomposition-based methods relies

instead on the idea of partitioning the input parameter space into (often disjoint) subdomains,

followed by the use of regression-based surrogates in each subdomain. This divide-and-conquer

approach is particularly effective in reducing the complexity of the computational model in each

subdomain, hence allowing relatively simple techniques to be used as local approximants. A

prime example of this class of methods is given by regression trees (Chipman et al., 2010), where

the local surrogates are as simple as constant values.

A common trait of most surrogate models used in a UQ context is that they rely on some

form of regularity of the underlying computational model (e.g. smoothness or symmetry) to

achieve an efficient representation based on an experimental design of relatively small size. It is

therefore not surprising that they often show limited scalability with both the number of input

dimensions (the well known curse of dimensionality) and with the size of the experimental design.

Indeed, most local surrogates and interpolants rely on either kernel or clustering methods, neither

of which scales linearly with the number of dimensions. Moreover, their training requires the

solution of complex optimization problems that often have at least as many parameters as input

dimension Rasmussen and Williams (2006); Vapnik (2013). Global regression methods, on the

other hand, require the optimization and storage of a large number of parameters or coefficients,

which also rarely scales linearly in high dimension for non-trivial models.

To step further into scalability considerations, the number of available samples in the exper-

imental design deserves some discussion. Historically, UQ-based surrogate modeling has taken
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a parsimonious approach: focus on small but informative experimental designs (NED ≈ 101−2),

because of the high computational costs associated to engineering models, and to their smooth

behavior. On the other hand, ML has seen its expansion in the era of big data, focusing on

large experimental designs (NED ≈ 105−7), with often noisy data and highly non-smooth be-

havior. Albeit the gap is closing over time, a no-man’s land in between the two still exists:

computational models that show a complexity that is too high for classical surrogate model-

ing (e.g. extremely non-linear, or highly localized), but are expensive enough to only allow for

NED ≈ 103−4, regardless of the input dimension.

It is with this class of problems in mind that we propose a new surrogate modeling technique,

namely stochastic spectral embedding (SSE), that combines global spectral representations and

adaptive domain decompositions. We demonstrate that SSE can efficiently approximate models

with varying degrees of complexity across the input space, while maintaining favorable scaling

properties with both the input dimension and the size of the experimental design.

The paper is organized as follows: we first describe the general rationale and the details of

the algorithm in Section 2. Then, in Section 3 we tackle the issue of constructing an SSE from

an experimental design, in a regression context. In Section 4, we choose a reference spectral

decomposition technique (polynomial chaos expansions, PCE) and we apply SSE to two highly

complex analytical functions to showcase its capability to adapt to models with non-homogeneous

complexity, and its scalability to high dimensions and large experimental designs. Finally, we

also tackle two models of engineering complexity that are known to be challenging for classical

surrogate modeling methods. We present concluding remarks in Section 5 and discuss extensions

of the algorithm that could further improve its performance.

2 Stochastic spectral embedding: rationale and main al-

gorithm

As the name suggests, stochastic spectral embedding (SSE) is a combination of two main ingre-

dients: a stochastic spectral representation-based surrogate model and some form of embedding,

which implies the sequential construction of subdomains of the full input space. In other words,

SSE consists in iteratively refining a spectral surrogate model by means of embedding additional

surrogate models in subdomains of the parent expansion. In a sense, SSE can be seen as an

extension of regression trees Breiman (2017); Chipman et al. (2010) to a much wider class of

regression models, with the addition of a strong stochastic component due to the use of spectral

representations.
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2.1 Spectral expansions

We will consider herein the Hilbert space H of random variables of the form Y = M(X) with

finite second moments (E
[
Y 2
]
<∞), where X is an M−dimensional random vector with joint

distribution X ∼ fX(x). Let the space be equipped with the inner product:

〈g(X), h(X)〉H
def
= E [g(X)h(X)] =

∫

DX

g(x)h(x)fX(x) dx, (1)

where DX ⊆ RM is the support of X. Then, every Y ∈ H admits a spectral representationMS

of the form:

Y =MS (X)
def
=
∞∑

j=1

ajΨj(X), (2)

where the aj ∈ R are real coefficients, and the Ψj ’s form a countably infinite orthonormal basis

of the space:

E [Ψi(X)Ψj(X)] = 〈Ψi(X),Ψj(X)〉H = δij , (3)

where δij is the Kronecker delta. For notational simplicity, the inner product subscript H is

omitted hereinafter.

Spectral decompositions of the form of Eq. (2) have a property that is particularly important

for surrogate modelling, namely the fact that due to the orthogonality of the basis in Eq. (3),

their (finite) second moment is given by:

E
[
M(X)2

]
= 〈MS(X),MS(X)〉 =

∞∑

j=1

a2
j < +∞. (4)

The converging sum in Eq. (4) implies therefore that the coefficients aj must decay at least

geometrically when sorted by decreasing absolute value. This property is sometimes referred

to as compressibility, because it essentially means that most of the information on the model

variability is contained in a finite set of coefficients/basis elements. This allows one to truncate

the spectral decomposition in Eq. (2) even if in principle it has an infinite number of terms. The

truncated version of Eq. (2) is given by:

MS(X) ≈ M̂S(X) =
∑

j∈A
ajΨj(X), (5)

where A is a truncation set (typically related to the complexity of the basis functions, e.g.,

maximum frequency in Fourier expansions, or maximum polynomal degree in PCE). The rapid

decay in the coefficients of spectral expansions is the main reason why many powerful surrogate

modeling techniques that belong to the so-called class of compressive sensing (Donoho et al.,

2006; Candès and Wakin, 2008), have proven to be very effective in various recent applications

(Blatman and Sudret, 2011; Torre et al., 2019a; Lüthen et al., 2020). Compressive sensing uses

sparse regression tools to identify the best truncation set A based on the available information
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in the experimental design.

Because of the truncation introduced in Eq. (5), the expansion is in general not exact, hence we

define the residual R(X) as:

R(X) =M(X)− M̂S(X). (6)

Due to the convergent behavior of the truncated expansion, it follows that Var [R(X)] �
Var

[
M̂S(X)

]
. By definition, spectral expansions belong to the class of global representations,

i.e. the basis functions in Eq. (5) have support on the entire domain DX . Therefore, highly

localized models, or those with inhomogeneous behavior throughout the input domain tend to

require an extremely large number of terms in the truncated expansion to achieve satisfactory

approximation accuracy (Gibbs phenomenon). As an example, the number of terms in the well-

established polynomial chaos expansion (Xiu and Karniadakis, 2002; Blatman and Sudret, 2011)

can grow very fast when the underlying model has strongly localized behavior, because a high

polynomial degree is required for an accurate representation.

2.2 A sequential partitioning approach

To alleviate this limitation, while still capitalizing on the powerful convergence properties of

spectral methods, SSE constructs a sequence of spectral expansions of manageable complexity

on increasingly smaller subdomains of the original domain, D`,pX ⊆ DX , each time expanding

only the local residual from the previous level. While the idea of partitioning the input space

in smaller subdomains and constructing a surrogate model in each is certainly not new in UQ

(see, e.g. Mâıtre et al. (2004); Wan and Karniadakis (2006)), the use of a sequence of residuals

in SSE sets it apart from other divide and conquer methods.

In more formal terms, SSE in its basic form can be written as a multi-level expansion of the

form:

MSSE(X) =

L∑

`=0

P∑̀

p=1

1D`,p
X

(X) R̂`,pS (X), (7)

where L is the total number of expansion levels, P` is the number of subdomains at level `,

1D`,p
X

(X) is the indicator function of the subdomain D`,pX . Finally, R̂`,pS (X) is the truncated

expansion of the residual of the SSE up to level `− 1, R`(X),

R`(X) =M(X)−
`−1∑

k=0

Pk∑

p=1

1Dk,p
X

(X)R̂k,pS (X). (8)

In the above equations, each residual term is expanded onto a local orthonormal basis as

follows:

R̂k,pS (X) =
∑

j∈Ak,p

ak,pj Ψk,p
j (X). (9)
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(a) ` = 0 (b) ` = 1 (c) ` = 2

Figure 1: Example of a possible partitioning sequence for an SSE with L = 2 and P` = 2` (see

Eq. (7)), and bounded uniform marginal distributions. In this simple example, each subdomain is

split in two equal parts across a random direction.

A local inner product is defined in the domain Dk,pX :

〈
Ψk,p
i (X),Ψk,p

j (X)
〉
k,p

=

∫

Dk,p
X

Ψk,p
i (x)Ψk,p

j (x)fk,pX (x) dx, (10)

where:

fk,pX (x) = 1Dk,p
X

(x)
fX(x)

Vk,p (11)

is the joint PDF of the input parameters restricted to the subdomain Dk,pX and rescaled by its

probability mass Vk,p:
Vk,p =

∫

Dk,p
X

fX(x) dx. (12)

For illustration purposes, Figure 1 shows an example of sequential partitioning for a simple

2D bounded domain, obtained by splitting each subdomain in two equal subdomains across a

random dimension. When ` = 0, there is only a single subdomain D0,1
X

def
= DX and the residual

is R̂0,1
S (X) = M̂S(X) from Eq. (6).

A crucial aspect of SSE is that by partitioning the entire input domain DX into smaller

subdomains D`,pX , it trades the complexity of the single, often global expansion in Eq. (5) for a

(possibly large) number of local expansions with much smaller truncation sets. In cases where the

spectral basis is continuous in Eq. (5), SSE results in a final piecewise continuous approximation,

but no continuity is ensured on the boundaries of the subdomains. Mean-square convergence of

the procedure is guaranteed by the spectral convergence in each level, which implies that the

residual local variance in each subdomain is in expectation decreasing rapidly. In other words, for

each increasing level ` in Eq. (7), new discontinuity bounds are generated during the partitioning

step, but the variance of the overall residual is reduced, thus resulting, in expectation, in lower
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amplitude discontinuities. This behavior is analogous to that of regression trees Friedman (1991);

Breiman (2017).

2.3 The SSE algorithm

Algorithmically, SSE consists of a local refinement sequence of a global spectral expansion into

sequentially smaller subdomains D`,pX . For notational simplicity, we introduce here a set of local

random vectors distributed according to the local PDF in Eq. (11): X`,p ∼ f `,pX (x). We further

choose a certain partitioning strategy that is discussed in Section 3.2.

Then, the SSE algorithm can be written as:

1. Initialization:
(a) ` = 0, p = 1

(b) D`,pX = DX
(c) R`(X) =M(X)

2. For each subdomain D`,pX , p = 1, · · · , P`:
(a) Calculate the truncated expansion R̂`,pS (X`,p) of the residual R`(X`,p) in the current

subdomain

(b) Update the residual in the current subdomain R`+1(X`,p) = R`(X`,p)− R̂`,pS (X`,p)

(c) Split the current subdomain D`,pX in NS subdomains D`+1,{s1,··· ,sNS
}

X based on a par-

titioning strategy

(d) If ` < L, `← `+ 1, go back to 2a, otherwise terminate the algorithm
3. Termination

(a) Return the full sequence of D`,pX and R̂`,pS (X`,p) needed to compute Eq. (7).

Note that in steps 2a and 2b of the previous algorithm the residual R`(X`,p) is only indexed

by `, but not by the subdomain index p. This is because the residual is fully defined with respect

to the previous level `, which is independent on the particular subdomain under consideration

(see Figure 1).

3 Building a stochastic spectral embedding from data

For it be useful in practical applications, SSE needs to be “trainable” from a finite-size exper-

imental design. Hereinafter, we consider an experimental design X =
{
x(1), · · · ,x(N)

}
and its

corresponding model evaluations Y =
{
y(1), · · · , y(N)

}
as the only data available for training.

Upon closer inspection of the algorithm in Section 2.3, the training phase of the SSE repre-

sentation consists in estimating the following quantities from the available experimental design:

1. The expansion coefficients of the local residual in each level and subdomain a`,p (Eq. (9)).

2. A partitioning strategy at each level.

3. The total number of splitting levels, L.
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In the following sections we introduce a comprehensive adaptive strategy based on sparse linear

regression to perform each of these steps from a given experimental design.

3.1 Calculating the residual expansion coefficients

For a specific subdomain D`,pX , a local spectral expansion of the residual R`S needs to be con-

structed from the available experimental design. We therefore define a so-called local experimen-

tal design X `,p ⊆ X , the subset of the original experimental design lying within the subdomain

D`,pX :

X `,p def
=
{
x(j), j = 1, · · · , N `,p, such that x(j) ∈

(
X ∩ D`,pX

)}
. (13)

A similar notation is used to identify the corresponding model responses, Y`,p. Using the aux-

iliary local random vector X`,p introduced in the previous section, the residual expansion in

Eq. (9) reads:

R̂`,pS (X`,p) =
∑

j∈A`,p

a`,pj Ψ`,p
j (X`,p). (14)

Given the local experimental design X `,p and a truncated local spectral basis Ψ`,p
j , j ∈ A`,p, the

task of identifying the coefficients a`,p
def
=
{
a`,pj , j ∈ A`,p

}
can then be cast as a linear regression

problem (see, e.g., Berveiller et al. (2006)):

a`,p ≈ â`,p = arg min
a

∑

x(i)∈X `,p


R`(x(i))−

∑

j∈A`,p

a`,pj Ψ`,p
j (x(i))




2

. (15)

While in principle the regression problem in Eq. (15) can be solved through ordinary least

squares, recent literature on the topic of compressive sensing has amply demonstrated that sparse

regression approaches can provide great benefits in terms of accuracy, especially for relatively

small experimental designs Donoho et al. (2006); Blatman and Sudret (2011); Lüthen et al.

(2020). A review of the available techniques for this purpose lies outside the scope of this paper

and is extensively explored for one popular class of spectral representations (polynomial chaos

expansions) in Lüthen et al. (2020).

3.2 Partitioning strategy

A second step necessary to construct SSE from data is to identify a proper partitioning strategy

between levels. Any strategy for the partitioning of the input domain DX can be employed for

Eq. (7), under the sole condition that at each level `:

P⋃̀

p=1

D`,pX = DX . (16)

While a comprehensive study on different partitioning strategies would be interesting, for the

sake of simplicity we adopt hereinafter a rather simple approach, similar in spirit to regression
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trees Breiman (2017). In other words, we split every subdomain in two parts of equal probability

mass along one of the input directions, d`,p ∈ {1, · · · ,M}. Note that the direction in itself can

be different for each subdomain, even on the same level.

Under very general conditions, it is possible to bijectively map any random vector X with

joint distribution FX , to the uniform independent random vector U ∼ U(0, 1)M through an

appropriate isoprobabilistic transform (e.g., the Rosenblatt transform Rosenblatt (1952); Torre

et al. (2019b)):

U = g(X)

X = g−1(U),
(17)

where g(·) denotes the isoprobabilistic transform. This mapping simplifies the proposed parti-

tioning strategy: splitting is performed in the uniformly distributed quantile space U , and the

resulting split domains D`,pU are mapped back to the input space X via the inverse transform (see

Eq. (17)). This has several computational benefits, including proper treatment of unbounded

variables. Figure 2 shows graphically a two-dimensional example of partitioning in the quan-

tile (uniform) space U , and its corresponding mapping to unbounded random variables in the

physical space X.

In the general case, a strategy is needed to choose a specific splitting direction d`,p ∈
{1, · · · , M} for each existing subdomain D`,pX . Different heuristic reasoning can be used to

make this choice, including purely random splitting (as in Figure 2), using the direction of maxi-

mum residual difference, or estimates of the variability of the R̂`,pS in each direction (following the

same rationale as in Shields (2018)). The optimal criterion can be application-specific, because

it may in principle depend on the chosen spectral representation.

3.3 Sparse tree representation and expansion truncation

In a regression context, it is difficult to choose a priori a truncation on the maximum number

of levels L in the expansion in Eq. (7). Because the samples may be unequally distributed, some

subdomains at each level may be empty, or more formally X `,p = ∅ for some combinations of

` and p. We therefore take a straightforward approach to obviate this issue, by initializing the

residual at every level and subdomain to the null function, hence a`,p = 0. The coefficients are

then updated only in the subdomains that satisfy
∣∣X `,p

∣∣ ≥ Nmin, where Nmin is a parameter of

the SSE algorithm that represents the minimum number of points in a subdomain required to

justify an expansion. The SSE expansion is truncated when no new updates are possible given

the current experimental design X , or more formally:

L = min
{
` :

∣∣X `,p
∣∣ < Nmin, ∀ p ∈ {1, · · · , P`}

}
− 1. (18)
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(a) ` = 0 (b) ` = 1 (c) ` = 2

Figure 2: Graphical representation of the partitioning strategy described in section 3.2 for a two-

dimensional problem with independent random variables. Upper row: partitioning in the quantile

space; Lower row: partitioning in the original space. Red dots show a random sampling from the

original distributions in both spaces, and serve as a visual aid to recognize the mapping between

the two probability spaces from Eq. (17). The splitting direction in each subdomain is determined

randomly in this example.
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In addition to providing a suitable stopping criterion for the algorithm in Section 2.3, an

added benefit of this strategy is that only the residual expansions that were effectively updated

need to be stored in memory. This provides a degree of sparsity in the representation and

potentially significantly reduces the memory fingerprint of the method, especially in the case of

a large number of points in the experimental design.

Note that, for an experimental design of size N and a minimum number of points per expan-

sion Nmin, the following holds:

2L̄Nmin ≤ N, (19)

where L̄ is the expected value of the maximum L in (18) and therefore

L̄ ≤
⌊

log2

N

Nmin

⌋
. (20)

3.4 Error estimation

In the context of surrogate modeling, assessing the accuracy of the approximation is an important

task. Arguably the best known accuracy estimator in function approximation is the so-called

generalization error EGEN, which for SSE is given by

EGEN
def
= E

[
(M(X)−MSSE(X))2

]
. (21)

A direct estimation of this quantity is in general impossible, as it would require the availability

of an extensive validation set. Instead, because we adopt a regression approach to calibrate

the spectral decompositions in each subdomain, we estimate the generalization error through

leave-one-out cross-validation (Chapelle et al., 2002; Blatman and Sudret, 2010) that is available

for each of the local expansions.

For notational convenience, we introduce here the set of terminal domains DT =
{
DL,1X , · · · ,DL,PL

X

}
,

i.e. those domains that belong to the last expansion level L in Eq. (7). By definition DT is a

complete partition of the input domain DX . Because of the sequential nature of SSE, which

locally refines the previous approximation level with the expansion of the residual in the current

subdomain, an accurate estimate of the local generalization error in each of the terminal domains

would then suffice to provide an estimate of the overall EGEN of the full SSE. If we denote the

local residual error:

E`,pGEN = E
[(
R`(X`,p)− R̂`,pS (X`,p)

)2
]
, (22)

then the global generalization error is simply given by the average error in each terminal domain

weighted by the corresponding probability mass in Eq. (12):

EGEN = E
[
EL,pGEN · VL,p

]
=

1

PL

PL∑

p=1

EL,pGEN · VL,p. (23)
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To provide an estimator based on the available experimental design X , we only need an

estimator of EL,pGEN. Arguably the most common tool for the estimation of generalization error in

regression problems is k-fold cross-validation (see, e.g., Vapnik (2013)). The special case of k = N

is also known as leave-one-out error and marked ELOO. For ordinary least square regression it

can be calculated analytically from the expansion coefficients and the basis functions (Chapelle

et al., 2002; Blatman and Sudret, 2010).

Given the sparse tree representation described in Section 3.3, it cannot be guaranteed that

the residual R` is expanded in every terminal domain. Therefore, during the splitting phase

of the SSE algorithm (Step 2c of the algorithm in Section 2.3) we initialize the error of all the

subdomains D`+1,{s1,··· ,sNS} of the current subdomain D`,p to the leave-one-out error of the

latter E`,pLOO:

E
`+1,{s1,··· ,sNS}
LOO = E`,PLOO. (24)

Then, we update the error estimate in each subdomain during Step 2a only if the conditions

for its expansion hold (see Section 3.3). As a result, every terminal domain is either assigned

its own leave-one-out error if it contains a residual expansion, or inherits the leave-one-out error

from the last ancestor domain that was expanded.

By using the leave-one-out error in each terminal domain as an estimator of its generalization

error ÊL,pGEN = ÊL,pLOO, the empirical estimator of Eq. (23) reads:

ÊGEN =
1

PL

PL∑

p=1

ÊL,pLOO · VL,p. (25)

In most metamodeling applications, it is customary to normalize the estimated error by the

variance of the experimental design, to obtain a dimensionless error measure. The relative error

is thus defined as:

ε̂GEN =
1

PLVar [Y]

PL∑

p=1

ÊL,pLOO · VL,p. (26)

4 Applications

In this section we aim at showing the performance of SSE on a set of applications that can

prove challenging for standard metamodeling techniques. Because of its widespread use in the

uncertainty quantification of engineering models, we choose as a spectral decomposition tech-

nique polynomial chaos expansions Xiu and Karniadakis (2002); Blatman and Sudret (2011)

(hereinafter PCE). This choice is also quite convenient due to several specific properties of PCE,

that combine well with SSE.
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4.1 Synergies with polynomial chaos expansions

By using the same notation as in Section 2, and assuming that X has independent components,

the truncated polynomial chaos expansion of a finite variance model can be written as Le Gratiet

et al. (2016):

MPCE(X) =
∑

α∈A
aαΨα(X), (27)

where α is a multi-index that identifies the polynomial degree in each variable, A is a suitable

truncation set (e.g. A = AM,d containing all multivariate polynomials with degree ≤ d), and

the Ψα(X) form an orthogonal basis of multivariate polynomials. The latter can be obtained

via tensor product of univariate polynomials as follows:

Ψα(X) =

M∏

i=1

Φ(i)
αi

(Xi), (28)

where Φ
(i)
αi is a polynomial of degree αi that belongs to the family of univariate polynomials

orthogonal with respect to the input PDF of Xi ∼ fXi(xi) and the inner product in Eq. (1).

An interesting property of the univariate polynomials that synergizes well with our proposed

SSE, is that it is possible to construct polynomials orthogonal to almost any input PDF through

Gram-Schmidt orthogonalization (for an extensive review, see Gautschi (2004); Ernst et al.

(2012)). In the context of SSE, this property has a powerful implication: in each subdomain

D`,p the basis elements Ψ`,p
α (X`,p) in Eq. (9) are still polynomial functions of the original input

variables X.

This property, together with the analytical integrability of polynomials, allows us to derive

several statistics of interest of PCE-based SSE analytically. Let us first introduce the notion of

flattened representation: because SSE is a polynomial in the original variables in every level and

subdomain, this also holds for the terminal domains introduced in Section 3.4. Therefore, one

can project the full SSE in Eq. (7) as a local PCE onto each terminal domain:

MF
SSE(XL,p) =

∑

α∈AT
cpαΨL,p

α (XL,p), (29)

where AT is a suitable truncation set for the projection to be exact, and the cpα are the corre-

sponding coefficients. The latter can easily be computed either analytically or exactly through

quadrature. Note that, while the basis elements in the PCE in Eq. (29) correspond to the Ψk,P
j

in Eq. (9) (they only depend on the input PDF in Eq. (11)), in general the coefficients will not

be the same, i.e. cpα 6= aL,pα in Eq. (9).

Because PCE contains as a basis element the constant term, it is straightforward to demon-

strate that the expected value of Eq. (7) reads:

E [MSSE(X)] =

PL∑

p=1

cp0 VL,p, (30)
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which is the weighted mean of all the mean values of the flattened representation in Eq. (29).

Similarly, the variance can be calculated as:

Var [MSSE(X)] =

(
PL∑

p=1

VL,p
∑

α∈AT
(cpα)

2

)
− E [MSSE(X)]

2
. (31)

A number of other quantities of engineering interest (e.g. conditional variances, Sobol’ sen-

sitivity indices, etc.) can be derived similarly from the flattened representation. A selection of

those is reported in A.

From a technical perspective, the flattened representation in Eq. (29) contains all the infor-

mation needed to evaluate Eq. (7) on a new point, but at a much lower storage cost, as only

the final sets of coefficients cpα and basis indices AT need to be stored. This has additional

advantages during the prediction of the response on new points, because it only requires the

prediction of a single local expansion in the appropriate terminal domains, rather than that of

all of its ancestors as in the original formulation in Eq. (7). More formally, for a point x0 ∈ DX
it is sufficient to find p0 ∈ 1, · · · , PL for which x0 ∈ DL,p0X and evaluate the flattened SSE from

Eq. (29) for p = p0.

4.2 Example applications and testing strategy

To compare the performance of SSE over sparse PCE, we choose four reference problems of

increasing complexity: (i) a one-dimensional analytical function with localized non-polynomial

behavior, (ii) a 100-dimensional analytical function with decreasing parametric importance in

higher dimensions, (iii) an 8-dimensional engineering model describing the performance function

of a damped oscillator and (iv) a three-dimensional discontinuous engineering model describing

the snap-trough behavior of a truss structure.

Among the ingredients identified in Section 2.3 is a partitioning strategy, to choose the

splitting direction in every subdomain. After extensive testing, we found that splitting according

to the direction of highest variability of R̂`,pS proved to be the most effective, especially for smaller

experimental designs. We therefore split each subdomain D`,pX into two subdomains with equal

probability mass, i.e. NS = 2, along the direction that has the maximum first order Sobol’

indexSobol’ (1993), as analytically derived from the coefficients of R̂`,pS (Sudret, 2008).

In all applications we compare the convergence behavior of SSE vs. its spectral counterpart

PCE as a function of the experimental design (ED) sizes NED. To assess the robustness of the

results, we consider 10 independent replications of each ED, and provide the results in Tukey box-

plots. For each experimental design size, SSE construction is terminated for Nmin = min{5M, 50}
(see Section 3.3).

As a spectral technique, we adopt the adaptive sparse-PCE based on LARS approach de-

veloped in Blatman and Sudret (2011) in its numerical implementation in UQLab (Marelli and
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Sudret, 2014, 2019). Each R̂`,pS is therefore a degree- and q-norm-adaptive polynomial chaos

expansion. We further introduce a rank truncation of r = 2 to cope with high dimensional

problems, i.e. we limit the maximum number of input interactions (Marelli and Sudret, 2019)

to 2 variables at a time. The truncation set for each spectral expansion (Eq. (27)) thus reads:

AM,p,q,r = {α ∈ NM : ||α||q ≤ p, ||α||0 ≤ r}, (32)

where

||α||q =

(
M∑

i=1

αqi

) 1
q

, q ∈ (0, 1]; ||α||0 =
M∑

i=1

1{αi>0}. (33)

The q-norm is adaptively increased between q = {0.5, · · · , 0.8} while the maximum polyno-

mial degree is adaptively increased in the interval p = {0, 1, · · · , pSSE
max}, where the maximum

degree pSSE
max is a parameter for each case study.

In all examples the SSE performance is compared to standard polynomial chaos expansions

on the same ED. These PCEs are constructed with the same adaptive approach used for the SSE

expansions. Their maximum degree, however, is denoted by pPCE
max . It is set to the highest value

our computational budget admitted for a given dimensionality but at least to pPCE
max > 2 · pSSE

max.

We compare the performance of SSE and PCE in terms of the relative mean squared error

(MSE) η, a well known error estimator defined as

η
def
=

E
[(
M(X)− M̃(X)

)2
]

Var [M(X)]
(34)

where M̃ is either the PCE or SSE surrogate model. This error measure was estimated with

standard Monte Carlo simulations using a large sample of size N = 106.

4.3 Application 1: one-dimensional analytical function

We first present a simple one-dimensional example that is meant to illustrate how SSE behaves

with a model on which PCE is expected to fail. The model is given by:

M(X) = −X + 0.1 sin (30X) + exp (−(50(X − 0.65))2), (35)

where X ∼ U(0, 1) is a uniformly distributed random variable. The first two terms in Eq. (35)

(polynomial and sinusoidal) can be accurately approximated by a low degree PCE, while the third

term (squared exponential) causes PCE to require extremely high degree due to the localized

peak it introduces at x = 0.65 (see Figure 3). In the same Figure we detail four SSE refinement

stages, with NED = 200 and pSSE
max = 5. For every step we show on the top panel a graphical

representation of the various subdomains identified by the algorithm, with the subdomains of

level ` highlighted in orange. In the middle panel we plot the true model (orange solid line) and
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(a) ` = 0 (b) ` = 1

(c) ` = 2 (d) ` = 5

Figure 3: One-dimensional analytical function: selected steps of the SSE construction and the

resulting domains, residuals and total approximation. The terminal domains (Eq. (29)) are high-

lighted in orange. 17



Figure 4: One-dimensional analytical function: comparison of RMSE convergence between PCE

and SSE as a function of the number of points in the experimental design. A slight horizontal offset

is added to improve readability.

the current SSE approximation MSSE as a dashed blue line. In the bottom panel, we plot the

corresponding residual M(X) −MSSE(X) as a solid blue line in the same vertical scale as in

the middle panel, for comparison.

In the first step in Figure a the main trend of the function is identified, leaving a residual

that mainly consists of the sine oscillation and the exponential peak. In the following step

(Figure b) the approximation is not greatly improved in the subdomain D1,1
X : [0, 0.5], because the

available maximum degree pSSE
max is not sufficiently high, resulting in a mostly constant polynomial

correction. In subdomain D1,2
X : [0.5, 1], the same problem is observed and the insufficient

maximum degree results only in a small global improvement. In the next step (Figure c), the

residual in D2,1
X , D2,2

X and D2,4
X is significantly reduced to a very small oscillation around 0. After

the final step (Figure d), the overall approximation is has a high accuracy.

From the residual progression it can be seen that the algorithm needs more levels to accurately

approximate the target function near regions of high complexity, i.e., near the exponential peak.

While this property does not affect the convergence when an experimental design of fixed size is

chosen, it can be exploited in adaptive experimental design settings (Wagner et al., tted).

As expected, the final SSE accuracy increases with the size of the experimental design. In Fig-

ure 4, we compare SSE and PCE on a set of experimental design sizes of NED = {10, 50, 100, 200}
in terms of their relative mean squared error (MSE, Eq. (34)). PCE is constructed with a max-

imum adaptive degree of pPCE
max = 20. At the extremely small experimental design of NED = 10,

the SSE approach is comparable to PCE. As the available experimental design points increase,

SSE exhibits faster convergence in RMSE than PCE, and from NED = 50 onwards SSE consis-
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tently outperforms PCE in this problem. At larger experimental designs, SSE can accurately

reproduce the localized behavior of this test function, while not being constrained by the global

nature of PCE basis functions defined on the full domain. At the final ED size of NED = 200

the SSE relative MSE is at least one order of magnitude smaller than the PCE error. There

is considerable variability in the relative MSE between individual realizations. This can be at-

tributed to the squared exponential peak in Eq. (35): depending on the input realizations in the

experimental design, it is captured better or worse by the available data.

4.4 Application 2: 100-dimensional analytical function

With this example we want to explore the scalability of SSE in high dimensional problems. This

example uses a variant of a test function introduced in Zhou (1998). We modified the function

to have a high nominal dimensionality (M = 100), and relatively low effective dimensionality

meaning that the majority of the variability can be attributed to a small number of input

parameters. It takes the form

M(X) =
10M

2
[ϕ(10 · (X − 1/3)) + ϕ(10 · (X − 2/3))] ,

where ϕ(x)
def
= (2π)−M/2 exp

(
−1

2

M∑

i=1

a2
ix

2
i

)
.

(36)

The factor a = (a1, · · · , aM ) modifies the original function and serves as a dimension-

dependent weight that decays exponentially, as:

ai = e−(i−1), with i ∈ {1, · · · ,M}. (37)

The input random vector X is distributed according to a multivariate standard uniform

distribution with independent marginals, X ∼ fX(X) =
∏100
i=1 U(0, 1).

Two contour cross-section plots of this function are shown between dimensions {X1, X2} in

Figure a and between {X1, X10} in Figure b. The effect of the decay factor a is clearly visible

and results in a close-to constant behavior along the parametric dimension X10.

To manage the computational complexity, in this example we limit the maximum polynomial

degree in SSE to pSSE
max = 2 and compute the SSE with total experimental design sizes of NED =

{1,000; 2,000; 5,000; 10,000}. For PCE, we choose a maximum degree of pSSE
max = 7, which is the

maximum degree we could run on a standard desktop computer with 16GB of RAM before

incurring memory issues. The resulting comparison between PCE and SSE with respect to the

relative MSE is plotted in Figure 6. In this scenario, the SSE algorithm outperforms PCE

on all investigated experimental designs. In fact, PCE seems to benefit from increasing the

experimental design only marginally, with a relative error of η ≈ 0.25 for all considered values of

NED. SSE shows instead a convincing convergence behavior, by reducing its residual by almost
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(a) X1 and X2 (b) X1 and X10

Figure 5: 100-dimensional analytical function: bivariate contour cross-section plots.

two orders of magnitude across the various experimental designs. Given the high dimensionality

of this problem, the approximation power of sparse PCE is limited by the curse of dimensionality,

rather than the lack of data. By reducing the complexity of the spectral representation at

each level, SSE can better exploit informative datasets without incurring similar computational

bottlenecks.

4.5 Application 3: damped oscillator

Damped oscillators are a class of engineering models that is commonly used in structural reliabil-

ity problems (Dubourg, 2011). This class of problems is known to be often difficult to surrogate,

due its high non-linearity and often local behavior. A sketch of the oscillator considered in this

example is displayed in Figure 7. It consists of a primary and secondary system with masses

mp,ms, stiffnesses kp, ks and damping ratios ζp, ζs. The subscripts p and s denote the primary

and secondary system properties, respectively.

In this example we consider the limit state function of the damped oscillator given by

M(X) = Fs − p · ks
√

ES [x2
S ], (38)

where Fs is the force capacity of the secondary spring, p is the so-called peak factor and xS is

the relative displacement between the primary and secondary systems. The mean-square relative

displacement of the secondary spring under a white noise base acceleration S is analytically given
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Figure 6: 100-dimensional analytical function: comparison of RMSE convergence between PCE and

SSE as a function of the number of points in the experimental design. A slight horizontal offset is

added to improve readability.

Figure 7: 8-dimensional damped oscillator : model setup.
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Variable Description Distribution Mean C.O.V.

mp primary mass Lognormal 1.50 0.1

ms secondary mass Lognormal 0.01 0.1

kp primary spring stiffness Lognormal 1.00 0.2

ks secondary spring stiffness Lognormal 0.01 0.2

ζp primary damping ratio Lognormal 0.05 0.4

ζs secondary damping ratio Lognormal 0.02 0.5

S0 white noise intensity Lognormal 100.00 0.1

Fs secondary spring force capacity Lognormal 15.00 0.1

Table 1: 8-dimensional damped oscillator : marginal distributions.

by:

ES
[
x2
S

]
= π

S0

4ζsω3
s

ζaζs
ζpζs(4ζ2

a + θ2) + γζ2
a

(ζpω
3
p + ζsω

3
s)ωp

4ζaω4
a

, (39)

where S0 is the white noise intensity, ωp =
√
kp/mp and ωs =

√
ks/ms are the natural frequen-

cies of the two subsystems, and the further abbreviations are used: γ = ms/mp, ωa = (ωp+ωs)/2,

ζa = (ζp + ζs)/2 and θ = (ωp − ωs)/ωa.

All variables but the peak factor (set to p = 3) are modelled as independent random variables

and are summarized in the random vector X = {mp,ms, kp, ks, ζp, ζs, S0, Fs}. Their marginal

distributions are lognormal, with the parameters given in Table 1.

For the convergence study, we choose experimental design sizes ofNED = {1,000; 5,000; 10,000; 20,000}.
The maximum degrees are set to pSSE

max = 4 and pPCE
max = 10 for SSE and PCE, respectively. Fig-

ure 8 summarizes the results. This benchmark is known to be quite difficult to approximate with

standard surrogate model techniques, as it is clear from the scale of the RMSE in Figure 8. For

the two smaller experimental design sizes NED = {1,000; 5,000}, both PCE and SSE perform

quite poorly, with SSE showing a similar median behavior, but much higher variability. For

larger experimental designs, however, the SSE performance improves significantly over that of

PCE, until at NED = 20,000 the relative MSE of SSE is half that of PCE. This behavior is in

line with the previous findings: provided enough information, SSE can provide higher expressive

power than its static counterpart.

4.6 Application 4: truss with discontinuous snap-through behavior

As a last example, we address another problem of engineering interest: the geometrically non-

linear two-bar truss structure shown in Figure 9. The structure itself is defined by the initial

inclination α0 and length `0 of the two bars. A peculiarity of this structure is that it exhibits
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Figure 8: 8-dimensional damped oscillator : comparison of RMSE convergence between PCE and

SSE as a function of the number of points in the experimental design. A slight horizontal offset is

added to improve readability.

(a) Before snap-through (b) After snap-through

Figure 9: 3-dimensional snap through truss: illustration of the truss structure subject to snap-

through
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Variable Description Distribution Mean C.O.V.

P load Gumbel 430 0.20

E Young’s modulus Lognormal 210 0.10

A cross sectional area Gaussian 10 0.05

Table 2: 3-dimensional snap-through truss: marginal distributions.

the so-called snap-through behavior. At first, the vertical displacement w of such a structure

typically increases linearly with an increasing load P (Figure a). Once a specific critical load

is exceeded, the structure snaps through to another equilibrium point, at which the load can

be increased further (Figure b). The main implication of this kind of behavior is that it is

discontinuous in some critical regions of the input space, which are in general unknown a priori.

The vertical displacement w of the truss tip is related to the angle α by

M(X) = w = `0 cosα0(tanα0 − tanα(X)). (40)

At the same time, α needs to satisfy the following constitutive equation that depends on the

random vector X = {P,E,A}:

P = −2EA tanα(cosα0 − cosα). (41)

For a given realization of X, this equation can be solved numerically for α, the value of which

then is used in Eq. (40) to estimate the corresponding vertical displacement.

In this study we set the constants l0 = 5 m and α0 = 10◦, and treat the parameters X as

independent random variables with marginals listed in Table 2 (Moustapha and Sudret, 2019).

We investigate experimental designs of sizes NED = {100; 500; 1,000; 2,000; 5,000} and set the

maximum polynomial degrees to pSSE
max = 4 and pPCE

max = 10 for SSE and PCE, respectively.

Figure 10 summarizes the convergence behavior of PCE and SSE in this benchmark. For all

experimental designs, SSE outperforms sparse PCE. The dispersion of the RMSE is also signifi-

cantly improved. These observations can be explained with the well-known Gibbs phenomenon

in spectral representations, that leads to large discrepancies close to discontinuities. The effect

is far less severe (although still present) for SSE than for PCE because it is restricted to those

subdomains that actually contain the discontinuity. This behavior is investigated more closely

in Figure 11, where a cross section through M is shown. It is created by setting A to its mean

value and drawing a map proportional to the point-wise discrepancy in the remaining directions.

We adjust transparency of the model response to reflect the underlying joint PDF: solid colors

correspond to high probability, fading ones to low probability. Figures a and b show the relative

point-wise error at an experimental design size of NED = 5,000 for PCE and SSE, respectively.

Figure c shows instead the domain-wise error estimator Ê`,pLOO from Eq. (25).
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Figure 10: 3-dimensional snap-through truss: comparison of RMSE convergence between PCE and

SSE as a function of the number of points in the experimental design. A slight horizontal offset is

added to improve readability.

(a) PCE point-wise error:

(M(x)−MPCE(x))
2/Var [M]

(b) SSE point-wise error:

(M(x)−MSSE(x))
2/Var [M]

(c) SSE domain-wise error

estimator:

Ê`,p
LOO/Var [M]

Figure 11: 3-dimensional snap-through truss: comparison between PCE/SSE pointwise error and

SSE domain-wise error estimator from Eq. (25)) normalized by the model variance. The fine lines

show the SSE subdomains.
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All plots clearly show the effect of the function discontinuity. For PCE the Gibbs phenomenon

is clearly visible. It causes a large error near the discontinuity, with an oscillating error at large

distances to the discontinuity. Naturally, SSE also suffers from the same problem, but its effect

is only localized close to the discontinuity and it does not affect further regions. Furthermore,

the available domain-wise local error estimator in Figure c gives a clear indication of local loss

of accuracy of SSE. In practical applications this information can be crucial, as it allows one to

assess the confidence of the surrogate model predictions, and could be used to adaptively enrich

the experimental design close to critical regions (Wagner et al., tted).

4.7 Error estimation accuracy

For practical applications, it is important that surrogate models offer insights into their predic-

tion accuracy. Most surrogate models offer global confidence bounds on their predictions that are

typically computed through cross-validation techniques (e.g., leave-one-out error), while some

techniques also offer point-wise confidence bounds (e.g., Kriging Santner et al. (2003) and boot-

strap PCE (Marelli and Sudret, 2018)).

For SSE, the domain-wise error estimators of the local expansions give some insight into the

local accuracy of SSE, as shown in the last case study (Section 4.6). The weighted sum of those

domain-wise estimators can be used as a global estimator of the generalization error as proposed

in Section 3.4, Eq. (26). To assess the accuracy of this global estimator, in Figure 12 we plot it

against the relative MSE on a validation set for all presented case studies. The diagonal dashed

line corresponds to perfect error estimation: η = ε̂GEN. In all the applications ε̂GEN significantly

underestimates the true error. For comparison, we show the corresponding LOO estimator from

PCE, which also exhibits a bias towards lower errors. On the other hand, it is clear that there

is a strong correlation the SSE estimators and the true validation error across all applications,

which still makes ε̂GEN a strong potential candidate for model selection in future extensions of

the method to adaptively select the SSE hyperparameters (e.g., adaptively choosing pSSE
max).

4.8 Considerations on computational costs and scalability

For a metamodeling technique to be relevant in an engineering context, the associated training

and prediction costs need to be negligible with respect to the costs of the underlying physics-

based computational model. In this sense, SSE performs quite well, as its computational costs

scale primarily with the size of the experimental design. Indeed, because the residual expansions

(Eq. (9)) can be chosen with very low degree or otherwise strict truncation, the driving cost

is the total number of subdomains that are expanded in the SSE sparse tree (see Section 3.3).

Interestingly, the expected number of expansions NE depends only on the ratio between the

total experimental design size N and the minimum number of points in each subdomain needed
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(a) One-dimensional analytical function (b) 100-dimensional analytical function

(c) 8-dimensional damped oscillator (d) 3-dimensional snap-through truss

Figure 12: Comparison of the relative generalization error εGEN with the relative generalization

error estimator ε̂GEN which for SSE is given by Eq. (26) and for PCE is the relative leave-one-out

error ELOO/Var [Y ].
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to perform a residual expansion, Nmin, as in (see also Eq. (20)):

NPCE =
L̄∑

`=0

2` = 2L̄+1 − 1 = 2blog2(N/Nmin)c+1 − 1 ≤ 2N/Nmin − 1. (42)

In other words, the computational complexity increases at most linearly with the number of

points in the experimental design. Additionally, the storage costs can be further reduced to

2L̄ = N/Nmin expansions when using the flattened representation in Eq. (29). Therefore, as

required, the training and evaluation costs of SSE are normally negligible with respect to those

needed to produce a training set for any realistic engineering application.

5 Conclusions

In an effort to extend the applicability of the powerful class of spectral decomposition-based meta-

models, we propose a novel metamodel technique called stochastic spectral embedding (SSE), that

exploits both recent advances in UQ (sparse spectral expansions) and in machine learning (re-

gression trees). While our presentation was general in nature, we showed how well this approach

synergizes with sparse polynomial chaos expansions. We also provided analytical formulas to

calculate several statistical properties of the resulting model by means of the so-called flattened

representation, which has additional benefits in terms of computational costs.

We tested the performance of SSE on both simple test functions and engineering-like examples

of varying dimensionality and complexity, using varying experimental design sizes, and compared

it to our best performing sparse PCE. Its generalization capabilities, especially for highly complex

models and large experimental designs, outperform PCE in most cases.

We also demonstrated that the associated computational costs of the training of SSE scale

linearly in expectation with the number of points in the experimental design. This compares

favorably with most metamodeling techniques common in the UQ community (e.g. PCE or

Kriging).

This performance, however, comes at the cost of trading the continuity of PCE for the piece-

wise continuity of SSE. This also implies the loss of the effective generalization error estimate

provided by ε̂LOO in linear regression. To mitigate this issue, we proposed the error estimate

ε̂GEN (Eq. (26)). Despite its absolute scale being biased towards lower values, it still shows high

correlation with the actual generalization error for all experimental design sizes and dimensions.

This is a promising property for further research into providing automatic selection of the hy-

perparameters of the algorithm (which at the moment are the maximum degree of the residual

expansions pSSE
max, as well as the minimum number of points in each subdomain Nmin required to

expand the residual) and further enhance its performance.

Additional research is ongoing towards the use of the approximate local error measures pro-
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vided by Ê`,pGEN (Eq. (22)) for goal-oriented adaptive experimental design construction, a topic

explored by the authors in Wagner et al. (tted).
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A Postprocessing PCE-based SSE

If polynomials chaos expansions are used to construct the residual expansions, several quantities

of engineering interest can be computed analytically as a post-processing step of the final SSE.

In this section we derive expressions for (i) conditional expectations, (ii) partial variances and

(iii) Sobol’ indices.

A.1 Conditional expectations

Conditional expectations describe the expectation of a multivariate function of a random vector

X ∼ fX(x), conditioned on a subset of X assuming a fixed value. Let X = {Xi}i=1,··· ,M ∈ DX
be an independent random vector with PDF fX(x) =

∏M
i=1 fXi

(x). Denote further by u and v

two disjoint index sets such that u ∪ v = {1, . . . ,M} and by Xu
def
= {Xi}i∈u ∈ DXu a random

sub-vector with PDF fXu(xu) =
∏
i∈u fXi(x). Additionally define the complementary random

vector Xv
def
= {Xi}i∈v ∈ DXv . The conditional expectation of MSSE(X) w.r.t. Xu can then be

written as

E [MSSE(X)|Xu]
def
=

∫

DXv

MF
SSE(x)fX(x) dxv, (43)

where we used the flattened representation from Eq. (29). This corresponds to marginalizing over

the parameters Xv. Due to the local orthonormality of the SSE representation, an analytical

expression for this integral can be found as

E [MSSE(X)|Xu] =

PL∑

p=1

VL,pv

∑

α∈ATv=0

cpαΨL,p
α,u(XL,p

u ), (44)

where VL,pv
def
=
∫
DL,p

Xv

fXv(xv) dxv is the input mass in the marginalized dimensions and ATv=0
def
=

{α ∈ AT : αi = 0⇔ i ∈ v}. Further, XL,p
u ∈ DXL,p

u
is an auxiliary random variable that is only

defined in the (L, p)-subdomain and ΨL,p
α,u(XL,p

u )
def
=
∏
i∈u Φ

(i),L,p
αi (XL,p

i ) is a polynomial basis

function of the non-marginalized variables.

The marginalization process in Eq. (43) creates an additional problem: this expression gener-

ally contains overlapping subdomains {DL,pXu
}p=1,··· ,PL

due to the fact that terminal subdomains
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in the full input space are not necessarily terminal subdomains in the lower dimensional, con-

ditional expectation input space defined by u. However, because the basis functions are poly-

nomials, it is once again possible to perform the flattening process (see Section 3.4) and obtain

disjoint subdomains. By denoting as P ⊆ {1, · · · , PL} the set of terminal subdomains in the

conditional input variables Xu, we can rewrite Eq. (44) as

E [MSSE(X)|Xu] =
∑

p∈P

∑

α∈APv=0

dpαΨL,p
α,u(XL,p

u ), (45)

where APv=0 is a suitable multi-index set allowing an exact representation of the polynomials and

dpα are the corresponding coefficients.

A.2 Partial variance and Sobol’ indices

The Sobol’ Hoeffding decomposition (Sobol’, 1993; Le Gratiet et al., 2016) of the SSE represen-

tation MSSE reads

MSSE(X) =M0
SSE +

∑

u⊂{1,··· ,M}
u6=∅

Mu
SSE(Xu), (46)

where M0
SSE

def
= E [MSSE(X)] and the remaining terms can be computed recursively by

Mi
SSE(Xi) = EX∼i [MSSE(X)]−M0

SSE, (47)

Mij
SSE(Xij) = EX∼ij

[MSSE(X)]−Mi
SSE(Xi)−Mj

SSE(Xj)−M0
SSE, (48)

· · · = · · · (49)

Mu
SSE(Xu) = EXv [MSSE(X)]−

∑

w⊂u
w 6=∅

Mw
SSE(Xw)−M0

SSE. (50)

The decomposition of Eq. (46), allows the definition of the so-called partial variance, i.e., the

fraction of the variance Var [MSSE(X)] that can be attributed to Xu, defined by

Vu
def
=

∫

DXu

(Mu
SSE(xu))

2
fXu(xu) dxu. (51)

Using Eq. (47), the so-called first order partial variance can therefore be written as

Vi =

∫

DXi

(
EX∼i

[MSSE(X)]−M0
SSE

)2
fXi

(xi) dxi. (52)

With the expression for the conditional expectation from Eq. (45), this integral can be solved

analytically as

Vi =

∫

DXi


∑

p∈P

∑

α∈AP∼i=0

dpαΦ(i),L,p
αi

(XL,p
i )−M0

SSE




2

fXi
(xi) dxi (53)

=
∑

p∈P
VL,pi

∑

α∈AP∼i=0

(dpα)
2 −

(
M0

SSE

)2
. (54)
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With the availability of the partial variances in Eq. (52) and the total variance from Eq. (31),

one can analytically derive the first order Sobol’ indices:

Si
def
=

Vi
Var [MSSE(X)]

. (55)

Higher order indices can be computed in a similar way.
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