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Abstract

Global sensitivity analysis aims at quantifying the impact of input variability onto the
variation of the response of a computational model. It has been widely applied to deterministic
simulators, for which a set of input parameters has a unique corresponding output value.
Stochastic simulators, however, have intrinsic randomness due to their use of (pseudo)random
numbers, so they give different results when run twice with the same input parameters but
non-common random numbers. Due to this random nature, conventional Sobol’ indices,
used in global sensitivity analysis, can be extended to stochastic simulators in different ways.
In this paper, we discuss three possible extensions and focus on those that depend only
on the statistical dependence between input and output. This choice ignores the detailed
data generating process involving the internal randomness, and can thus be applied to a
wider class of problems. We propose to use the generalized lambda model to emulate the
response distribution of stochastic simulators. Such a surrogate can be constructed in a
non-intrusive manner without the need for replications. The proposed method is applied to
three examples including two case studies in finance and epidemiology. The results confirm
the convergence of the approach for estimating the sensitivity indices even with the presence
of strong heteroskedasticity and small signal-to-noise ratio.

1 Introduction

Computational models, a.k.a. simulators, have been extensively used to represent physical
phenomena and engineering systems. They can help assess the reliability, control the risk and
optimize the behavior of complex systems early at the design stage. Conventional simulators
are usually deterministic, in the sense that repeated model evaluations with the same input
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parameters yield the same value of the output. In contrast, several runs of a stochastic simulator
for a given set of input parameters provide different results. More precisely, the output of a
stochastic simulator is a random variable following an unknown probability distribution. Hence,
each model evaluation with the same input values generates a realization of the random variable.
Mathematically, a stochastic simulator can be defined by

Ms : DX × Ω→ R

(x, ω) 7→ Ms(x,Z(ω)),
(1)

where x is the input vector that belongs to the input space DX , and Ω denotes the probability
space that represents the stochasticity. The intrinsic randomness is due to the fact that some
latent variables Z(ω) inside the model are not explicitly considered as a part of the input variables:
given a fixed input value x0, the output of the simulator is a random variable.

In this respect, we can consider a stochastic simulator as a random field indexed by the parameters
x ∈ DX [1]. For a given realization of the latent variables z0, the simulator becomes a deterministic
function of x. This is realized in practice by initializing the random seed to the same value
before running the simulator for different x’ s, a trick known as common random numbers. The
(classical) functions x 7→ Ms(x, z0) will be called trajectories in this paper. One particular
trajectory corresponds to one particular value z0.

In contrast, for a given x0 ∈ DX , the output of the stochastic simulator is a random variable.
Its distribution can be obtained by repeatedly running the simulator with x0, yet different
realizations of the latent variables called replications.

Stochastic simulators are ubiquitous in modern engineering, finance and medical sciences. Typical
examples include stochastic differential equations (e.g., financial models [2]) and agent-based
models (e.g., epidemiological models [3]). To a certain extent, physical experiments can also be
considered as stochastic models, because we may not be able to measure and consider all the
relevant variables that can uniquely determine the experimental conditions.

In practice, the input variables may be affected by uncertainty due to noisy measurements, expert
judgment or lack of knowledge. Therefore, they are modeled as random variables and grouped
into a random vector X = (X1, X2, . . . , XM ), which is characterized by a joint distribution fX .
Quantification of the contribution of input variability to the output uncertainty is a major task
in sensitivity analysis [4]. It allows us to identify the most important set of input variables that
dominate the output variability and also to figure out non-influential variables. This information
provides more insights into the simulator and can be further used for model calibrations and
decision making [5].

A large number of methods have been successfully developed to perform sensitivity analysis in
the context of deterministic simulators [4, 6, 7]. Among others, the variance-based sensitivity
analysis, also referred to as Sobol’ indices [8], is one of the most popular approaches, which
relies on the analysis of variance. Several extensions of Sobol’ indices to stochastic simulators
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can be found in the literature, depending on the treatment of the intrinsic randomness. It is
worth emphasizing that the overall uncertainty now consists of two parts, namely the inherent
stochasticity in the latent variables and the uncertainty in the input parameters X. Iooss and
Ribatet [9] include the latent variables as a part of the input, which results in a natural extension
of the classical Sobol’ indices to stochastic simulators. Hart et al. [10] and Jimenez et al. [11]
define the Sobol’ indices as functions of the latent variables which, as a consequence, become
random variables whose statistical properties can be studied. Recently, Azzi et al. [12] propose
to represent the intrinsic randomness by the entropy of the response distribution and to calculate
the classical Sobol’ indices on the latter. All in all, relatively little attention has been devoted to
sensitivity analysis for stochastic simulators.

Sensitivity analysis usually requires a large number of model evaluations for different realizations
of the input vector. Due to the intrinsic randomness of stochastic simulators, an additional layer
of stochasticity comes on top of the input uncertainty, which requires repeated runs with the
same input parameters to fully characterize the model response. As a consequence, such analyses
become intractable when the simulator is expensive to evaluate. To alleviate the computational
burden, surrogate models can be constructed to mimic the original numerical model at a smaller
computational cost. Large efforts have been dedicated to emulating the mean and variance
function of stochastic simulators [13–15]. These two functions only provide the first two moments
of the response distribution and are mostly used to estimate the Sobol’ indices proposed in [9].
In recent papers [16, 17], we developed a novel surrogate model, called generalized lambda model
(GLaM), to emulate the whole response distribution of stochastic simulators. This model uses
generalized lambda distributions (GLD) [18] to flexibly approximate the response distribution,
while the distribution parameters cast as functions of the inputs are approximated through
polynomial chaos expansions (PCE) [19].

Based on these premises, the goal of this paper is to establish a clear framework to carry out global
sensitivity analysis for stochastic simulators, and to propose efficient computational approaches
based on GLaM stochastic emulators. Therefore, the original contributions of this paper are
two-fold. On the one hand, we give a thorough review of the current development of global
sensitivity analysis for stochastic simulators. We point out the nature and the properties of
different extensions of Sobol’ indices, which provides a general guideline to their usage. On the
other hand, we present a unified framework based on generalized lambda models to calculate a
whole variety of global sensitivity indices using this single surrogate.

The paper is organized as follows. First, we review three extensions of Sobol’ indices to stochastic
simulators in Section 2. In Section 3, we present the framework of GLaMs [16]. There, we recap
the fitting procedure proposed in [17], where it is emphasized that there is no need for replicated
runs. Then, we discuss the use of GLaMs for estimating different types of Sobol’ indices. In
Section 4, we illustrate the performance of GLaMs on three examples. While the first example
is analytical, the second and third ones are realistic case studies in finance and epidemiology,
respectively. Finally, we summarize the main findings of the paper and provide an outlook for
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future research in Section 5.

2 Global sensitivity analysis of stochastic simulators

2.1 Sobol’ indices

Variance-based sensitivity analysis has been extensively studied and successfully developed in the
context of deterministic simulators. For a deterministic modelMd, Sobol’ indices quantify the
contribution of each input variable {Xi, i = 1, . . . ,M}, or combination thereof, to the variance
of the model output Y =Md(X).

In this paper, we assume that Xi’s are mutually independent. Let us split the input vector
into two subsets X = (Xu,X∼u), where u ⊂ {1, . . . ,M} and ∼ u is the complement of u,
i.e., ∼ u = {1, . . . ,M} \ u. From the total variance theorem, the variance of the output can be
decomposed as

Var [Y ] = E [Var [Y |Xu]] + Var [E [Y |Xu]] . (2)

The first-order and total Sobol’ indices introduced by Sobol’ [8] and Homma and Saltelli [20] for
the subset of input variables Xu are defined by

Su
def= Var [E [Y |Xu]]

Var [Y ] , STu
def= 1− Var [E [Y |X∼u]]

Var [Y ] = 1− S∼u. (3)

Higher-order Sobol’ indices can be defined with the help of Su. For example, the second-order or
two-factor interaction Sobol’ index of X1 and X2 is given by

S1,2
def= S{1,2} − S1 − S2, (4)

where we denote S{i} by Si for the sake of simplicity.

In the context of stochastic simulators defined in Equation (1), the input variables alone do not
determine the value of the output. Iooss and Ribatet [9] extend X by adding the internal source
of randomness represented by latent variables Z, which turns the stochastic simulator into a
deterministic one. In this case, all the input variables are gathered in (Xu,X∼u,Z), and thus
the Sobol’ indices in Equation (3) can be naturally extended to

Su
def= Var [E [Y |Xu]]

Var [Y ] , STu
def= 1− Var [E [Y |X∼u,Z]]

Var [Y ] . (5)

Note that Su has the same expression as in the case of deterministic simulators, but STu

contains the additional variables Z [14]. Similarly, higher-order Sobol’ indices corresponding to
interactions among components of X are defined in the same way as deterministic simulators,
whereas interactions between components of X and Z involve Z in their definition. Since this is
a direct extension, the Sobol’ indices defined in Equation (5) are referred to as classical Sobol’
indices in the sequel.
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Another way to extend Sobol’ indices to stochastic simulators is to first eliminate the internal
randomness by representing the response random variable Y (x) by some summarizing statistical
quantity, called here quantity of interest (QoI) denoted by QoI(x), such as the mean value
m(x), variance v(x) [9], quantiles qα(x) [21] and differential entropy h(x) [12]. As a result, the
stochastic simulator is reduced to a deterministic function QoI(x), and we can calculate the
associated QoI-based Sobol’ indices as follows:

SQoI
u

def= Var [E [QoI(X)|Xu]]
Var [QoI(X)] , SQoI

Tu
def= 1− Var [E [QoI(X)|X∼u]]

Var [QoI(X)] . (6)

A third extension is defined by considering a stochastic simulator as a random field. For a fixed
internal randomness Z(ω) = z, the stochastic simulator is a deterministic function of the input
variables, which corresponds to a trajectory. Hence, the associated Sobol’ indices are well-defined.
Yet, they are random variables because of their dependence on Z [10], which results in the
trajectory-based Sobol’ indices:

Straj
u (Z) def= VarXu [E [Y |Xu,Z]]

Var [Y | Z] , Straj
Tu

(Z) def= 1− VarX∼u [Y |X∼u,Z]
Var [Y | Z] , (7)

where the indices of the variance operators correspond to those variables to which these operators
apply.

2.2 Discussion

The three types of Sobol’ indices introduced above have different nature and focus. The classical
Sobol’ indices defined in Equation (5) treat the latent variables Z as a set of separate input
variables. As a result, indices of this type treat Z in the same way as X. The first-order index
Su indicates how much the the output variance can be reduced (in expectation) if we can fix the
value of Xu. Besides, the classical Sobol’ indices can also quantify the influence of the intrinsic
randomness as well as its interactions with input variables.

The QoI-based Sobol’ indices defined in Equation (6) help study a specific statistical quantity of
the model response, which is a deterministic function of the inputs. Using a summary quantity to
represent the random output would lead to a loss of information [10]. Nevertheless, this is helpful
when the quantity itself is of interest. For example, we may want to find the variable(s) that
affect(s) the most the 95% quantile of the model response. However, the importance (ranking) of
the inputs Xi’s can be quite different depending on the choice of the QoI.

Unlike the previous two types of indices, trajectory-based Sobol’ indices presented in Equation (7)
are random variables. This is because the latent variables Z and the input parameters X
are treated differently: conditioned on a given Z = z0, the stochastic simulator reduces to a
deterministic function of X, and we can calculate the associated (classical) Sobol’ indices. To
evaluate the probability distribution of these trajectory-based Sobol’ indices requires that the
same random seeds can be explicitly fixed in the simulator when running it for different values
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of x. In a sense, trajectory-based Sobol’ indices emphasize the variation of the trajectory of
stochastic simulators. They typically show the importance of each input variable in terms of its
contribution to the variability of trajectories.

It is worth remarking that the classical Sobol’ indices Su in Equation (5) share some common
properties with the mean-based Sobol’ indices in Eq. (6), when we consider the mean function
QoI(x) def= m(x) = E [Y |X = x]:

Smu = Var [E [m(X)|Xu]]
Var [m(X)] . (8)

According to the law of total expectation, we have

E [Y |Xu] = E [E [Y |X] |Xu] = E [m(X) |Xu] . (9)

As a result, Su can be rewritten as

Su = Var [E [Y |Xu]]
Var [Y ] = Var [E [m(X) |Xu]]

Var [Y ] , (10)

This implies that both classical Sobol’ indices Su and mean-based Sobol’ indices Smu provide the
same ranking, as the numerators of Equations (8) and (10) are identical. However, it is worth
emphasizing that Su is not equal to Smu and they are measuring different quantities, since the
denominator of Equation (10) is Var [Y ] but that of Equation (8) is Var [m(X)].

As a summary for all three extensions, a stochastic simulator is essentially transformed into
a reduced deterministic model at a certain stage. The classical Sobol’ indices include the
latent variables as a part of the inputs. The QoI-based Sobol’ indices rely on a deterministic
representation. The trajectory-based indices are random variables whose statistical properties
can be studied at the cost of repeating a standard Sobol’ analysis for different realizations of the
latent variables separately. As a result, the three types of sensitivity indices can be estimated by
modifying only slightly the standard methods based on Monte Carlo simulation developed for
deterministic simulators [4].

The classical Sobol’ indices involving Z (e.g., SZ , STu in Eq. (5)) and the trajectory-based Sobol’
indices require controlling the latent variables Z. In practical computations, this is achieved
by fixing the random seed in the computational model [10, 14]. However, for certain types of
stochastic simulators, or when the data are generated by physical experiments, it may be difficult
to control or even identify Z. For the sake of general applicability, we focus in this paper only on
Sobol’ indices that can be estimated by manipulating X, that is, the QoI-based Sobol’ indices
and, to some extent, the classical Sobol’ indices.

Using Monte Carlo simulations to estimate these indices requires evaluating the simulator for
various realizations of the input vector. In addition, it is generally necessary to evaluate the
function QoI(x) for calculating the associated QoI-based Sobol’ indices. However, this function
is not directly accessible due to the intrinsic randomness, and it is usually estimated by using
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replications: for each realization x, the simulator is repeatedly run many times, and QoI(x) is
estimated from the output samples. Both factors call for a large number of model runs, which
becomes intractable for costly models. Therefore, the use of surrogate models is unavoidable.

In the sequel, we present the generalized lambda model as a stochastic surrogate. Such a model
emulates the response distribution conditioned on X = x, which fully characterizes the statistical
dependence between the inputs and output. Therefore, it can be used to estimate the considered
Sobol’ indices.

3 Generalized lambda models

Generalized lambda models consist of mainly two parts: the generalized lambda distribution and
polynomial chaos expansions. In this section, we briefly recap these two elements and present an
algorithm to construct such a model without the need for replicated runs of the simulator. Then,
we discuss how to estimate the sensitivity indices from the surrogate.

3.1 Generalized lambda distributions

The generalized lambda distribution is a flexible distribution family, which is designed to
approximate many common distributions [18], e.g., normal, lognormal, Weibull and generalized
extreme value distributions. A GLD is defined by its quantile function Q(u) with u ∈ [0, 1], that
is, the inverse of the cumulative distribution function Q(u) = F−1(u). In this paper, we consider
the GLD of the Freimer-Kollia-Mudholkar-Lin (FKML) family [22] with four parameters, whose
quantile function is defined by

Q(u;λ) = λ1 + 1
λ2

(
uλ3 − 1
λ3

− (1− u)λ4 − 1
λ4

)
, (11)

where λ1 is the location parameter, λ2 is the scaling parameter, and λ3 and λ4 are the shape
parameters. λ2 is required to be positive to produce valid quantile functions (i.e., Q being
non-decreasing on [0, 1]). Based on the quantile function defined in Equation (11), the probability
density function (PDF) of a random variable Y following a GLD is given by

fY (y;λ) = fU (u)
Q′(u;λ) = λ2

uλ3−1 + (1− u)λ4−11[0,1](u), with u = Q−1(y;λ), (12)

where 1[0,1] is the indicator function. A closed-form expression of Q−1 is not available for arbitrary
values of λ3 and λ4. Therefore, evaluating the PDF for a given y usually requires solving the
nonlinear equation (12) numerically.

GLDs cover a wide range of shapes determined by λ3 and λ4 [16]. For instance, λ3 = λ4 produces
symmetric PDFs, and λ3 < λ4 (λ3 > λ4) results in left-skewed (resp. right-skewed) distributions.
Moreover, λ3 and λ4 are closely linked to the support and the tail behaviors of the corresponding
PDF. More precisely, λ3 and λ4 control the left and right tail, respectively. λ3 > 0 implies that
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the PDF support is left-bounded, and the distribution has lower infinite support for λ3 ≤ 0.
Similarly, λ4 > 0 implies that the PDF support is right-bounded, whereas it is +∞ for λ4 ≤ 0.
In addition, for λ3 < 0 (λ4 < 0), the left (resp. right) tail decays asymptotically as a power law.
Hence, GLDs can also provide fat-tailed distributions. The reader is referred to [16, 22] for a
longer presentation of GLDs.

3.2 Polynomial chaos expansions

Consider a deterministic modelMd that maps a set of input parameters x = (x1, x2, . . . , xM ) ∈
DX ⊂ RM to the output y ∈ R. Under the assumption that Y = Md(X) has finite variance,
Md belongs to the Hilbert space H of square-integrable functions with respect to the inner
product 〈u, v〉H = E [u(X)v(X)] =

∫
DX

u(x)v(x)fX(x)dx. If the joint distribution fX satisfies
certain conditions [23], the simulatorMd admits a spectral representation in terms of orthogonal
polynomials:

Y =Md(X) =
∑

α∈NM

cαψα(X), (13)

where ψα is a multivariate polynomial basis function indexed by α ∈ NM , and cα denotes
the associated coefficient. The orthogonal basis can be obtained by using tensor products of
univariate polynomials, each of which is orthogonal with respect to the probability measure
fXi(xi)dxi of the i-th variable Xi:

ψα(x) =
M∏

j=1
φ(j)
αj

(xj). (14)

Details about the construction of this generalized polynomial chaos expansion can be found in
[24, 25].

The PCE defined in Equation (13) contains an infinite sum of terms. However, in practice, it
is only feasible to use a finite series as an approximation. To this end, truncation schemes are
adopted to select a set of basis functions defined by a finite subset A ⊂ NM of multi-indices. A
typical scheme is the hyperbolic (a.k.a. q-norm) truncation scheme [26] given by

Ap,q,M =




α ∈ NM : ‖α‖q def=

(
M∑

i=1
|αi|q

) 1
q

≤ p




, (15)

where p is the maximum degree of polynomials, and q ≤ 1 defines the quasi-norm ‖ · ‖q. Note
that with q = 1, we obtain the full basis of total degree less than p, which corresponds to the
standard truncation scheme.

3.3 Formulation of generalized lambda models

Because of the flexibility of GLDs, we assume that the response random variable Y (x) of a
stochastic simulator for a given input vector x can be well approximated by a GLD. Hence, the
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associated distribution parameters λ are functions of the input variables:

Y (x) ∼ GLD (λ1(x), λ2(x), λ3(x), λ4(x)) . (16)

Under appropriate conditions discussed in Section 3.2, each component of λ(x) can be represented
by a series of orthogonal polynomials. Because λ2(x) is required to be positive (see Section 3.1),
the associated polynomial chaos representation is built on the natural logarithmic transform
log (λ2(x)). This results in the following approximations:

λl (x) ≈ λPC
s (x; c) =

∑

α∈Al

cl,αψα(x), l = 1, 3, 4, (17)

λ2 (x) ≈ λPC
2 (x; c) = exp


 ∑

α∈A2

c2,αψα(x)


 , (18)

where Al (l = 1, 2, 3, 4) is a finite set of selected basis functions for λl, and cl,α’s are the
coefficients. For the purpose of clarity, we explicitly express c in the PC approximations
λPC
l (x; c) to emphasize that c are the model parameters yet to be estimated from data.

3.4 GLaM constructions

We assume that our costly stochastic simulator is evaluated once for each point x(i) of the
experimental design X , and the associated model response y(i) is collected in Y:

X =
{
x(1), . . . ,x(N)

}
, Y =

{
Ms

(
x(1), ω(1)

)
, . . . ,Ms

(
x(N), ω(N)

)}
(19)

As already mentioned (and as emphasized by the notation ω(i)), no replications are required,
and we do not control the random seed. To construct a GLaM from the available data (X ,Y),
both the truncated sets A of basis functions and the coefficients c shall be determined. In this
section, we summarize the method proposed in [17], which is designed to achieve both purposes
without the need for replications.

Sometimes prior knowledge is available to set the basis functions. For example, when working
with a standard linear regression problem, the data is supposed to be generated by

Y = β0 +Xβ + ε, (20)

where ε has mean zero and is independent of X. This case can be treated within the GLaM
framework as follows: A1 contains the constant and linear term, and A2, A3, A4 only contain
a constant term. Note that such a GLaM allows estimating the distribution of ε, which is not
required to be normal by hypothesis, whereas the usual linear regression framework assumes
normally distributed ε.

However, in general there is no prior knowledge that would help select A. Thus, we make the
following assumptions to find appropriate hyperbolic truncation schemes defined in Equation (15)
for each λi, i = 1, . . . , 4:
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(A1) The response distribution of Y (x) can be well-approximated by a generalized lambda
distribution;

(A2) The shape of this distribution smoothly varies as a function of x, so that the parameters
λi(x) can be well approximated by a low-order PCE

Because the shape of a GLD is controlled by λ3 and λ4, the associated hyperbolic truncation
schemes Ap,q,M can be set with a small value of p, say p = 1.

Moreover, the parameters λ1(x) and λ2(x) mainly affect the variation of the mean m(x) and
of the variance v(x) as a function of the input x, respectively. As a result, they may require
possibly larger degree p. To this end, we modify the feasible generalized least-squares (FGLS)
[27] to find suitable truncation schemes for the mean and variance function modeled as

m(x) =
∑

α∈Am

cm,αψα(x), v(x) = exp


 ∑

α∈Av

cv,αψα(x)


 .

Basically, FGLS iterates between a weighted least-square problem (WLS) to fit the mean function,
and an ordinary least-square (OLS) analysis to estimate the variance function.

The details of the modified FGLS are presented in Algorithm 1. In this algorithm, the inputs
p1 and q1 stand for the set of candidate degrees and q-norms that are tested to expand λ1(x),
respectively. The same notation apply to p2 and q2 for λ2(x). Indeed, because of the low cost of
least-square analysis, various combinations of p and q are tested for both λ1(x) and λ2(x).

More precisely, AOLS denotes adaptive ordinary least-squares with degree and q-norm adaptivity
[28, 29]. This algorithm first builds a series of PCEs, each of which is obtained by applying
ordinary least-squares with a truncation scheme Ap,q,M defined by a combination of p ∈ p and
q ∈ q. Then, it selects the PCE, therefore the associated truncation scheme, with the smallest
leave-one-out errors (see [29] for details). WLS denotes the use of weighted least-squares, which
takes the estimated variance v̂ as weight to re-estimate cm. In this procedure, the truncation
set Am for m(x) is selected only once (before the loop), whereas a set of truncation schemes
{Aiv : i = 1, . . . , NFGLS

}
is obtained.

We finally select the one with the smallest leave-one-out error as the final truncated set Av for
v(x). The number of iterations NFGLS is defined by the user, typically NFGLS = 5–10. After
applying Algorithm 1, we set A1 = Am and A2 = Av.
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Algorithm 1 Modified feasible generalized least-squares
1: Input: (X ,Y), p1, q1, p2, q2

2: Output: truncated sets for the mean and variance function–Am and Av
3: Am, ĉm ← AOLS (X ,Y,p1, q1)
4: for i← 1, . . . , NFGLS do
5: m̂←∑

α∈Am
cm,αψα(X )

6: r̃ ← 2 log (|Y − m̂|)
7: Aiv, ĉv, εiLOO ← AOLS (X , r̃,p2, q2)
8: v̂ ← exp

(∑
α∈Av

cv,αψα(X )
)

9: ĉm ←WLS (X ,Y,Am, v̂)
10: end for
11: i∗ = arg min

{
εiLOO : i = 1, . . . , NFGLS

}
and Av ← Ai∗v

Once the basis functions are selected, we use the maximum (conditional) likelihood estimator to
estimate c:

ĉ = arg min
c∈C

L (c) , (21)

where L (c) is the conditional negative log-likelihood

L (c) =
N∑

i=1
− log

(
fGLD

(
y(i);λPC

(
x(i); c

)))
, (22)

with fGLD being the probability density function of the GLD defined in Equation (12).

The advantages of the proposed estimator are twofold. On the one hand, the simulator is required
to be evaluated only once (but not limited to one) on each point of the experimental design.
Thereby, replications are not necessary (yet possible), and the method is versatile in this respect.
On the other hand, if the underlying computational model can be exactly represented by a GLaM
for a specific choice of c, the maximum likelihood estimator is consistent (see proof in [17]).

In practice, the evaluation of L(c) is not straightforward because the PDF of generalized lambda
distributions does not have an explicit form: it is necessary to solve nonlinear equations as
shown in Eq. (12). Nevertheless, the nonlinear function Q(u;λ) is monotonic and defined on
[0, 1]. Therefore, we proposed using the bisection method [30] to efficiently solve the nonlinear
equations.

3.5 Sensitivity analysis with GLaMs

3.5.1 Introduction

The various Sobol’ indices introduced in Equation (5) and (6) can be estimated by sampling
from the conditional distribution Y |Xu. Because of the specific format of the GLaM definition,
such a sampling can be easily performed.
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The generalized lambda distribution parameterizes the quantile function Q(u;λ) (see Equa-
tion (11)), which can be seen as the inverse probability integral transform. In other words, the
random variable Q(U ;λ) with U ∼ U(0, 1) follows GLD(λ). As a result, sampling from a GLD
is straightforward. We define the function QGLaM : (u,x) ∈ [0, 1]×DX 7→ R by

QGLaM(u;x) = Q(u;λPC(x)) = λPC
1 (x) + 1

λPC
2 (x)

(
uλ

PC
3 (x) − 1
λPC

3 (x)
− (1− u)λPC

4 (x) − 1
λPC

4 (x)

)
. (23)

QGLaM(U ;x) is a so-called GLaM stochastic emulator where U ∼ U(0, 1) serves as a latent variable
that introduces the internal source of randomness. Precisely, QGLaM(U ;x) is a random variable
following the surrogate response PDF for X = x, and QGLaM(u;x) provides its corresponding
u-quantile. In other words, GLaM is a simple stochastic surrogate model with only one latent
variable that behaves similarly to the original stochastic simulator in terms of the response
distribution for any x.

Because Equation (23) emulates the conditional quantile function QY |X(u;x) of the original
model, calculating Sobol’ indices Su of the deterministic function QGLaM(u;x) can directly provide
the classical Sobol’ indices defined in Equation (5). Note that QGLaM also allows us to calculate
classical Sobol’ indices involving U , e.g., SU . However, since the surrogate only approximates
the response distribution but cannot produce the trajectories, these Sobol’ indices are not
representative of those of the original model, e.g., SZ that requires estimating Var [E [Y | Z]]
(according to Equation (5)), where the inner expectation E [Y | z] is taking over a trajectory.

For QoI-based Sobol’ indices in Equation (6), if the quantity of interest qGLaM(x) can be directly
calculated from generalized lambda distributions, we can just treat it as a classical surrogate
model of QoI(x). This is the case for the mean m(x) and the variance v(x) (see Section 6.1 for
details). In addition, if QoI(x) is a u-quantile of the response distribution, Equation (23) is used
directly.

Finally, if it is impossible to evaluate analytically qGLaM(x), we generate a large sample set
from Equation (23) by sampling U ∼ U(0, 1), and then use the sample statistic q̂GLaM(x) as a
surrogate model for QoI(x).

3.5.2 Monte Carlo estimates

Because both QGLaM(u;x) and qGLaM(x) are deterministic, we can use methods based on Monte
Carlo simulations [20] to estimate the considered Sobol’ indices. Here, we illustrate the estimator
suggested by Janon et al. [31] for classical Sobol’ indices estimations.

We first define two random variables Y = QGLaM(U ;Xu,X∼u) and Yu = QGLaM(Ũ ;Xu, X̃∼u),
where Ũ and X̃∼u are independent copies of U and X∼u. This indicates that Yu is correlated to
Y by using the same set of random variables Xu as argument. In addition, Y and Yu follow the
same distribution, and thus they share the same moments, e.g., E [Y ] = E [Yu], E

[
Y 2] = E

[
Y 2

u
]
.
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Following Janon et al. [31], Su defined in Equation (5) can be re-written as:

Su = Cov [Y, Yu]
Var [Y ] = E [Y Yu]− (E [Y ])2

E [Y 2]− (E [Y ])2 =
E [Y Yu]−

(
1
2E [Y + Yu]

)2

1
2E [Y 2 + Y 2

u ]−
(

1
2E [Y + Yu]

)2 . (24)

We generate NMC realizations of Y and Yu by sampling (independently) Xu, X∼u, U , X̃∼u, and
Ũ . The expectations in Equation (24) can be estimated by sample statistics, which leads to

Ŝu =
1

NMC

∑NMC
i=1 y(i) y

(i)
u −

(
1

2NMC

∑NMC
i=1

(
y(i) + y

(i)
u
))2

1
2N
∑NMC
i=1

((
y(i))2 +

(
y

(i)
u
)2
)
−
(

1
2NMC

∑NMC
i=1 y(i) + y

(i)
u
)2 , (25)

where y(i) = QGLaM
(
u(i);xu,x∼u

)
and y(i)

u = QGLaM
(
ũ(i);xu, x̃∼u

)
are the i-th realizations of

Y and Yu, respectively.

For QoI-based Sobol’ indices defined in Equation (6), we follow the same procedure by replacing
QGLaM by qGLaM.

3.5.3 PCE-based estimates

As discussed in Section 3.5.1, estimating the considered two types of Sobol’ indices of a GLaM
surrogate model is reduced to studying two deterministic functions QGLaM(u;x) and qGLaM(x).
The input vector X has mutually independent components, which are also independent of
U ∼ U(0, 1). Both functions can be represented by polynomial chaos expansions (see Section 3.2):

QGLaM(u;x) ≈ QPC
GLaM(u;x) =

∑

α∈AQ

cQαψ
Q
α (u,x), and

qGLaM(x) ≈ qPC
GLaM(x) =

∑

α∈Aq

cqαψα(x),
(26)

where AQ ⊂ NM+1 and Aq ⊂ NM are the truncated sets defining the basis functions ψα(x)’s and
ψQα (u,x)’s, respectively, as discussed in Equation (14). Note that each multi-index in AQ has a
dimension M + 1 because of the additional variable u, and the univariate basis functions of u
in ψQα (u,x) are Legendre polynomials [24]. The advantage of using a PCE surrogate is that its
Sobol’ indices (of any order) can be analytically calculated by post-processing its coefficients [32].

Several methods have been developed to construct PCEs for deterministic functions with given
basis functions, such as the projection method [19] and ordinary least-squares [33]. To both
determine the truncated set and estimate the associated coefficients, we opt for the hybrid-LAR
algorithm [29]. This method selects the most important basis functions among a candidate set,
before ordinary least-squares is used to compute the coefficients. The selection procedure of the
algorithm is based on least angle regression (LAR) [34].

Practically, we first generate NPC samples by sampling X and U . They are used to evaluate
the target function QGLaM(u;x) or qGLaM(x) to obtain the associated model responses. Then,
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we apply the hybrid-LAR algorithm with the generated data to construct the PCE surrogate.
Finally, the Sobol’ indices are calculated by post-processing the PC coefficients.

In the following examples, we use the PCE-based estimates for the Sobol’ indices of the GLaM
surrogate model, instead of performing Monte Carlo simulations, as the accuracy of the former
revealed extremely good.

4 Examples

In this section, we illustrate the performance of GLaMs for global sensitivity analysis on an
analytical example and two case studies. We focus on the classical first-order Sobol’ indices and
QoI-based total Sobol’ indices. The choice of the QoI depends on the focus of the example. To
characterize the examples, we define the signal-to-noise ratio of a stochastic simulator by

SNR = Var [E [Y |X]]
E [Var [Y |X]] = Var [m(X)]

Var [Y ]−Var [m(X)] . (27)

This quantity gives the ratio between the variance of Y explained by the mean function m(x)
and the remaining variance.

We use Latin hypercube sampling [35] to generate the experimental design. The stochastic
simulator is only evaluated once on each set of input parameters. The associated output values are
used to construct surrogates with the proposed estimation procedure introduced in Section 3.4.

To assess the overall surrogate quality, we define the error measure

εQ
def=

E
[(
QY |X(U ;X)−QGLaM(U ;X)

)2
]

Var
[
QY |X(U ;X)

] =
E
[(
QY |X(U ;X)−QGLaM(U ;X)

)2
]

Var [Y ] (28)

where QY |X(u;x) is the conditional quantile function of the model, QGLaM(u;x) is that of the
GLaM following the definition in Equation (23), and U ∼ U(0, 1). This error has a form similar to
the Wasserstein distance between probability measures [36]. In addition, we also define an error
measure to assess the accuracy of estimating the quantity of interest QoI(x) whose approximation
by GLaM is denoted by qGLaM(x)

εq
def=

E
[
(QoI(X)− qGLaM(X))2

]

Var [QoI(X)] . (29)

The expectations in Equation (28) and Equation (29) are estimated by averaging the error over
a test set Xtest of size 105.

Experimental designs of various size N are investigated to study the convergence of the proposed
method. For each size, 50 different analyses with independent experimental designs are carried
out to account for statistical uncertainty in the random design. As a consequence, estimates for
each scenario are represented by box plots.
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4.1 A three-dimensional toy example

The first example is defined as follows:

Y (x, ω) = sin(x1) + 7 sin2 (x2) + exp
(
x1
π

+ x3 Z(ω)
)

(30)

where X1, X2 ∼ U(0, 2π), X3 ∼ U(0.25, 0.75) are independent input variables, and Z ∼ N (0, 1)
denotes the latent variable that introduces the intrinsic randomness. Following the definition, the
response distribution is a shifted lognormal distribution: the shift is equal to sin(x1) + 7 sin2 (x2)
and the lognormal distribution is parameterized by LN (x1

π , x3
)
. As a result, this stochastic

simulator has a nonlinear location function and a strong heteroskedastic effect: the variance
varies between 0.069 and 72.35. Besides, this example has a mild signal-to-noise ratio SNR =
1.4. This implies that the input variables can explain around 58% of the total variance of Y
(i.e., S{1,2,3} = 0.58).
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Figure 1: Toy example – Emulated response PDFs, N = 1,000
.

Figure 1 compares the PDFs predicted by a GLaM built on an experimental design of N = 1,000
with the reference response PDFs of the simulator. The results show that the developed algorithm
correctly identifies the shape of the underlying shifted lognormal distribution. Moreover, the
PDF supports and tails are also accurately approximated.

We consider the differential entropy h(x) [12] as the QoI in this example. Because the analytical
response distribution and entropy are known, we investigate the convergence of GLaM in
terms of the conditional quantile function estimation Equation (29) and the entropy estimation
Equation (28). The size of experimental design varies among N ∈ {250; 500; 1,000; 2,000; 4,000}.
Note that the entropy of a GLD does not have a closed form. Therefore, we use 104 Monte Carlo
samples to estimate this quantity of a GLaM for each x in the test set.

In addition, we consider another model where we approximate the response distribution with a
normal distribution. The mean and variance (as functions of x) for such an approximation are
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chosen as the true mean and variance of the original. In other words, this model represents the
“oracle” of Gaussian-type mean-variance models.

The results are summarized in Figure 2. The proposed method exhibits a clear convergence with
respect to N for both Q(u;x) and h(x) estimations. We observe in Figure 2a that the decay of
εQ has two regimes separated by N = 1,000. For a small N , the error coming from the use of
finite samples dominates the estimate accuracy. When we consider a large data set, the error
mainly comes from the model mispecification, because the stochastic simulator cannot be exactly
represented by a GLaM. This phenomenon is not significant for the entropy estimation, which
demonstrates a relatively consistent decay.

The accuracy of the oracle normal approximation is reported with red dash lines in Figure 2. The
error shown is only due to model misspecifications (because the true response distribution is not
Gaussian) since we use the underlying true mean and variance. For both measures, the medians
of the errors of GLaMs built on N = 250 model runs are smaller than those of the normal
approximation. For N ≥ 1,000, the GLaM clearly outperforms the oracle of Gaussian-type
mean-variance models. This example illustrates the limits of such Gaussian-type models in
practice.

Finally, the errors of GLaMs are below 0.05 for N ≥ 1,000 indicating that the surrogate is able
to explain over 95% of the variance of the target functions.

(a) Conditional quantile function estimation (b) Entropy estimation

Figure 2: Toy example – Convergence study. The blue lines denote the errors averaged over 50
repetitions of the full analysis. The red dash lines are the corresponding errors of the model
assuming that the response distribution is normal with the true mean and variance

For sensitivity analysis, we focus on the classical first-order and the entropy-based total Sobol’
indices. Figure 3 and Figure 4 show the convergence of GLaMs for estimating these quantities
of each input variable. The reference values are derived from Equation (30). As shown by the
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two figures, this toy example is designed to have X2 as the most important variable according
to the classical first-order Sobol’ indices, which also indicates that X2 contributes the most
to the variance of the mean function m(X). In contrast, it has zero effect to the entropy. In
comparison, X1 is the dominant variable for the variation of the entropy h(X). Because X3

mainly controls the shape of the response distribution (especially the right tail), it has a minor
first-order effect to the mean function, which leads to a very small value of S3. In contrast, the
entropy depends on the distribution shape, and thus ShT3 is not negligible. The results reveal that
GLaMs capture this characteristic and yield accurate estimates for both classical Sobol’ indices
and entropy-based Sobol’ indices.

Similar to Figure 2, we also reported the sensitivity indices calculated by using Gaussian
approximations with the true mean and variance. Because the classical first-order indices only
depend on the mean and variance functions, the oracle Gaussian model gives the exact values.
Therefore, we only showed the results for the entropy-based Sobol’ indices in Figure 4. It is clear
that the Gaussian approximation with the true mean and variance demonstrates a significant bias.
In contrast, GLaMs show nearly no bias and approximate much more accurately the reference
values.

Figure 3: Estimation of the classical first-order Sobol’ indices. The black lines are the reference
values, and the blue lines denote the average values of 50 repetitions of the full analysis.

4.2 Heston model

In this example, we perform the global sensitivity analysis for a Heston model used in mathematical
finance [37]. The Heston model describes the evolution of a stock price Yt. It is an extension of
the geometric Brownian motion by modeling the volatility as a stochastic process vt, instead of
considering it as constant. Hence, the Heston model is a stochastic volatility model and consists
of two coupled stochastic differential equations:

dYt = µYtdt+√vtYtdW 1
t ,

dvt = κ(θ − vt)dt+ σ
√
vtdW 2

t ,
(31)
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Figure 4: Estimation of the entropy-based total Sobol’ indices. The black lines are the reference
values, and the blue lines denote the average values of 50 repetitions of the full analysis. The red
dash lines correspond to the indices calculated from the normal approximation using the true
mean and variance

with
E
[
dW 1

t dW 2
t

]
= ρdt, (32)

where W 1
t and W 2

t are two Wiener processes with correlation coefficient ρ, which introduce
the intrinsic randomness of the stochastic model. The model parameters x = (µ, κ, θ, σ, ρ, v0)
are summarized in Table 1. The range of the last five input variables are selected based on
the parameters calibrated from real data (S&P 500 and Eurostoxx 50) [38]. The range of the
first variable µ is set to [0, 0.1] to take the uncertainty of the expected return rate into account.
Without loss of generality, we set Y0 = 1.

Table 1: Parameters of the Heston model

Variable Description Distribution
µ Expected return rate U(0, 0.1)
κ Mean reversion speed of the volatility U(0.3, 2)
θ Long term mean of the volatility U(0.02, 0.07)
σ Volatility of the volatility U(0.2, 0.4)
ρ Correlation coefficient between dW 1

t and dW 2
t U(−1,−0.5)

v0 Volatility at time 0 U(0.02, 0.07)

In this example, we are interested in the stock price after one year, i.e., Yt(x) with t = 1. A
closed form solution to Equation (31) is generally not available. To get samples of Y1(x), we
simulate the entire time evolution of Yt and vt for a given x using Euler integration scheme with
∆t = 0.001 over the time interval [0, 1]. Note that when simulating the bivariate process (Yt, vt),
a problem may happen: since vt follows a Cox–Ingersoll–Ross process [38], the simulation scheme
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can generate negative values for vt. To overcome the problem, we apply the full truncation
scheme, which replaces the update of vt by max (vt, 0) [38].
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Figure 5: Heston model – Emulated response PDFs, N = 2,000

Figure 5 shows two response PDFs predicted by a surrogate built upon N = 2,000 model
runs. The reference histograms are obtained from 104 repeated model runs with the same
input parameters. We observe that the variance of the response distribution is not constant,
e.g., 0.065 and 0.027 for the two illustrated PDFs. Moreover, the PDF shape varies: it changes
from symmetric to left-skewed distributions depending on the model parameters. This would
be difficult to approximate with a simple distribution family such as normal or lognormal. In
contrast, GLaMs are able to accurately capture this shape variation, because of the flexibility of
generalized lambda distributions.

Even though a closed form distribution of Y1(x) does not exist, the mean function m(x) =
E [Y1(x)] can be derived analytically:

m(x) = exp(x1) = exp(µ). (33)

As a result, we use εm defined in Equation (29) with QoI(x) = m(x) to assess the convergence
of the surrogate. In addition, we also consider the expected payoff of an European call option.
The payoff C(x) and the expected payoff mC(x) of an European call option are defined by

C(x) = max {0, Y1(x)−K} ,
mC(x) = E [C(x)] ,

(34)

where K is the strike price and set to 1 in the following analysis. In finance, mC not only
is important for making investment decisions but also has a very similar form to the option
price [39]. For the Heston model, numerical methods based on the Fourier transform have been
developed to calculate the expected payoff without the need for Monte Carlo simulations [37].
For the GLaM surrogate, this quantity can also be calculated numerically (see Section 6.1). As a
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second performance index, we compute the associated error denoted by εC (Equation (29)) for
the convergence study.

Figure 6 shows box plots of the errors εm and εc for N ∈ {500; 1,000; 2,000; 4,000; 8,000; 16,000}.
Both εm and εc are relatively large for N ≤ 2,000. This is mainly due to the fact that
the variability of the model response is dominated by the intrinsic randomness: the model
parameters X altogether are only able to explain about 2% of the variance of the output
(i.e., S{1,...,6} = 0.02). In other words, the stochastic simulator has a very small signal-to-noise
ratio SNR = 0.02/(1−0.02) ≈ 0.02. Since GLDs are flexible, a few data scattered in a moderately
high dimensional space may not provide enough information of the response distribution variation.
We observe that for N ≤ 1,000, the selection procedure proposed in Algorithm 1 can choose
λPC

1 (x) and λPC
2 (x) being only constant. Such a model is too simple and thus fails to capture the

variations of the scalar quantities. Consequently, it is necessary to have enough data to achieve
an accurate estimate: when increasing the size of N of the LHS design, we observe a clear decay
of the errors.

(a) Mean estimation (b) Expected payoff estimation

Figure 6: Heston model – Convergence study. The blue lines denote the errors averaged over 50
repetitions of the full analysis.

We now study the convergence for the Sobol’ indices estimations. According to Equation (33), the
mean function only depends on the first input variable X1, which contributes little (2%) to the
total variance of Y1(X). This implies that the classical Sobol’ indices are not informative (they
are either 0 or very close to 0). However, we cannot ignore the variability of the input variables
because the response distribution demonstrates a clear dependence on the input parameters, as
shown in Figure 5. Therefore, we focus on the accuracy of the expected-payoff-based total Sobol’
indices, denoted by SCTu .

As a second quantity of interest, we also calculate the total Sobol’ indices associated to the
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95%-superquantile, referred to as Ssq
Tu
. Superquantiles are known as the conditional value-at-risk,

which is an important risk measure in finance [40]. The α-superquantile of a random variable Y
is defined by

sqα = E [Y | Y ≥ qα] , (35)

where qα is the α-quantile of Y . This quantity corresponds to the conditional expectation of Y
being larger than its α-quantile. For the Heston model, this quantity does not have an analytical
closed form, whereas sqα of a GLD can be derived analytically (see Section 6.1).

We use 105 Monte Carlo samples to evaluate (numerically) the function mC(x) to obtain a
reference value for each SCTu . To calculate the Sobol’ indices associated to the 95%-superquantile
sq95(X), it is necessary to evaluate the function sq95(x). Because it cannot be analytically
derived for the Heston model, we use 104 replications to calculate the sample 95%-superquantile
ŝq95(x) as an estimate for sq95(x). Then, we treat it as a deterministic function and use 104

samples to estimate each Sobol’ index. This indicates that a total number of 7× 108 model runs
are performed to obtain the six reference 95%-superquantile-based total Sobol’ indices. Because
only 104 samples are used to estimate each Ssq

Tu
, we use bootstraps [41] to calculate the 95%

confidence interval to account for the uncertainty of the Monte Carlo simulation.

Figure 7: Estimation of the expected-payoff-based total Sobol’ indices. The black lines are the
reference values, and the blue lines denote the average values of 50 repetitions.

Figures 7 and 8 confirm and quantify the convergence of GLaMs to estimate SCTu and Ssq
Tu
. For the

expected payoffmC(x), the first variable µ is the most important. The estimation of its total effect
converges from below the reference value, and we observe a bias in the estimate. Nevertheless,
with N large enough (≥ 4,000), the GLaM can always correctly identify its importance (the
bias is 0.072 for ≥ 8,000 and 0.055 for ≥ 16,000), and each classical first-order Sobol’ index
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Figure 8: Estimation of the 95%-superquantile-based total Sobol’ indices. The blue lines denote
the average value of 50 repetitions of the full analysis. The black lines are the reference values,
and the dashed lines correspond to the 95% confidence intervals.

of the other five variables converge to the reference line. The 95%-superquantile suggests a
different ranking: µ, θ, ρ and v0 (corresponding to the first, third, fifth and sixth input variable,
respectively) have similar total effects, which are superior to those of κ and σ (i.e., the second
and fourth input variables). In addition, none of the input variables has nearly 0 total effect. The
GLaM surrogate model accurately reproduces the phenomena. Moreover, the estimates generally
vary around the reference values, and larger N results in narrower spread of the box plots.

As a conclusion, GLaM surrogates allow us to represent accurately the QoI of the Heston model
and carry out a detailed sensitivity analysis at the cost of O(104) runs of the stochastic simulator.
Note that in this example the leave-one-out errors of the polynomial chaos expansions built on
the GLaM surrogates are of the order of o(10−4), which justifies the use of PCE-based Sobol’
indices.

4.3 Stochastic SIR model

In this example, we apply the proposed method to a stochastic Susceptible-Infected-Recovered
(SIR) model in epidemiology [3]. This model simulates the spread of an infectious disease, which
can help conduct appropriate epidemiological intervention to minimize the social and ethical
impacts during the outbreak.

In a SIR model, a population of size Pt at time t can be partitioned into three groups: susceptible,
infected and recovered during the outbreak of an epidemic. Susceptible individuals are those
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who can get infected by contacting an infectious person. Infected individuals are suffering from
the disease and are contagious. They can recover (therefore classified as recovered) and become
immune to future infections. The number of individuals within each group is denoted by Et, It
and Rt, respectively. Without differentiating individuals, these three quantities characterize the
configuration of the population at a given time t. Hence, their evolutions represent the spread
of the epidemic. In this study, we consider a fixed population without newborns and deaths,
i.e., the total population size is constant, Pt = P . As a result, Et, It and Rt satisfy the constraint
Et + It + Rt = P , and thus only the time evolution of Et and It is necessary to represent the
disease evolution.

Figure 9: Dynamics of the stochastic SIR model: black icons denote susceptible individuals, red
icons represent infected individuals, and blue icons are those recovered.

Without going into detailed assumptions of the model, we illustrate the system dynamics in
Figure 9, where the black icons represent susceptible individuals, the red icons indicate infected
persons, and the blue icons are those recovered. Suppose that at time t the population has the
configuration (Et, It) (top left figure of Figure 9). Infected individuals can meet susceptible
individuals, or they may receive essential treatments and recover from the disease. Hence, the
next configuration has two possibilities: (1) CI , where one susceptible individual is infected;
(2) CR, where one infected person recovers. The population state evolving either to CI or CR
depends on two random variables, TI and TR, which denote the respective time to move to the
associated candidate configuration. Both random variables follow an exponential distribution,
yet with different parameters:

TI ∼ Exp(λI), λI = β
EtIt
P

, (36)

TR ∼ Exp(λR), λR = γIt, (37)
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where β indicates the contact rate of an infected individual, and γ is the recovery rate. If TI > TR,
CI becomes the next configuration at t+ TI with St+TI

= Et − 1 and It+TI
= It + 1, and vice

versa. This update step iterates until time T when IT = 0. Because the population size is finite
and the recovered individuals will not get infected again, the total number of updates is finite
(≤ P ). This number is not a constant due to the updating process, indicating that the amount
of latent variables of this simulator is also random. Note that the evolution procedure described
here corresponds to the Gillespie algorithm [42].

In this case study, we set P = 2,000. x = (E0, I0, β, γ) is the vector of input parameters. To
account for different scenarios, the input variables X are modeled as X1 ∼ U(1, 600 , 1, 800),
X2 ∼ U(20, 200) and X3, X4 ∼ U(0.5, 0.7). The uncertainty in the first two variables can be
interpreted as lack of knowledge of the initial condition. While the last two variables are affected
by possible interventions, such as social distancing measures that can reduce the contact rate β
and increasing medical resources that improves the recovery rate γ. We are interested in the
total number of newly infected individuals during the outbreak, i.e., ET −E0. The signal-to-noise
ratio of this stochastic model is estimated to be SNR ≈ 6.7, which is relatively large.

Figure 10 shows the response PDF estimation of the surrogate model built on an experimental
design of N = 1,000. The reference histograms are calculated from 104 repeated model runs with
the same input values. We observe that the response distribution changes from right-skewed
to left-skewed distributions (so we can also find symmetric distributions in between), which is
correctly represented by the surrogate. In addition, GLaMs also accurately approximate the bulk
and the support of the response PDF.
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Figure 10: Stochastic SIR model – Emulated response PDFs, N = 1,000

In this example, we investigate the convergence of GLaMs for estimating the classical first-order
Sobol’ indices and the standard-deviation-based total Sobol’ indices, denoted by SσTu . To calculate
the reference values, we use 105 Monte Carlo samples for each classical Sobol’ index. Regarding
the standard-deviation-based Sobol’ indices, we calculate the sample standard deviation σ̂(x)
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based on 104 replications. Then, we apply Monte Carlo simulations with 104 samples to estimate
the associated Sobol’ indices. The total cost to get reference values is thus equal to 5× 108. As
in the previous example, we use bootstraps to calculate the 95% confidence intervals.

Figure 11: Estimation of the classical first-order Sobol’ indices. The black lines are the reference
values, and the blue lines denote the average values of 50 repetitions of the full analysis.

Figure 12: Estimation of the standard-deviation-based total Sobol’ indices. The blue lines denote
the average values of 50 repetitions of the full analysis. The black lines are the reference values,
and the dashed lines correspond to the 95% confidence intervals.

Figures 11 and 12 show the results of the convergence study. In terms of the classical Sobol’
indices, the GLaM yields accurate estimates even when N = 250: the box plots scatter around
the reference values with a small variability. Among the four input variables, the second one I0

that corresponds to the number of infected individuals at time 0 is the most important. It is
followed by the contact rate and the recovery rate, which show similar first-order effect. As a
result, performing medical test to better determine I0 would be the most effective way to reduce
the variance of the output. In contrast, Figure 12 suggests that controlling the contact rate and
recovery rate would be the best measure to reduce the variation of σ(X). For estimating the
associated Sobol’ indices, the GLaM converges within the 95% confidence intervals of the Monte
Carlo estimates, and the spread of the box plots decreases significantly with N increasing.

Finally, we remark that when higher-order Sobol’ indices are of interest, Monte Carlo simulations
require additional runs of the original model. For example, 4 × 108 more model evaluations
should be performed to obtain the reference values for the standard-deviation-based second-order

25



Sobol’ indices. This results in a large amount of total model runs, which become intractable
even with cheap models. In contrast, GLaM surrogates can be used without additional cost:
the PCE-based method presented in Section 3.5.3 provides analytical higher-order indices by
post-processing the PC coefficients. In this example, the leave-one-out errors of PCE built on
the GLaM surrogates are of the order O(10−3), which justifies the use of PCE estimates. Based
on the surrogate model, we observe that the largest standard-deviation-based second-order Sobol’
indices, which translate parameters interactions, are I0 and β, I0 and γ. Both have a value 0.09,
while the other second-order interactions are very small. As illustrated in Figure 12, I0 has a
total effect SσT2 = 0.26. Moreover, it has a relatively small first-order effect Sσ2 = 0.05. This
implies that I0 mainly affects the variance of σ(X) through its interactions with β and γ.

5 Conclusions

In this paper, we discuss the nature and focus of three extensions of Sobol’ indices to stochastic
simulators: classical Sobol’ indices, QoI-based Sobol’ indices and trajectory-based Sobol’ indices.
The first two types are of interest because of their versatility and applicability to a broad class of
problems. We propose to use the generalized lambda model as a stochastic emulator to estimate
the considered indices. This surrogate model aims at emulating the entire response distribution,
instead of only focusing on some scalar statistical quantities, e.g., mean and variance. More
precisely, it relies on using the four-parameter generalized lambda distribution to approximate
the response distribution. The associated distribution parameters as functions of the input are
represented by polynomial chaos expansions. Such a surrogate can be constructed without the
need for replications, and thus it is not restricted to a special data structure.

Because of the special formulation of GLaM, the considered sensitivity indices can be estimated
by directly working with deterministic functions. This allows applying the methods developed for
deterministic simulators, namely estimators based on Monte Carlo simulations and on polynomial
chaos expansions. In this paper, we suggest the latter to post-process the surrogate model to
achieve high computational efficiency.

The performance of the proposed method for estimating various Sobol’ indices is illustrated on
three examples with different signal-to-noise ratios. The toy example is designed to have a strong
heteroskedastic effect. It shows the general convergent behavior of GLaMs for approximating
the conditional quantile functions and estimating the entropy of the response distributions. The
second example is a Heston model from mathematical Finance. This case study has a very small
signal-to-noise ratio and demonstrates a shape variation of the response PDF. The surrogate
generally yields accurate estimate of the Sobol’ indices associated to the expected payoff and the
95%-superquantile. The last example is a stochastic SIR model in epidemiology, in which GLaMs
exhibit robust estimates of the classical Sobol’ indices and the standard-deviation-based Sobol’
indices. All three examples have a different ranking of the input variables depending on the type
of Sobol’ indices, which is correctly captured by GLaMs when comparing to reference values
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obtained by extremely costly Monte Carlo simulations. Fairly accurate results are obtained at a
cost of O (104) runs of the simulator compared to reference values based on O (108) runs by a
brute force approach.

In future work, we plan to develop algorithms to improve GLaMs for small data sets. Besides,
we will investigate GLaMs for estimating distribution-based sensitivity indices [43, 44]. The
estimation of these indices usually requires a large number of model runs to infer the conditional
PDF, which can be easily obtained from GLaMs. In addition, appropriate contrast measures
between distributions, such as the Wasserstein metric, can be developed for sensitivity analysis
in the context of stochastic simulators. Finally, developing sensitivity indices for stochastic
simulators with dependent input variables will allow engineers to tackle a broader group of
problems.
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6 Appendix

6.1 Some properties of GLDs

The mean and variance of a GLD can be calculated by

m = λ1 −
1
λ2

( 1
λ3 + 1 −

1
λ4(x) + 1

)
, (38)

v = (d2 − d2
1)

λ2
2

, (39)

where {dk : k = 1, 2} are defined by

d1 = 1
λ3

B(λ3 + 1, 1)− 1
λ4

B(1, λ4 + 1),

d2 = 1
λ2

3
B(2λ3 + 1, 1)− 2

λ3λ4
B(λ3 + 1, λ4 + 1) + 1

λ2
4

B(1, 2λ4 + 1),
(40)

with B denoting the beta function.

The expected payoff defined in Equation (41) of a GLD with the strike price K is given by

mC
def= E [max {Y −K, 0}]

=
(
λ1 −

1
λ2λ3

+ 1
λ2λ4

−K
)

(1− uK) + 1
λ2

(
1− uλ3+1

K

λ3 (λ3 + 1) −
(1− uK)λ4+1

λ4 (λ4 + 1)

)
.

(41)
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where uK is the solution of the nonlinear equation:

Q(uK ;λ) = K. (42)

The α-superquantile sqα defined in Equation (35) of a GLD has a closed-form:

sqα
def= E [Y | Y > qα]

= λ1 −
1

λ2λ3
+ 1
λ2λ4

+ 1
(1− α)λ2

(
1− αλ3+1

λ3 (λ3 + 1) −
αλ4+1

λ4 (λ4 + 1)

)
.

(43)
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