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Abstract

Building renovation is urgently required to decrease the energy consumption of the existing

building stock and reduce greenhouse gas emissions coming from the building sector. Selecting an

appropriate renovation strategy is challenging due to the long building service life and consequent

uncertainties. In this paper, we propose a new framework for the robust assessment of renovation

strategies in terms of environmental and economic performance of the building’s life cycle. First, we

identify the possible renovation strategies and define the probability distributions for 74 uncertain

parameters. Second, we create an integrated workflow for Life Cycle Assessment (LCA) and Life

Cycle Cost analysis (LCC) and make use of Sobol’ indices to identify a prioritization strategy for

the renovation. Finally, the selected renovation scenario is assessed by metamodeling techniques

to calculate its robustness. The results of three case studies of residential buildings from different

construction periods show that the priority in renovation should be given to the heating system

replacement, which is followed by the exterior wall insulation and windows. This result is not in

agreement with common renovation practices and this discrepancy is discussed at the end of the

paper.

Keywords: Life cycle assessment; Life cycle cost; uncertainty quantification; building renova-

tion
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1 Introduction

The built environment has a big impact on climate change (International Energy Agency (IEA),

2018). Construction of new buildings is responsible of 25% of global greenhouse gas (GHG) emis-

sions and heating of the existing building stock contributes to another third of the emissions

(Cabernard et al., 2019). Furthermore, buildings provide the biggest potential for cost-effective

GHG emission reduction (de Feraudy et al., 2012). However, the current directives are still fo-

cused mainly on new construction despite a growing attention in the field of renovation (EU, 2010).

Within the European building stock, 90% was constructed before 1990 and the annual growth of

new buildings in the residential sector is estimated to be about 1% (Economidou et al., 2011).

Achieving simultaneously a low energy standard while being cost-efficient in the existing building

is challenging (Ott et al., 2017) as it is crucial to assess the whole life cycle. Life cycle cost analysis

(LCC) and life cycle assessment (LCA) are two well-known approaches to analyse the economic

and environmental performance of a building. An integrated approach of LCC and LCA has previ-

ously been applied in building renovation studies (Ott et al., 2017; Conci et al., 2019; Olsson et al.,

2016). Several studies have shown that there is a balanced point where the renovation strategy is

environment-friendly and cost-effective (Ott et al., 2017; Almeida and Ferreira, 2015).

However, due to the long service life of a building and the associated uncertainties, the decision

made in favour of one renovation strategy or another might be highly inaccurate or uncertain. These

uncertainties affect parameters, which can be divided into design and exogenous parameters. The

former represent the possible decisions the designer can make while the later represent the social and

economic parameters such as external climate, human behavior and future evolution of energy costs.

For buildings, which are long lasting systems, it has been shown that uncertainties related with

building operation, components’ reference service lives, evolution of climate and energy mixes or

economic situation highly affect the output of the LCA and LCC (Burhenne et al., 2013; Macdonald,

2002; Favi et al., 2018; Häfliger et al., 2017). In fact, it has been shown that the difference in

resulting values of two distinct solutions might be lower than the level of uncertainties within each

solution (Fawcett et al., 2012). The topic of uncertainty quantification has been discussed within the

LCA community for many years. Several studies were conducted to summarize different approaches

to treat uncertainties in LCA (Lloyd and Ries, 2007; Mendoza Beltran et al., 2018; Zhang et al.,

2019; Heijungs and Huijbregts, 2004). These approaches include stochastic modelling (Heeren

et al., 2015), data quality indicators (DQI) (Coulon et al., 1997), fuzzy data sets (Egilmez et al.,

2016), scenario analysis (Gregory et al., 2016), Taylor series expansion (Hoxha et al., 2014), expert

judgement and the combination of several approaches. Some studies focus on the uncertainties

in the methodology of LCA itself, e.g. goal and scope definition, life cycle inventory, impact

assessment and interpretation (Huijbregts et al., 2003; Hellweg and Milà i Canals, 2014). Other

studies specifically deal with uncertainties of building life cycle assessment (Heeren et al., 2015;

Favi et al., 2018; Hoxha et al., 2017; Su and Zhang, 2016) and life cycle costs (Burhenne et al.,

2013; Sharif and Hammad, 2019; Buyle et al., 2019; Giuseppe et al., 2017). Monte Carlo Simulation
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(MCS) is the most frequently-used method to evaluate the LCA output probabilistically (Lloyd and

Ries, 2007). Many studies have used this method to evaluate the output uncertainty in building

LCA or LCC, for example Burhenne et al. (2013); Heeren et al. (2015); Ross and Cheah (2017);

Favi et al. (2017); Eckelman et al. (2018); Robati et al. (2019). The popularity of this method

can be explained by its easy applicability and the straightforward procedure. MCS also allows

representing the model output visually in a histogram or cumulative distribution function (CDF),

which is crucial in uncertainty analysis. However, this method is limited as the number of model

evaluations required to achieve an acceptable degree of accuracy is relatively large, especially when

dealing with complex computational models (Groen et al., 2014). Besides the uncertainty analysis,

it is vital for a designer to know, which parameters within the model input have the biggest

contribution to the variability of the model output. To do this, global sensitivity analysis can

be used (Saltelli et al., 2004). Sensitivity analysis has also been applied in different studies to

identify the influential parameters or to simplify the model (Hoxha et al., 2014; Padey et al.,

2013; Pannier et al., 2018; Naulty et al., 2020; Das et al., 2014). Many techniques are currently

available in literature (Groen et al., 2017; Mara et al., 2015; Lacirignola et al., 2017), some of

which are based on the decomposition of the output variance (Iooss and Lemâıtre, 2015). Sobol’

indices are one such popular technique. They are based on the decomposition of the total output

variance into the fractions related to the input parameters. These parameters are considered to be

independent. It has been shown that the contribution to the variance for large input uncertainties

in LCA is best performed by Sobol’ indices or Spearman correlation coefficient (Groen et al.,

2014). While MCS remains the most widely used method to propagate uncertainties and compute

Sobol’ indices within the LCA community, it faces numerous hurdles, which are mainly associated

to its relatively large computational cost (Pannier et al., 2018). For instance, to calculate the

MCS-based Sobol’ indices, the computational cost is N × (k + 2) model evaluations where N is a

sample size defined by the analyst, usually in the order of thousands, and k is the number of the

parameters (Saltelli et al., 2008). Other methods have been developed to specifically address such

issues related to high-dimensionality and complex computational models. One of these methods

is surrogate modelling where the original, potentially time-consuming, model is replaced by a less

computationally expensive statistical model. Surrogate modelling techniques have been applied in

many fields (Yang et al., 2015; Hover and Triantafyllou, 2006; Sun et al., 2017; O’Neill and Niu,

2017). However, to the authors’ best knowledge, they have not been applied in environmental

and economic assessment of building renovation. In this paper, we use surrogate modelling, more

specifically polynomial chaos expansions (PCE), as a method to propagate the uncertainties in

LCA and LCC. The same PCE model is also used for the estimation of Sobol’ indices following

(Sudret, 2008). In fact, it has been shown that Sobol’ indices can be analytically obtained by post-

processing the PCE coefficients (Blatman and Sudret, 2010), hence no additional cost is incurred

after the PCE model has been built. The goal of the study is to identify robust renovation scenarios

for residential buildings in Switzerland using reference buildings. We define the critical parameters

that need to be considered for robust environmental and economic renovation. Through a rigorous
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statistical treatment, we apply all possible uncertain design and exogenous parameters from the

integrated assessment of LCA and LCC and perform global sensitivity analysis (GSA) to estimate

Sobol’ indices by post-processing a PCE model. The novelty of this method is the possibility of

a combined LCC and LCA with holistic integration of all sources of uncertainties using surrogate

modelling, which allows us to quickly estimate, otherwise computationally expensive, Sobol’ indices.

2 Methodology

The methodology of the paper is outlined in Figure 1. First, the heating demand of the building

and a combined LCC and LCA is conducted. Second, possible renovation measures are selected.

Third, the uncertain parameters are identified and described. This is followed by the GSA, which

is performed in several screening assessments to define the most influential parameters for the

renovation. Finally, the uncertainties are propagated for the selected renovation measures and the

solution robustness is compared to that of the non-renovated baseline case. Each of these steps is

described in detail in the remainder of this chapter.

Figure 1: Proposed methodology

2.1 Model definition - Integrated analysis of environmental and cost

performance

2.1.1 Heating demand

The first step of the method includes the heating demand calculation for the building. This step is

done following the procedure of the Swiss standard for the energy demand analysis SIA 380/1:2016

(SIA 380/1, 2016), which includes quasi-steady monthly calculations. The validation of the calcu-

lations is made by comparison with the established commercial Lesosai software (Lesosai, 2020),

which also complies with SIA 380/1:2016 (SIA 380/1, 2016). The calculations are performed using

the python programming language, the code itself is open source and can be found on GitHub, the

description of the code can be seen in the Supporting information 1. The heating demand is an

intermediate result as it is used for the life cycle module B6 (operation) and to account for the

operational costs.
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2.1.2 Life cycle assessment

To assess the environmental impact of a renovated building, an LCA is performed. The life cycle

modules A1-A3 (production), B4 (replacement), B6 (operation) and C3-C4 (end of life) are used

as system boundaries for this study according to the standard for assessing the environmental

performance of buildings SN EN 15978. The module A4 (transport to the construction site) is not

included, because it has a relatively small effect on the overall life cycle assessment (Kellenberger and

Althaus, 2009). The module A5 (construction process) is also not included as data is very rare. It

has also been shown that the preparatory works on site can be neglected due to the low contribution

to the LCA results (John, 2012). Detailed studies can be found from Indian construction processes

(Devi and Palaniappan, 2017) and show that construction processes represent 2 to 3% of the total

environmental impact of the building over its life cycle (Devi and Palaniappan, 2014). However

translation from Southern India to Swiss context is difficult. Finally, the module B3 (repair)

was excluded as well due to the limited data availability. The functional unit refers to the use

of the building over a reference study period (RSP) of 60 years. It also includes the impact of

the renovation activity as stated by Swiss standard SIA 2032 (SIA, 2010). The global warming

potential (GWP), expressed in kgCO2eq., is used as an indicator for climate change based on IPCC

characterization factors (IPCC, 2018) and is the only indicator considered in this study. The life

cycle environmental impact (LCEI) refers in this study to the total kgCO2eq., which is the sum of

GHG emissions over the life cycle of a building. LCEI is composed of the environmental impacts

(EI) associated with production of all building components (Module A1-A3), their replacement

(module B4) and end of life (modules C3 and C4) as well as the environmental impacts related

with building operation (B6). This is translated by the following equation:

LCEI =

b∑

i=1

kproduction,i + kEoL,i (ni + 1) +QF,a kop.RSP ERA (1)

where kproduction,i [kg.CO2 eq.] is the environmental impact of the production of the component

i, kEoL,i [kg.CO2 eq.] is the impact associated with the end of life of the component i, ni =

dRSP/RSLie−1 [-] is the number of times the component i has to be replaced during the building’s

service life, RSP [years] is the reference study period (building life), RSLi [years] is the component’s

reference service life, b is the number of the components. QF,a [kWh/(m2,a)] is the final yearly

energy need of the building, which is calculated as QF,a = QH,a/PF , where QH,a is the annual

heating demand, PF is the performance factor, which depends on the energy system in a building

(see more explanation in SI 1), kop. [(kg. CO2 eq.)/kWh] is the operational impact factor, which

represents the average value of CO2 eq. emissions associated with the use of the specific energy

system of the building, ERA [m2] is the energy reference area, which refers to the heated floor area

of a building.
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2.1.3 Life cycle cost analysis

Simultaneously with the LCA, an LCC is performed. The net present value (NPV) methodology is

used to evaluate the total costs of the renovated building under the renovation scenario. Similarly

to LCA, the stages of production, replacement, operation, and end of life are included. In addition,

costs related to repair as part of the maintenance is included in the calculations as a fixed percentage

of the initial costs as stated by the Swiss Centre for buildings’ rationalization (CRB) [64]. The

demolition costs are included in the analysis, however, it must be noted that due to the long building

life span and applied discount rate, the NPV of a demolition cost becomes negligible. Labor cost

is included in the analysis. The functional unit is the same as for LCA. The procedure of CRB is

used during the analysis as follows (Ammann et al., 2012):

LCC =
b∑

i=1

Cproduction,i +
b∑

i=1

ni∑

l=1

Creplacement,i (1 + r)
lRSLi

(1 + dnominal)
lRSLi

+

RSP∑

l=1

b∑

i=1

Crepair,i(1+r)l

(1 + dnominal)
l

+
RSP∑

l=1

QF,amopERA (1 + r)
l

(1 + dnominal)
l

+
b∑

i=1

CEoL,i (1 + r)
RSP

(1 + dnominal)
RSP

(2)

where Cproduction,i [CHF] is the investment cost for the component i, Creplacement,i [CHF] is the

replacement cost for the component i, which is calculated as Creplacement,i = Cproduction,i+CEoL,i,

CEoL,i [CHF] is the demolition costs of the component i, b is the number of the components,

Crepair,i [CHF] is the repair cost of the component i, r [%] is the inflation rate, dnominal [%] is

the nominal discount rate, mop [CHF/kWh] is the operational costs for heating depending on the

energy system of the building, and QF,a is the final yearly energy need of the building, and ni is a

number of times the component has to be replaced during the building’s service life, RSP [years]

is the reference study period (building life) and RSLi [years] is the component’s reference service

life.

The analysis of LCC and LCA are run in parallel and share the operational consumption QF,a,

the database for the costs and environmental impacts used in this study can be found in Supporting

information 2. The code used for the calculations of QF,a, LCEI and LCC as well as the parameters

description can be found in Supporting information 1.

2.2 Renovation measures description and data collection

The possible renovation measures are defined by renovation of the envelope and replacement of

the heating system. The envelope is represented by the exterior wall, roof, ground slab, windows

and surfaces facing unheated areas (e.g. slab against unheated basement). The heating system

can be chosen among a boiler (oil, gas, wood pellet, electric), an air-to-water heat pump or district

heating. The data for the analysis is taken from the Swiss database for construction components for

renovation called Bauteilkatalog (Bauteilkatalog, 2020). The structure of the database follows the

e-BKP-H SN 506 511 structure where each element is composed by a number of components (Cav-

alliere et al., 2019). Data for the available components can be found in the Supporting information

2.
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2.3 Uncertain input parameters

The uncertain parameters are divided into the categories shown below. The parameters’ designa-

tions in brackets refer to the parameters described in the model calculation procedure shown in

Supporting information 1. It has to be noted that only uncertain parameters from the defined

model in Chapter 1.1 are presented here. Some of the parameters cannot be seen in Eq. (1-2)

however, they can be found in the detailed model formulation in Supporting information 1.

• Components types: they represent the possible renovation solutions for the building envelope.

They are defined according to the Swiss national database Bauteilkatalog (Bauteilkatalog,

2020).

• Embodied emissions and investment costs (kproduction, kEoL and Cproduction, CEoL): they

represent the environmental impact related to the production and the end of life of the com-

ponents, and the investment costs for the components.

• Operational emissions and costs (kop. and mop., r, dnominal): they represent the costs related

to the type of a heating system, e.g. heating costs expressed in CHF per kWh and greenhouse

gas emissions associated with the use of the system expressed in kgCO2eq. per kWh. The

data is taken from the Swiss database KBOB and Heating System Comparison Tool by WWF

(World Wide Fund for Nature): “Heizungsvergleich Excel Tool” (KBOB, 2016; WWF, 2015).

This group of components also includes the inflation (r) and nominal discount rate (dnominal)

to account for the fluctuation of the future prices for LCC.

• Reference service life (RSL) of components: they are taken from the DUREE database (Las-

vaux et al., 2019). In this database, all available RSL values, which exist in Swiss and

international standards are collected and summarized regarding the mean value and stan-

dard deviation. At this development stage of the method, the components are being replaced

by the initial components when reaching the end of the RSL without considering the future

evolution of the materials.

• System performance (Uex, di, φ,PF ): they represent the existing building performance, for

example the U-values (Uex), existing and new heating system efficiency (di), thermal bridges

before and after renovation (φ), performance factor (PF ), etc.

• User-oriented parameters (Tin, tocc, qvent): they express parameters related to occupants,

which might have an influence on the total energy consumption of the building, namely

operating temperature (Tin), occupation schedule (tocc), airflow (qvent).

The parameters ranges are chosen to cover all available solutions ranging from the possibility of non-

renovation to the renovation solution. The renovation solutions comply with the Swiss standards for

the energy performance SIA 380/1 (SIA 380/1, 2016) using punctual requirements for the U-values.
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2.4 Uncertainty quantification

Uncertainty quantification aims at identifying all sources of uncertainty and propagating these un-

certainties from the input factors to the outputs. Sensitivity analysis aims at identifying important

parameters within the inputs of a model. This section explains how these two analyses are carried

out in the context of this paper. In both analyses, surrogate models are used to alleviate the

computational burden. We specifically use polynomial chaos expansions (PCE) as surrogate of the

model to compute the LCEI and LCC introduced above. A detailed description of using PCE for

surrogate modelling is provided in the work from Sudret (Sudret, 2007; Marelli and Sudret, 2017).

The main features of PCE are introduced in the following section. The entire uncertainty quantifi-

cation analysis presented in this chapter is carried out using UQLab, a Matlab-based framework

for uncertainty quantification (Marelli and Sudret, 2014).

2.4.1 Polynomial chaos expansions in brief

The output of the integrated LCA or LCC can be considered as a finite variance random variable

Y , which is a function of a random vector X, i.e. :

Y =M (X) (3)

whereM is a computational model used to compute LCEI or LCC (see Chapter 1.1). The vector

X represents the parameters described in Chapter 1.1 and which are listed in detail in Supporting

information 1. Note that the generic variable Y is used in the remainder of this paper to refer

either to LCEI in Eq. (1) or LCC in Eq. (2) as the subsequent developments are similar for either

of the quantities of interest. The PCE consists of two parts:

Y =M (X) =
∑

α∈NM
yαΨα (X) (4)

where Ψα =
∏M
i=1 Ψαi (Xi) are a set of multivariate orthonormal polynomials obtained by the tensor

product of univariate polynomials, yα are coefficients to be computed, α are a set of indices, which

define the degree of a polynomial andM is the number of input uncertain parameters. Depending on

the case study, a total M = 73 to 75 input parameters are considered in this paper. Each univariate

polynomial belongs to a classical family of polynomials defined according to the distribution of the

corresponding input. For instance, Legendre polynomials are associated to uniform distribution

while Hermite correspond to the Gaussian one. All the families of polynomials are presented in

detail by Xiu and co-authors (Xiu and Karniadakis, 2002). The expansion in Eq. (4) is an infinite

series. In practice, this series is truncated into a finite sum as follows:

Ŷ =MPC (X) =
∑

α∈A
yαΨα (X) (5)

where A ⊂ NM . As the number of coefficients yα grows exponentially with both the dimension

and the degree, this truncation allows to cut off this number and thus, reduce the computational

cost. In this paper, hyperbolic truncation is used as proposed by Blatman and Sudret (2011). The
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optimal PCE is sought within a 1− 10 degree range. We use the least square minimization method

to estimate coefficients of the expansion Berveiller et al. (2007). This method is non-intrusive,

i.e. the coefficients are obtained by post-processing a number of model evaluations, which form

a so-called experimental design. Latin hypercube design is selected as sampling strategy for the

analysis. The goal of the method is to minimize the mean square error Berveiller et al. (2007):

ŷα = arg min
yα∈RcardA

1

N

N∑

i=1

(
M
(
x(i)

)
−
∑

α∈A
yαΨα

(
x(i)

))2

(6)

where X =
{
x(i), i = 1, . . . , N

}
is a set of realizations of the random parameters defined in

Chapter 1.1 and of size N , which usually ranges between tens and several hundreds and Y =
{
M
(
x(i)

)
, i = 1, . . . , N

}
is a set of the corresponding model evaluations (LCC or LCEI).

In order to estimate the accuracy of the constructed surrogate model, the calculation of the

possible errors must be performed. The Leave-One-Out (LOO) error is then calculated following

a cross-validation procedure. The idea is to create N different PCE models MPC\i where each

model is created using an experimental design excluding the i-th sample. The left-out point is

then predicted by the built PCE and compared with the real output M
(
x(i)

)
. This procedure is

repeated for all the training points and the LOO error is then calculated as follows (Blatman and

Sudret, 2010):

εLOO =

∑N
i=1

(
M
(
x(i)

)
−MPC\i (x(i)

))2
∑N
i=1

(
M
(
x(i)

)
− µ̂Y

)2 (7)

where µ̂Y is the sample mean of the experimental design response. In practice, one does not need

to construct N different PCE models to evaluate εLOO in Eq.(7): it is available as a post-processing

of a single PCE model built using the entire experimental design (Le Gratiet et al., 2017).

εLOO =

∑N
i=1

(
M(x(i))−MPC(x(i))

1−hi

)2

∑N
i=1

(
M
(
x(i)

)
− µ̂Y

)2 (8)

Further details on the practical computation of a PCE model can be found in the UQLab PCE

manual (Marelli and Sudret, 2017).

2.4.2 Sensitivity analysis

Global sensitivity analysis aims at identifying the most influential parameters within the model

inputs to the model output (Saltelli et al., 2008). Sobol’ indices are a popular analysis of variance

technique where the total output variance is decomposed into smaller fractions related to each

input variable and combinations thereof. Sobol’ indices of the first order represent the influence of

each parameter taken separately while second order Sobol’ indices show the possible interactions

within the input parameters. The procedure of variance decomposition can be seen in Supporting

information 1. In practice, a large Sobol’ indice for a given variable implies a high contribution

to the output uncertainty. On the contrary, if a parameter has a very low Sobol’ indice value, it

may be considered negligible to the output uncertainty and can therefore be taken out in order to
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simplify the model and reduce the computational cost. Computationally, the Sobol’ indices can be

obtained using Monte Carlo simulation. However in this paper, we rely on the built PCE models for

this task. More specifically, the Sobol’ indices are obtained analytically by simply post-processing

the coefficients (yα) of the PCE models (Marelli and Sudret, 2014).

Sensitivity analysis is used in this paper to help the designer identify the most influential

parameters for the renovation. Initially, GSA using Sobol’ indices is performed for the entire range of

possible renovation measures where the solutions vary within the available database simultaneously

with other sources of uncertainties during the building life cycle.

After the first results are achieved, the most influential parameter is found and defined as a first

renovation measure. Focusing on this parameter allows the designer increasing the robustness of

the output regarding economic and environmental performance of a building over its lifetime. To

be able to find the second priority in the renovation, the first most influential renovation measure

is defined by selecting the deterministically optimal solution within the available database of reno-

vation measures. To identify the optimal solution, the LCEI and LCC of all possible solutions are

calculated deterministically.

The sensitivity analysis procedure continues until the exogenous parameters become the most

influential ones. In this case, we stop the analysis and move on to the uncertainty quantification

of the identified renovation solutions. Any additional renovation measure will not significantly

improve the robustness of the LCEI and the LCC as they are controlled by parameters out of range

for the designer (e.g. user behavior, economic evolution).

2.4.3 Uncertainty propagation

The defined solutions for the renovations, which are identified using sensitivity analysis are consid-

ered for uncertainty propagation and compared with the non-renovated case in terms of robustness.

In practice, Monte Carlo simulation is carried out using the PCE models which are proxies of the

original models defined in Section 2.1. The comparison is first made visually in terms of prob-

ability distributions which are obtained by kernel smoothing density. A numeric assessment on

the improvement brought by each design choice is also carried out using the same Monte Carlo

simulations.

3 Case studies

To evaluate the applicability of the method, three buildings from different construction periods are

selected. The case studies are taken from eRen building models as the energy demand of these

buildings was already calculated (Schwab et al., 2015). This allows us to validate the results using

the created tool shown in Section 2.1. Three construction periods are chosen as representatives of

the majority of the building stock in Switzerland. A brief description of the case studies can be

seen in the Table 1.
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Table 1: Description of the case studies

Year 1939 1960 1972

Year of Not renovated Not renovated Renovated in 2018

renovation

ERA 2, 445 m2 1, 475 m2 1, 446 m2

Walls Cement bricks, Hollow bricks Double brick wall

not insulated

Slabs Hollow core clay slabs Concrete & hollow Reinforced concrete

core clay slabs

Windows Double glazing, Double glazing, Double glazing with low-E

PVC frame wooden frame layer, PVC frame

Energy con-

sumption

95.4 kWh/m2,a 110 kWh/m2,a 91.1 kWh/m2,a

(heating)

The parameters of uncertainty selected for this study are shown in the Table 5. The parame-

ters designation refers to the parameters from the calculation procedure shown in the Supporting

information 1. The insulation thickness for all the component types is set to vary within the range

[0 − 0.5] m. The uncertainty for the embodied impacts and investment costs is set respectively

to ±30% (expert point of view and previous studies (Gomes et al., 2013; Chen et al., 2010)) and

±20% (SIA 480, 2016). The value of 0 in the moments for the component types always represents

the non-renovated case, i.e. when no action is taken by the designer. For the variability of com-

ponent types, each number within the range represents one system, e.g. for the heat production,

1 represents an oil boiler, 2 – a gas boiler, 3 – a district heating, 4 – an air-to-water heat pump,

5 – a wood pellets boiler and 6 – an electric boiler. Detailed information about the envelope sys-

tems can be found in the Supporting information 2. The distribution of the parameters is mainly

selected based on the available data. Uniform distribution is assumed for all parameters whose

only knowledge available is the upper and lower limits. Finally, the distribution of the RSL for the

components is chosen as discussed in Lasvaux et al. (2019). The assumption for the uncertainty on

the U-value of the existing windows with wooden frame is roughly estimated to be 20% due to the

age of the building (degradation level D) as discussed in Fernandes et al. (2019). The uncertainty
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on the performance of the insulation is based on a study by Domı́nguez-Muñoz et al. [87], which

focused on the uncertainties of the conductivity of insulation materials while taking into account

the deterioration due to the building age. The performance loss of the existing system values are

set depending on the heating system type and in accordance with European commission directorate

(European comission directorate-general for energy, 2016). The building structures deterioration

rates are assumed according to Gharehbaghi et al. (2020).

4 Results

The results of the case study from the 1960 building (see Table 1) are presented in this section.

The results of other studies can be found in the Supplementary information 1.

4.1 Sensitivity analysis

The results of the sensitivity analysis are presented in Figure 2. Several parameters (e.g. exterior

wall insulation thickness, environmental impact and cost uncertainties) were summarized to one

macro parameter (e.g. Exterior wall) for a more visual results‘ representation. The analysis of

each separate parameter from Table 2 is shown in Supporting information 1. The parameters are

distinguished between the design parameters and the exogenous ones. As it can be seen from the

first screening assessment (the top graph), the heating replacement is the most influential parameter

for the renovation. Therefore, we set the heating system as the first renovation measure and apply

it to the model. As sensitivity analysis is helpful in identifying the influential parameters but not

the actual practical solution, the applied measures are selected according to the deterministically

optimal solution in terms of LCEI and LCC within the available options in the database. In this

case, it is an air-to-water heat pump, with a coefficient of performance (COP) of 2.8. The results

of the calculations can be found in the supplementary information 1. The summary of the applied

solutions according to the sensitivity analysis is shown in Table 3.

After the heating system is selected, the sensitivity analysis is conducted again to identify the

second priority for the renovation. It has to be noted that both model outcomes are treated equally.

Thus, a combined sensitivity index is considered. In the second assessment, the Sobol’ index is

different for LCEI and LCC but when considering the combination, the exterior wall insulation

appears as the most important parameter. The impact of the exogenous parameters is growing

with each step of the analysis. Eventually, these parameters are becoming the most crucial ones

for the assessment and therefore, it is not possible to improve the robustness by applying more

renovation measures. At this point, the assessment of the sensitivity analysis is stopped and the

second phase, i.e. the uncertainty quantification on the applied measures, is initiated. In this case

study, this point is reached during the fourth step of the procedure (See Table 2).
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Table 2: Measures applied following each iteration of the sensitivity analysis.

Measure Description

Step 1: Heating system Heat pump, air-to-water, COP 2.8

Step 2: Exterior wall 12 cm rockwool insulation and plaster, U – 0.25

W/m2K

Step 3: Windows Wooden-aluminum window triple pane, frame part 10

%,

U – 0.8 W/m2K

Step 4: Slab against unheated

area

10 cm rockwool insulation and solid wood, U – 0.25

W/m2K

4.2 Uncertainty quantification

Uncertainty propagation is carried out along each iteration of sensitivity analysis, i.e. once a

renovation measure is selected, distributions of the corresponding LCEI and LCC are obtained using

crude MCS as shown in Figures 3 and 4. The shown densities are obtained by kernel smoothing

using, in each case, 106 samples evaluated through the surrogate model. The LCEI and LCC

distributions of the non-renovated building lie on the right side of the figure. As renovation measures

are applied, the curves gradually shift towards the left, which indicates a reduction in the mean

values. The spread of the density curves is also getting smaller as renovation measures are applied,

thus indicating an overall increase in robustness. It has to be noted that the renovation scenarios

are being applied cumulatively, for instance, once the heating system is adapted, the exterior wall

is applied additionally. It can be clearly seen that the application of the heating system and other

applied measures has a higher impact on the environmental performance LCEI than on the economic

performance LCC. This can be explained by discount and inflation rates, which are controlling the

operational costs. Therefore, the application of the renovation measures is less influential for LCC

than for the LCEI.

The results show that uncertainty quantification is a crucial element due to the big overlap of

the various distributions in Figures 3-4. We therefore analyze the overlapping areas and introduce

a “risk index”, which is the probability of the renovation measure to be ineffective with regards to

environmental and economic performance compared to the previous measures or the non-renovated

case. This probability of ineffective renovation has a scale from 0 to 1. The higher the number, the

higher the chance of the renovation measure to be inefficient. This index indicates the probability

that, due to various uncertainties, the environmental or economic performance over the life cycle

after applying a renovation measure is worse than it would be without that renovation. This

probability is calculated by MCS using 106 random independent samples.

As it can be seen from Table 3, when comparing with the non-renovated case, the index increases

with the additional renovation measures for both, environmental and economic performance. How-
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Figure 2: Sensitivity analysis results: the 1st assessment shows the total Sobol’ indices for the vari-

ability of all measures, the 2nd assessment shows the result once the heating system was applied as a

renovation measure, 3rd and 4th assessments show the analysis after exterior wall and windows were

applied respectively

ever, if we compare the further renovation measures, the picture is less clear. For example, in terms

of LCC, when comparing windows and exterior wall renovation, the probability of the renovation

measure being ineffective is close 50%, and decreases if more measures are applied. This result

shows that to be able to perform a robust cost-efficient renovation, the full building renovation

should be performed while in terms of LCEI, only a replacement of the heating system is enough.
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Figure 3: Results of uncertainty quantification for LCC in total CHF

Figure 4: Results of uncertainty quantification for LCEI in total kg.CO2eq.

Table 3: Risk index results for economic performance - LCC

LCC No renovation Heating system Exterior wall Windows Slab against

unheated surface

No renovation - 0.08 0.0019 0.0018 0.0004

Heating - 0.22 0.24 0.1949

system

Exterior wall - 0.5427 0.48

Windows - 0.4308

5 Discussion

Three case studies from different construction periods were used to apply the proposed methodology

based on GSA. The first results show that during the first screening assessment with all the possible

renovation scenarios, the most influential parameter for both LCEI and LCC is the heating system

replacement, which is followed by the exterior wall insulation and windows replacement for the

LCEI. It can also be seen that the exogenous parameters become of highest importance already

after three renovation measures are applied. This highlights the importance of such parameters to
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Table 4: Risk index results for environmental performance - LCEI

LCC No renovation Heating system Exterior wall Windows Slab against

unheated surface

No renovation - 0 0 0 0

Heating - 0.0129 0.001 0.0003

system

Exterior wall - 0.01 0.008

Windows - 0.1144

be included and properly examined during the probabilistic assessment. It also shows that even

when more renovation measures are applied, there are still a lot of uncertainties during the life

cycle, which need to be identified and described in a probabilistic context.

Limitations

For some of the parameters, it was not possible to find a defined distribution for uncertainties

in the literature. Therefore, assumptions were made by the authors for some of the parameters.

For example, the RSL was considered as an exogenous parameter, which cannot be affected by the

designer. However, one can argue that the proper design and planned maintenance can increase

the RSL of the components and therefore, can be considered as a design parameter.

The motivation in this study was to cover as many parameters as possible in the “baseline”

building LCA & LCC models according to the current standards. However, the normative cal-

culation rules remain a simplification of the reality. Some phenomena such as the evolution of

parameters over the building lifetime (climate change scenarios, future energy mix) are currently

not considered. Such an approach refers to a “dynamic LCA” where parameters evolve across time.

Other phenomena are taken into account but are currently modelled using the normative approach

(occupancy behaviour, monthly heat balance, etc.). The refinement of the current models and

parameters should be included in future studies.

The results presented in this paper are highly sensitive to the input parameters’ uncertainty.

The results of the case study for our methodology were achieved by using the described parameters

ranges presented in the Table 2. Some variations can be discussed and might be found to be too

extreme. The intention was to avoid an underestimation of some parameters without a proper

description. The fact that even when considering extremely large range, these parameters do not

seem significant confirms that the identified parameters (heating system, walls, windows, slabs) are

indeed the main parameters to consider in building LCA & LCC renovation studies.

The only indicator for the LCA considered in this study was GWP. Considering other impact

categories might change the results. However, renovation of the existing building stock is a key

priority due to climate change and therefore it should be the first focus, while paying attention not
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to have pollution transfer to other environmental impact categories.

Finally, only the available Swiss open source data for materials and components was considered

in this study, which might be limited and has to be extended to cover all the possible renovation

solutions.

Implications

The study demonstrates the significant difference between LCA and LCC when considering the

robustness of the renovation scenario. Any renovation is significantly reducing the environmental

impact while it is less clear from the economic perspective. This illustrates a known aspect of

the reluctance to renovate as the economic incentives are not obvious [91]. Our results still show

that from an economic point of view, it makes sense to go for deep renovation, while from the

environmental perspective a medium renovation would not provide necessarily more robust results

than a deep one. From an economic perspective, only an intense renovation will provide significant

improvement compared to the no renovation scenario. This result would be in favour of deep

renovation policy, if the objective is to reduce LCC. It is in contradiction with previous studies that

would argue for lower investment to secure an environmental and economic benefit (Jones et al.,

2013; La Fleur et al., 2019). Thanks to the use of uncertainties in LCC, the results presented here

push for new economic solutions that would allow reducing initial investment costs to moderate

renovation, which is beneficial for environmental impact and still secure a long term economic

benefit.

Discrepancy with practice

The renovation measures prioritized by this paper (and their combination) may be different from

the ones usually applied in practice. The heating system is often replaced as the last step of the

renovation. The argument being that from an economic point of view, we first need to reduce

the heating demand by insulating the envelope and then design a smaller heating system that can

fulfil the reduced heating demand. Another reason to insulate a building first is to use a renewable

source of energy (e.g. heat pump) with the highest possible efficiency. However, according to the

results of the current study, the heating system is the most influential parameter controlling LCEI

and LCC and as a consequence has to be dealt in priority in order to achieve a robust renovation.

In order to further explore this discrepancy between the current results and the common practice,

results of the full envelope renovation with different heating systems are presented in the Figures

5-6. They confirm the fact that changing only the heating system can be more efficient than doing a

full renovation without changing the heating system. From the economic point of view, the heating

system replacement provides 0.08 risk index of not improving the output while the full envelope

renovation without a heating system replacement provides of higher risk of not improving the total

costs (0.13).

From the environmental perspective, the renovation of only the heating system is more beneficial

(5.4 kgCO2eq./m2,a) (See figure 4) than a full envelope renovation (21.25 kgCO2eq./m2,a) and is
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closer to the Swiss target of 5 kgCO2eq./m2,a (SIA 2040:2017, 2017).

Figure 5: Applied envelope renovation measures with different heating systems - LCC

Figure 6: Applied envelope renovation measures with different heating systems - LCEI

The method proposed in this study gives a new insight in common renovation practices and

questions the usual renovation policies that provide subsidies for envelope renovation or photo-

voltaics installation and taxes on oil boiler. European Union renovation policies will subsidize new

heating systems when integrated in a deep renovation program, but not as a stand-alone measure

(Ministry of economic affairs and communications, 2017). Actually, a change of heating system

is included in deep renovation scenario while moderate renovation includes only the improvement

of the envelope. As the framing of renovation scenario influences macro-economic calculation, one

can imagine that introducing the possibility of changing only the heating system could drastically

reduce renovation costs currently estimated at more than 100 Billion Euros for the EU market

(Artola et al., 2016). Changing an oil or gas boiler to a renewable-based heating system does not

require changing pipes and radiators in the buildings, so the investment is minimal.

Further studies are required to better constrain the robustness of renovation scenarios and
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target the most effective measures that would significantly improve the environmental and economic

performance of existing buildings. In particular, the technical feasibility of a heating system change

should be carefully addressed. This study shows the crucial importance of integrating multiple

parameters uncertainty studies in LCA and LCC in order to be able to provide robust results to

future decision makers.

Supporting information

The supporting information 1 provides additional results on the sensitivity analysis and the results

on defined deterministically optimal solutions in terms of LCC and LCA within the available

database. It also includes the procedure for the model evaluation and Sobol’ decomposition. The

supporting information 2 provides data for the available renovation components.
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Table 5: Parameters of uncertainty used in the case study. The parameters column refers to the distributions parameters and corresponds to the

upper and lower bounds when using the uniform distribution. The moments represent the variable mean and standard deviation. cat. refers to a

categorical variable

Model parameter Parameters Moments Distribution Source

Component types variability

Exterior wall [-] [0, 44]cat. uniform

[65]

Roof [-] [0, 12]cat. uniform

Ground slab [-] [0, 26]cat. uniform

Wall against unheated surface [-] [0, 5]cat. uniform

Slab against unheated surface [-] [0, 6]cat. uniform

Roof against unheated [-] [0, 11]cat. uniform

Windows [-] [0, 16]cat. uniform

Heat production[-] [0, 6]cat. uniform

Embodied LCEI (mproduction) and investment costs (Cinvestment)

Embodied impact heating [0.685, 0.729] uniform [67]

system (heat distribution

+ heat diffusion) kgCO2-eq./ERA)

Cost oil boiler [CHF/ERA] [34.2, 51.3] uniform

[68],[81]

Cost gas boiler [CHF/ERA] [30.1, 45.2] uniform

Cost wood pellets boiler [CHF/ERA] [37.7, 56.5] uniform

Cost heat pump [CHF/ERA] [40.7, 61] uniform

Cost electric heater [CHF/ERA] [32.5, 48.8] uniform

Embodied impact components- [%] [-30, 30] uniform Assumption, [80], [79]

Investment cost components [%] [-20, 20] uniform [81]

Operational environmental and cost inputs

Thermal energy generation kop. [kgCO2-eq./kWh]
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Oil [0.319, 0.322] uniform

[67],[68]

Gas [0.248, 0.249] uniform

Wood pellets [0.038, 0.048] uniform

Heat pump [0.036, 0.039] uniform

Electricity [0.102, 0.108] uniform

Operational cost for heating [CHF/kWh] mop

Oil [0.093, 0.111, 0.128] triangular

[68],[82]Gas [0.101, 0.111, 0.127] triangular

Wood pellets [0.095, 0.107, 0.13] triangular

Heat pump [0.064, 0.079, 0.093] uniform

Electricity [0.192, 0.222, 0.259] triangular [83]

Inflation rate r [%] [0.5,2] uniform [84]

Discount rate (real) dnominal [%] [2.5,4.5] uniform [81]

Components reference service life RSL [years]

Exterior wall [years] [40.6, 11.6] lognormal

[85]

Roof [years] [30.4, 9.6] lognormal

Slab [years] [33.7, 14.2] lognormal

Wall against unheated surface [years] [40.6, 11.6] lognormal

Windows [years] [27.5, 12.2] lognormal

Oil boiler [years] [19.4, 3.1] lognormal

Gas boiler [years] [18.8, 3.3] lognormal

Wood pellets boiler [years] [18.3, 2.8] lognormal

Heat pump [years] [17.1, 6.4] lognormal

Electric boiler [years] [19.8, 5] lognormal

Slab against unheated surface [years] [33.7, 14.2] lognormal

Roof against unheated surface [years] [30.4, 9.6] lognormal

System performance
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Existing windows U-value [2.9, 0.58] lognormal Assumption, [86]

Uex [W/m2*K]

Existing exterior wall degradation [10, 3] gumbel Assumption, [87]

di [%]

Existing roof insulation degradation [20, 5] lognormal Assumption, [87]

di [%]

Thermal bridge renovation ϕ [%] [18, 5] gaussian Assumption

Efficiency loss of the existing system [%] [0.15, 0.25] uniform Assumption [88]

Efficiency loss of a new system [0.15, 0.05] gaussian Dependent on the heating

PF [%] system, shown in SI1.

Existing slab against unheated surf., [10, 5] lognormal Assumption, [89]

degradation [%] di

User-oriented parameters

Operating temperature inside Tin [◦C] [20,23] uniform [90]

Building occupation schedule [8, 16] uniform +/- 4 hours to the

tocc [h/day] suggested 12 h value by [56]

Airflow existing building [0.7, 1] uniform [90]

qvent [m3h/m2]
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