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Abstract

Hybrid simulation is a tool for discovering the inner workings of a tested substructure beyond
the linear regime. Hybrid simulation is conducted to reproduce the response of a prototype in
scaled or real time using a hybrid model that combines physical and numerical substructures
interacting with each other in a feedback loop. As a result, the tested substructure interacts
with a realistic assembly subjected to a credible loading scenario. The obtained low-quantity-
high-value experimental data is used to conceive and calibrate computational models for
nonlinear structural analysis in the current practice. Instead, this paper extends the scope
of hybrid simulation to constructing a safe/failure state classi�er for the tested substructure
by adaptively designing a sequence of parametrized hybrid simulations. Such a classi�er is
intended to compute the state of any physical-substructure-like component within system-
level numerical simulations. The proposed procedure is experimentally validated for a three-
degrees-of-freedom hybrid model subjected to Euler buckling.

Keywords: Hybrid simulation; meta-modeling; Kriging; active learning; classi�er; buckling.

1 Introduction

Hybrid Simulation (HS) is a dynamic simulation paradigm that merges physical experiments and
computational models. In mechanical and electrical engineering, such an approach is known as
hardware-in-the-loop simulation. The report by Schellenberg and co-authors (Schellenberg et al.,
2009) provides a comprehensive overview of state-of-art HS methods and algorithms. In detail,
HS is conducted using a hybrid model, which combines physical and numerical substructures
(NS and PS, respectively) that interact with each other in a real-time feedback loop, to simulate
the time history response of a prototype structure subjected to a realistic excitation. The PS is
tested in the laboratory using servo-controlled actuators equipped with force and displacement
transducers. The NS replaces those substructures that can be reliably simulated (e.g., masses or
components whose response remains in the linear regime) or would exceed the testing capacities
of the experimental facility. A time integration algorithm coordinates the HS ensuring interface
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force balance and displacement compatibility between NS and PS. As a result, HS reproduces
the time history response of the prototype structure subjected to a realistic excitation. When
the PS response is rate-independent, it is good practice to perform HS with an extended time
scale from 50-200 times slower than real-time in order to improve control accuracy. Time scaling
enables full-scale experimentation without the need for large oil-�ow demand. In earthquake
engineering, HS is used for testing large structures such as bridges (e.g., (Mosqueda et al., 2008;
Abbiati et al., 2015)) and buildings (e.g., (Yang et al., 2009; Bursi et al., 2012)). Similarly, testing
of �oating structures with a sizeable scaling factor in hydrodynamic laboratories is challenging
due to the extent of mooring line footprints, which can range from two to four times the water
depth. For this reason, HS has been recently proposed to truncate mooring lines whose missing
parts are simulated as NS (e.g., (Sauder et al., 2018; Vilsen et al., 2019)). Hybrid �re testing
originated in response to limitations of standard �re tests to account for a realistic internal force
redistribution caused by thermal expansion or partial collapse of tested assemblies. (e.g., (Whyte
et al., 2016; Abbiati et al., 2020)).

Regardless of the speci�c domain of application, HS is a tool for discovering the inner workings
of a structural system in the nonlinear regime with few signi�cant experiments. The information
carried by low-quantity-high-value experimental data produced via HS is used to conceive and
calibrate computational models for structural analysis (Bursi et al., 2017). In this context, the
set of loading scenarios explored via HS corresponds to the domain of validity of developed com-
putational models. The usability of those computational models outside such domain is tightly
related to the generalization error concept, which indicates the prediction errors for unobserved
combinations of loading histories and boundary conditions (Roy and Oberkampf, 2011; Worden
et al., 2020). The damage pattern characterizing civil engineering structures typically involves
debonding of heterogeneous materials (e.g., concrete and steel), crack opening (e.g., steel beam-
column connections, concrete members or masonry elements), buckling and yielding (e.g., steel
rebars or members). To reproduce such damage features, highly nonlinear expensive-to-evaluate
computational models are necessary. The computational cost of such models is seldom a�ordable
beyond the scale of a single structural component (e.g., beam-to-column joint). Also, usually,
little physical justi�cation supports some of the parameters, which are tuned to match available
experimental observations.

Instead of supporting the development of a computational model of the PS, this paper proposes
to expand the scope of HS to training a classi�er to determine the failed or non-failed state of the
PS. The parameter space de�ning loading and boundary conditions of the hybrid model is the
support of the classi�er, which can be reasonably assumed as the domain of validity for numerical
predictions. To greedily construct a safe/failure domain classi�er at the lowest experimental cost
possible, an initial random sampling of the parameter space is adaptively enriched using kriging
meta-models (Santner et al., 2003) and active learning (Vapnik, 2013).

The proposed method, namely active-learning-kriging hybrid-simulation (AK-HS), relies on an
adaptation of the active-learning kriging Monte Carlo simulation algorithm from the �eld of
structural reliability (Echard et al., 2011). The idea of combining the active-learning kriging
Monte Carlo simulation algorithm and HS was originally proposed in (Abbiati et al., 2017) and
applied in (Ligeikis and Christenson, 2020) to compute the probability of failure of a hybrid
model with uncertain parameters. However, the computed failure probability has no utility
outside the context of the examined prototype structure. Besides providing a comprehensive
experimental validation of the AK-HS method, the main contribution of this paper lies in the
direct link established between structural testing, performed using HS, and the computation of a
safe/failure state classi�er for the PS. Such a classi�er is intended to determine the state of any
component of the same type of the tested PS within a system-level, rather than a component-
level, numerical simulation. In doing that, one must verify that, for every PS-like component,
boundary conditions and loading must stay within the range explored via HS.
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The e�ectiveness of the AK-HS method is illustrated for a 3-degrees-of-freedom (3-DoFs) pro-
totype structure, which consists on an elastically restrained beam subjected to constant axial
loading. Failure is associated with Euler buckling, which may occur or not depending on the
rotational sti�ness of the restraints. Experimental results are validated against the analytical
model proposed by Newmark (Baºant and Cedolin, 2010).

The paper is organized as follows. Section 2 describes the AK-HS method. Section 3 describes the
experimental validation of the method, the results of which are discussed in Section 4. Finally,
conclusions and future outlook are given in Section 5.

2 Introducing active learning into hybrid simulation

Let us denote withX = {X1, . . . , XM} anM -dimensional vector of input variables to parametrize
the NS, the PS and the loading excitation (or a subset of these) of the hybrid model of the
prototype structure, and with Y a generic response Quantity of Interest (QoI) of the hybrid
model. A mappingM between input variables and a single QoI reads,

X ∈ DX ⊂ RM 7→ Y =M (X) ⊂ R (1)

It can be argued that the inherent variability of the hybrid model response obtained with nomi-
nally identical PSs, as well as measurement noise, requires a stochastic mapping between input
variables and QoIs. However, the scope of this paper is limited to the case of PS with almost
deterministic behavior. Moreover, relevant studies testify that measurement noise of standard
structural testing equipment has a negligible e�ect on the prototype structure response evalu-
ated via HS with modern hardware (Ahmadizadeh and Mosqueda, 2009; Abbiati et al., 2018).
Therefore,M is assumed to be deterministic.

The failure domain Df ∈ DX is de�ned as the region of the input parameter space where the
hybrid model response QoI is greater or equal than a given threshold value yadm,

x ∈ Df :M (x) ≥ yadm (2)

Computing Df means solving a classi�cation problem where every sample x is categorized either
as failed or non-failed. However, since it entails testing of the PS,M (x) can be assimilated to an
expensive-to-evaluate black-box model. In order to make such a classi�cation problem tractable,
kriging meta-modeling is introduced to surrogate the hybrid model response,

Y ≈ Ŷ = M̂ (X) (3)

The kriging meta-model adaptively drives the choice of the next sample x to evaluate via HS so
that the convergence of the limit state surface, which separates failure and non-failure domains,
requires a minimal number of experiments. The choice of samples to be evaluated can be consid-
ered as a dilemma between the exploration and the exploitation of the input parameter space.
Active learning (Settles, 2009) addresses this problem by providing algorithms for selecting the
most informative sample against the solution of a speci�c supervised learning problem, which,
in this case, corresponds to the identi�cation of the boundaries of the failure domain. After
recalling the basics of kriging surrogate modeling, the AK-HS procedure is outlined.
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2.1 Basics of kriging meta-modeling

Kriging is a surrogate modeling technique that considers the computational model to be a real-
ization of a Gaussian process,

M̂ (x) = βT f (x) + σ2Z (x, ω) (4)

where f (x) = [f1 (x) , . . . , fp (x)] are regression functions, β is a vector of coe�cients, which
compose the mean value of a Gaussian process. σ2 is the corresponding variance. Z (x, ω) is a
zero-mean, unit-variance, stationary Gaussian process, which is characterized by an autocorrela-
tion function R (|x− x′|;ρ) and its hyper-parameters ρ. The kriging model is trained with a set
of realizations X = {X (i), i = 1, . . . , N} and the corresponding responses of the computational

model Y = {M
(
X (i)

)
, i = 1, . . . , N}, which together form the so-called Experimental Design

(ED) {X ,Y}. Kriging parameters are obtained by generalized least-squares solution:

β (ρ) =
(
FTR−1F

)−1
FTR−1Y (5)

σ2y (ρ) =
1

N
(Y − Fβ)T R−1 (Y − Fβ) (6)

where Rij = R
(
|X (i) −X (j)|;ρ

)
is the correlation matrix and Fil = fl

(
X (i)

)
. In practice the

correlation hyper-parameters are unknown and their values shall be inferred by e.g. maximum
likelihood estimation. Having determined the kriging parameters, the prediction value of the
computational model at a point x ∈ DX is a Gaussian variable with the following mean value
and variance:

µŶ (x) = βT f (x) + r (x)T R−1 (Y − Fβ) (7)

σŶ (x) = σ2y

(
1− r (x)T R−1r (x) + u (x)T

(
FTR−1F

)−1
u (x)

)
(8)

where ri (x) = R
(
|x−X (j)|;ρ

)
and u (x) = FTR−1r(x)− f(x).

2.2 Adaptive design of hybrid simulations

The purpose of the kriging meta-model is to accurately locate the limit state surface, which
separates failed and non-failed states of the PS, regardless the probability measure assigned to
the input parameter space. Therefore, all input parameters in X are assumed to be statistically
independent and uniformly distributed. Corresponding ranges must comply with displacement
and force capacity of the testing facility.

The kriging meta-model obtained with the procedure stated in Section 2.1, is capable of exactly
reproducing the points in the ED set. Indeed, the kriging meta-model is an exact interpolator,

meaning that µŶ

(
X (i)

)
= M

(
X (i)

)
, i = 1, . . . , N , exactly. This, however, does not mean

that such a meta-model accurately reproduces the boundary of the failure domain. Adaptively
enriching the ED set in a guided way can improve the accuracy of the trained kriging meta-
model in predicting the failure domain of the hybrid model. The proposed learning rule is an
adaptation of the adaptive kriging algorithm proposed by Echard et al. (Echard et al., 2011)
for failure probability estimation problems and later extended to quantile estimation problems
in Schöbi et al. (Schöbi et al., 2017). The main steps of the AK-HS procedure are listed here:
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1. Generate an initial ED by sampling X with a space �lling technique (e.g., Sobol' sequence

or LHS) and evaluate the corresponding hybrid model response QoIs Y(i) = M̂
(
X (i)

)
.

2. Train a kriging meta-model M̂ based on the initial ED {X ,Y} as described in (5) and (5).

3. Generate a large set of samples of the input parameter space S = {x1, . . . ,xj , . . . ,xM} and
predict the response values of M̂, i.e., µŶ (x) and σŶ (x), as described in (7) and (8).

4. Enrich the ED by the taking the sample x∗ ∈ S that maximizes the probability of misclas-
si�cation,

x∗ = arg max
xj∈S

Φ

(
−|µŶ (xj)− yadm|

σŶ (xj)

)
(9)

where Φ (·) is the cumulative Gaussian distribution function. As can be argued from (9),
best candidate samples lie either where the variance of the meta-model is high (exploration)
or close to the boundary of the failure domain (exploitation). In both cases, the probability
of misclassi�cation tends to its upper bound, which is equal to 0.5.

5. Evaluate the corresponding QoI y∗ =M (x∗) via HS and add the pair {x∗,y∗} to the ED.

The procedure loops between Step #2 and Step #5 until a maximum allowed number of exper-
iments Nmax is reached.

The stopping criterion originally proposed in the paper of Echard et al. (Echard et al., 2011),
was de�ned based on a threshold value for the ratio between con�dence interval and average of
the failure probability estimate associated with the failure domain Df . However, as highlighted
in the discussion of the results of the validation example (Section 4), the number of experiments
necessary to meet such a convergence criterion are not reasonably a�ordable.

The safe/failure domain classi�er is obtained as by-product of the last computed kriging meta-
model,




p(Z = F |x) = 1− Φ

(
µŶ (x)−yadm

σŶ (x)

)

p(Z = S|x) = Φ
(
µŶ (x)−yadm

σŶ (x)

) (10)

where F and S indicate failure and safe states, respectively.

3 Experimental validation of the method

3.1 Prototype structure

In order to validate the proposed procedure, a benchmark experiment was conceived. It consists
of a simply-supported beam restrained with linear elastic rotational springs at both ends and
subjected to a axial load applied with a linear ramp. This type of structure is common in
practice, as most beam-columns are neither truly pinned-pinned nor �xed-�xed. The prototype
structure is depicted in Figure 1.

where K1 and K2 de�ne the sti�ness of left and right rotational restraints. Polar moment of
inertia J1 = J2 = 90000 kgmm2 and mass M = 20 kg provide inertia to the three DoFs of the
system, which correspond to rotations of both beam ends and translation of the right end. In
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Figure 1: Prototype structure: a) undeformed con�guration; b) buckling deformation for the
limit case K1,K2 << EI; c) buckling deformation for the limit case K1,K2 >> EI.

addition, the horizontal translation of the right support activates a linear dashpot characterized
by viscous coe�cient C = 3000 Ns/mm. The simply-supported beam consists of an aluminum
plate with a nominal 200×500 mm footprint and 2 mm thickness. However, the simply-supported
length of the beam L was actually shortened to 460 mm, due to the end clamps of the testing rig.
Accordingly, the cross-section is characterized by area A = 400 mm2 and a moment of inertia
I = 133.33 mm4. An elastic modulus E = 69500 MPa a density ρ = 2700 kg/m3 and a Poisson
ration ν = 0.32 characterized the material properties of the plate. Furthermore, the e�ective
buckling length of the beam is sensitive to the sti�ness of each elastic rotational restraint. In
the limit case of K1,K2 << EI, the e�ective length L0 of the beam tends to L = 460 mm
i.e., pinned-pinned con�guration. The opposite case corresponds to K1,K2 >> EI, the e�ective
length L0 of the beam tends to L/2 = 230 mm i.e., �xed-�xed con�guration. The following
approximate equation, developed by Newmark, is used to interpolate the buckling load between
these two extreme con�gurations (Baºant and Cedolin, 2010),

Pcr =
πEI

L2

[
(0.4 + λ1) (0.4 + λ2)

(0.2 + λ1) (0.2 + λ2)

]
(11)

where λ1 = EI
K1L

and λ2 = EI
K2L

account for the relative bending sti�ness of the beam compared
to the rotational restraints. The lower bound of the buckling load Pcr,min = 432.2 N corre-
sponds to the pin-pin con�guration while the upper bound Pcr,max = 1729 N to the �xed-�xed
con�guration. Figure 2 depicts the dynamic substructuring scheme adopted for HS.

Figure 2: Dynamic substructuring scheme adopted in HS.

With regard to Figure 2, the PS coincides with the 3-DoFs beam, which is tested in the laboratory,
while the NS comprises the remaining part of the prototype structure. The rotational and
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translational DoFs are denoted by u1, u2 and u3, respectively. The out-of-plane displacement of
the beam at its center point, denoted by u4, is activated by buckling and measured with a laser
displacement sensor. It is important to stress that this out-of-plane displacement is not included
in the equation of motion of the hybrid model.

3.2 Hybrid simulation setup

The 3-DoFs HS test rig used to conduct the HSs is a sti� loading frame equipped with four
electro-mechanical actuators interfaced to an INDEL real-time system (Abbiati et al., 2018).
The 3-DoFs HS test rig is designed to test plate specimens with an approximate footprint of
200× 500 mm and thickness varying between 1 and 3 mm. Figure 3 illustrates the architecture
of the HS setup, including a close-up view of the plate specimen accommodation. The GINLink

INDEL SAM4
Real-time computer

Execute the HS software

INDEL SAC4
Actuator servo-drivers

Impose displacements to the PS

INDEL COP/ADA
Data acquisition modules

Read restoring forces from the PS

G
IN

Li
nk

bu
s

𝑢𝑢1,𝑢𝑢2 and 𝑢𝑢3

𝑟𝑟1, 𝑟𝑟2 and 𝑟𝑟3

Host PC

Figure 3: Architecture of the 3-DoFs HS test rig.

bus connects the actuator servo-driver INDEL SAC4 and all data acquisition modules INDEL
COP-ADA to the real-time computer INDEL SAM4, which runs the HS software. The latter is
developed in the MATLAB/SIMULINK environment and downloaded to the real-time computer
INDEL SAM4 via Ethernet from the Host-PC. At each simulation time step, the HS software
imposes displacements u1, u2 and u3 to the plate specimen, the PS, reads the corresponding
restoring forces r1, r2 and r3 measured using force transducers, and solves the coupled equation
of motion of the hybrid model. In addition, a laser sensor measures the out-of-plane de�ection
at the mid-span of the plate specimen. A detailed description of the time integration scheme
adopted to solve the equation of motion is reported in (Abbiati et al., 2019). Figure 4 shows
two axonometric views of the 3-DoFs HS test rig, including the main hardware components. In
this �gure, the gray-colored parts are �xed to the reaction frame, which is not visible, while the
moving parts of the 3-DoF HS test rig are colored in yellow. The two rack-pinion systems (10)
convert motion along the vertical actuator axes y1 and y2 (1) to rotations u1 and u2, respectively,
which are imposed to the short edges of the plate specimen (6) through aluminum clamps (3).
Horizontal actuators along axes x1 and x2 (2) control the position of the moving frame (4), which
is mounted on two pro�led rail guides using ball bearings (5). As a result, the position of the
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Figure 4: Axonometric views of the 3-DoFs HS test rig with main components: (1) vertical
actuators; (2) horizontal actuators; (3) installation clamps; (4) moving frame; (5) pro�led rail
guides; (6) plate specimen; (7) hinges; (8) vertical actuator load cells; (9) horizontal actuator
load cells; (10) rack-pinion systems. The moving parts are colored in yellow while the grey parts
are �xed to the reaction frame, which is omitted in this �gure for clarity.

moving frame (4) equals the axial elongation of the plate specimen u3 (6).

The repeatability of the HSs was assessed by comparing the results of three experiments charac-
terized by the same values of rotational sti�ness. The force vs. out-of-plane displacement curves
for these experiments are shown in Figure 5a. It is clear that the HSs were highly repeatable. In
addition, these results con�rmed the assumption that the output of the hybrid model is almost
deterministic with negligible variability in the PSs. Figure 5b also shows results from three HSs
using di�erent rotational sti�ness combinations. In general, the experimental data matched well
with the theoretical critical buckling loads predicted by (11).

Figure 5: Validation of experimental assumptions: (a) test repeatability and (b) agreement with
Newmark's equation predictions (dash lines).
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4 Experimental results and discussion

The AK-HS procedure described in Section 2 was applied to train a classi�er for the buckling
domain of the prototype structure described in Section 3 within the range of the input parameters
de�ned in Table 1. In detail, �rst, a reference axial load Pref = 2000 N was selected to ensure a

Table 1: Input random parameters.

Variable Distribution Lower bound Upper bound Unit

K1 Uniform 10000 1000000 [Nmmrad ]

K2 Uniform 20000 1200000 [Nmmrad ]

full development of buckling for any pair of {K1,K2} ∈ DX in the given range. This reference
axial load was applied to the hybrid model as a linear increasing ramp of 10 s duration in
simulation time. Since hybrid simulations were performed with a testing time scale λ = 50,
each experiment lasted 500 s of wall-clock time. The critical buckling load was taken as the
plateau value of the resulting measured force-displacement axial response curve. Such critical
load estimated with HS corresponds to the QoI Y , as speci�ed in (3), and accounts for the
sti�ness of the numerical rotational restraints. It should be noted that all of the experiments
conducted were destructive, and thus di�erent (but nominally identical) aluminum plates were
used for each hybrid simulation.

The AK-HS procedure described in Section 2 was executed considering a target buckling load
of yadm = 1200 N. An initial 10-sample ED was generated using a Sobol' sequence and the
corresponding buckling loads were estimated using HS. Then, the ED was adaptively enriched
with 30 additional samples using the AK-HS procedure. The kriging meta-models were estimated
using the UQLab software framework developed by the Chair of Risk, Safety and Uncertainty
Quanti�cation at ETH Zurich (Marelli and Sudret, 2014). Figure 6 depicts the meta-models
obtained using 10, 20, 30 and 40 samples.

As shown in Figure 6, the classi�er trained using the initial ED did not accurately reproduce
the buckling domain of the hybrid model. However, after 20 experiments, the failure surface
estimated by the classi�er already converged toward the analytical solution of provided by New-
mark (i.e., using (11)). This result is consistent with the plots of Figure 7, which depicts the
convergence of the normalized failure domain area Ωf and related 95 % con�dence interval. The
latter corresponds to a failure probability if one assumes a uniform probability measure over DX.
Furthermore, by the end of the experimental campaign, the ED points mostly accumulated along
a well-de�ned failure surface.

Finally, Figure 8 depicts the safe/failure state classi�er for two orthogonal sections of the support
of the kriging meta-model. It is predicted from the Newmark model of (11) that for a given load
of yadm = 1200 N, and K2 = 600000 Nmm/rad the system buckles for K1 < 98995 Nmm/rad;
and similarly when K1 = 500000 Nmm/rad the system buckles when K2 < 107040 Nmm/rad.
As can be appreciated from the plots, the trained classi�er fairly agrees with such analytical
predictions and it is characterized by a sharp transition between failed and non-failed states.

5 Conclusions

This paper extends the scope of hybrid simulation to training a classi�er that determines the
failed or non-failed state of the physical substructure. Kriging meta-models and active learning
are used to greedily construct a safe/failure domain classi�er at the lowest experimental cost
possible. The resulting procedure, namely active-learning-kriging hybrid-simulation, relies on an
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(a) (b)

(c) (d)

Figure 6: Results of the AK-HS procedure for (a) 10-sample ED (b) 20-sample ED (c) 30-
sample ED and (d) 40-sample ED. Diamonds represent non-failed samples, squares represent
failed samples, the dash line indicates the theoretical failure surface predicted by the Newmark
equation and the dash-dot line indicates the failure surface predicted by the trained classi�er.

Figure 7: Convergence of the normalized failure domain area Ωf and related 95 % con�dence
interval.
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(a) (b)

Figure 8: Safe/failure state classi�er evaluated for two orthogonal sections of the support of the
kriging meta-model: a) K2 = 600000 Nmm/rad; b) K1 = 500000 Nmm/rad.

adaptation of the active-learning kriging algorithm from the �eld of structural reliability. The
e�ectiveness of the procedure is illustrated for a 3-degrees-of-freedom hybrid model consisting
of an elastically restrained beam subjected to constant axial loading. Failure is associated with
Euler buckling, which may occur or not depending on the rotational sti�ness of the restraints
for a given axial load. Experimental results demonstrated the e�ectiveness of the proposed
procedure, which succeeded in training an accurate safe/failure state classi�er with about 20
hybrid simulations. Out future work will address the extension of the proposed procedure to the
case of PS with stochastic behavior.

6 Data availability statement

Some or all data, models, or code that support the �ndings of this study are available from the
corresponding author upon reasonable request.
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