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ABSTRACT
We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the
nonlinear correction of the matter power spectrum. Percent-level accurate emulation is now supported in the eight-dimensional
parameter space of𝑤0𝑤𝑎CDM+∑

𝑚a models between redshift 𝑧 = 0 and 𝑧 = 3 for spatial scales within the range 0.01 ℎMpc−1 ≤
𝑘 ≤ 10 ℎMpc−1. In order to achieve this level of accuracy,we have had to improve the quality of the underlyingN-body simulations
used as training data: (i) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons,
dark energy and the metric field, (ii) we perform the simulations in the so-called N-body gauge, which allows one to interpret the
results in the framework of general relativity, (iii) we run over 250 high-resolution simulations with 30003 particles in boxes of
1(ℎ−1 Gpc)3 volumes based on paired-and-fixed initial conditions and (iv) we provide a resolution correction that can be applied
to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual
resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter 𝑤𝑎 significantly increases
the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons
againstN-body simulations aswell as alternative fast predictors likeHALOFIT,HMCode andCosmicEmu. A blind test is successfully
performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are
accurate at the level of 1% or better for 0.01 ℎMpc−1 ≤ 𝑘 ≤ 10 ℎMpc−1 and 𝑧 ≤ 3 compared to high-resolution dark matter
only simulations. EuclidEmulator2 is publicly available at https://github.com/miknab/EuclidEmulator2.

Key words: cosmology: cosmological parameters – cosmology: large-scale structure of Universe – methods: numerical –
methods: statistical

1 INTRODUCTION

Ongoing and forthcoming cosmological surveys such as DESI1
(DESI Collaboration: Aghamousa et al. 2016), LSST2 (LSST Sci-
ence Collaboration: Abell et al. 2009), Euclid3 (Laureĳs et al. 2011),
and WFIRST4 (Akeson et al. 2019) have the potential to shed light
on dark energy (DE), dark matter (DM), and the neutrino masses. It
has been confirmed by Solar and atmospheric neutrino experiments
that neutrinos have finite mass (e.g. Valle 2005; Schwetz et al. 2008),
yet, attempts to pin down the total mass and the mass hierarchy of
the neutrino flavour states have so far not been successful. The on-
going neutrino experiment KATRIN (Weinheimer 2002; Fraenkle
2008; Wolf 2010) has been launched in order to tighten the neutrino
mass bounds with particle physics. The equation of state parame-
ter 𝑤 describing DE is also poorly constrained. While the current
ΛCDM concordance cosmological model with a value of 𝑤 = −1 is
favoured, the error bars coming from Planck data alone are of order
50%. They shrink to ∼ 10% if more DE sensitive probes such as
cluster counts, weak lensing and supernovae type Ia are additionally
considered (Planck Collaboration: Ade et al. 2015). Past and cur-
rent surveys have a hard time constraining the DE parameter more
accurately: Surveys like Planck (Planck Collaboration 2006) probe
the cosmic microwave background (CMB) only, which is not very
sensitive to DE. On the other hand, several surveys analysed either
only spectroscopic probes (e.g. BOSS, Dawson et al. 2013) or only
photometric probes (e.g. KiDS-450, Hildebrandt et al. 2017). In con-
trast, large-scale hybrid photometric and spectroscopic experiments
like Euclid (Laureĳs et al. 2011) will be able to reduce the error
bars on the DE parameters, as the combination of weak lensing with
galaxy clustering provides a promising handle on DE phenomena.
A common approach for the inference of cosmological parameters

is to use Bayesian techniques. One specific possibility is to sample

★ mischak@physik.uzh.ch
1 www.desi.lbl.gov/category/announcements/
2 www.lsst.org/lsst
3 sci.esa.int/euclid
4 wfirst.gsfc.nasa.gov

the likelihood function in a Markov chain Monte Carlo (MCMC)
approach, compare the predicted observable (e.g. the power spec-
trum) to the one actually measured in an observation, and extract the
maximum likelihood estimator values for the cosmological param-
eters. However, this requires a large number of accurate theoretical
predictions. For studying the nonlinear regime of cosmic structure
formation, N-body simulations, still the most accurate tool available
today, are numerically too expensive to be used forBayesian inference
and hence there is a high demand for more efficient methods. While
halo models for massive neutrinos are investigated by several re-
search groups (see e.g. Massara et al. 2014 or Hannestad et al. 2020),
surrogate models for N-body simulations, so-called emulators, have
been shown to be very promising candidates. Several emulators are
available already. Examples are FrankenEmu (Heitmann et al. 2009,
2010, 2014), CosmicEmu (Heitmann et al. 2016; Lawrence et al.
2017), the emulators of the Aemulus project (DeRose et al. 2019;
McClintock et al. 2019; Zhai et al. 2019), NGenHalofit (Smith &
Angulo 2019), EuclidEmulator1 (Euclid Collaboration: Knaben-
hans et al. 2019), the Dark quest emulator (Nishimichi et al. 2019)
and BE-HaPPY(Valcin et al. 2019).

In this paper we will introduce an update of EuclidEmulator1.
While EuclidEmulator1 was able to efficiently estimate the non-
linear correction (NLC) to the matter power spectrum for 𝑤0CDM
cosmologies (with the time-variable DE equation of state parameter
𝑤𝑎 set to 0), EuclidEmulator2 can handle cosmologies with dy-
namical DE and massive neutrinos. In addition to a bigger parameter
space, EuclidEmulator2 also pushes the upper limit of the 𝑘-range
to 𝑘max ∼ 10 ℎMpc−1. The motivation for this is the same as de-
scribed in Euclid Collaboration: Knabenhans et al. (2019): While
clearly the dominant source of uncertainties on such small spatial
scales is due to baryons, it is important to have best possible control
over the dark-matter physics in this regime in order to avoid addi-
tional (and avoidable) uncertainties due to the dark sector. As we
describe in Euclid Collaboration: Knabenhans et al. (2019), under
certain assumptions it is possible to add baryonic and other correc-
tions as a subsequent step in the pipeline, necessitating that theoretical
precision is maintained in the high-𝑘 regime of DM clustering. In

MNRAS 000, 000–000 (2019)
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Schneider et al. (2019a,b) the authors follow this strategy and emu-
late the effect due to baryons on weak lensing observables on top of
the underlying nonlinear DM physics.
This paper is structured as follows. In section 2, theoretical aspects

regarding massive neutrinos, dynamical DE and the N-body gauge
are discussed. In section section 3 we introduce our approach to in-
clude massive neutrinos in N-body simulations using PKDGRAV3. In
section 4 we report on an extensive convergence series that we have
performed in order to estimate the uncertainties in the input simu-
lations used for the construction of EuclidEmulator2, considering
volume and resolution effects.Wewill find systematics in this section
whose treatment will then be discussed subsequently in section 5. In
section 6, we investigate a prototype emulator based on HALOFIT
data (as we have already done in Euclid Collaboration: Knabenhans
et al. 2019). In section 7, insights taken from this prototype emulator
are used to construct the fully simulation-based EuclidEmulator2,
whose performance is ultimately assessed in section 8. We then gain
some insight into parameter degeneracies at the level of the matter
power spectrum within the 𝑤0𝑤𝑎cold dark matter (CDM)+

∑
𝑚a

models. Our conclusions are found in section 10.

2 THEORETICAL BACKGROUND

2.1 Massive neutrinos

In oscillation experiments studying solar and terrestrial neutrinos,
compelling evidence has been found that the three flavor eigenstates
of neutrinos (𝑒, ` and 𝜏) can be mixed (Becker-Szendy et al. 1992;
Fukuda et al. 1998a,b; Ahmed et al. 2004; DUNE Collaboration: Ac-
ciarri et al. 2015). This implies that neutrinos must have finite mass
eigenstates, a fact lying outside of the current standard model of
particle physics. While those experiments were able to measure the
differences between the squared neutrinos masses, they cannot mea-
sure the absolute mass scale. Currently, we only have bounds on the
sum of the neutrino masses, see e.g. Particle Data Group: Patrignani
et al. (2016). On cosmological scales, light neutrinos are very abun-
dant and hence are expected to have a significant effect on large-scale
structure. As we are considering neutrinos of masses smaller than 1
eV, they have become non-relativistic only after the electron-nucleon
recombination and hence they have imprinted only a small signal
into the cosmic microwave background (CMB). However, neutrinos
constitute a fraction of the DM in our Universe and hence the DM
power spectrum is the key quantity to look at when trying to constrain
light neutrino masses.
For the rest of this paper we are restricting ourselves to three

light mass eigenstates, i.e. we neglect the possibility of heavy sterile
neutrinos. Additionally, we consider only the case of three degenerate
neutrinomasses, i.e. we neglect that themeasured squared differences
for their masses is given by (Particle Data Group: Tanabashi et al.
2018)

𝛿𝑚221 = 𝑚22 − 𝑚21 = (7.37+0.197−0.146) × 10−5eV2 , (1)

𝛿𝑚231 = |𝑚23 − 𝑚21 | = (2.56+0.043−0.037) × 10−3eV2 , (2)

or alternatively

𝛿𝑚223 = |𝑚22 − 𝑚23 | = (2.54 ± 0.04) × 10−3eV2 , (3)

depending on the considered neutrino hierarchy. This simplification
is justified as the difference in the resulting power spectra between
a degenerate and a realistic (normal or inverted) mass hierarchy is
expected to be well sub-per cent. Neutrinos have a non-vanishing
mass while at the same time they have a high velocity dispersion,

hence they do not belong to the category of CDM. In this paper we
focus on cosmologies where there are non-zero contributions from
both cold and non-cold DM particles. Such a CDM plus massive
neutrino (CDM+∑

𝑚a)5 cosmology also serves as the new Euclid
reference cosmology (see Table 2), in contrast to a more standard
pure CDM cosmology.
While neutrinos are still relativistic, their free-streaming length is

of the size of the Hubble scale. Only after the transition to the non-
relativistic phase, the comoving free-streaming scale of neutrinos
starts to shrink. As a result, neutrino perturbations get washed out
on scales below the free-streaming scale. Due to gravitational inter-
action, this also suppresses the clustering of CDM on small enough
scales. The strength of the effect for a specific 𝑘-mode depends on
both redshift andmass of the neutrinos. But even for small (but finite)
neutrino masses we expect a several percent suppression signal in the
DM power spectrum due to these effects. The main effect is on the
background expansion of the Universe: If only massless neutrinos
are considered, ΩDM is identical to ΩCDM. However, in order to
maintain spatial flatness, even when a non-vanishing Ωa is present,
ΩDM remains unaltered and thus this requiresΩCDM to be decreased
accordingly:

Ω = ΩDE+ΩDM+Ωb+Ωrad = ΩDE+ (ΩCDM+Ωa) +Ωb+Ωrad . (4)
The CDM density is thus decreased by Ωa (while the DM density
parameter does not change).AsCDMandneutrinos evolve differently
over the history of the Universe, this leads to a suppression of the
CDM+baryon power spectrum. This power suppression can help us
constrain the sum of the neutrino masses (see e.g. Ichiki et al. 2009;
Coulton et al. 2019; Copeland et al. 2020).
Neutrinos at very high redshifts (𝑧 & 1000) are still a relativistic

species, and hence would primarily contribute toΩrad. However, our
simulations focus on the nonlinear growth of structure at (𝑧 . 10),
at which time the contribution of massive neutrinos shifts to ΩDM.
It is for this reason that we consider Ωa as a contribution to ΩDM
in the above. Nonetheless, in our N-body simulations the transition
between fully relativistic and non-relativistic neutrinos, including the
full distribution function at any given redshift, is accounted for by the
CLASSBoltzmann solver. All neutrino effects are self-consistently in-
cluded in our simulations at the linear level, such that this assignment
of Ωa to ΩDM is purely a convenient choice of parameterisation.

2.2 Dynamical dark energy

In the standard ΛCDM cosmology, DE is assumed to be a cosmo-
logical constant with a time-independent equation of state parameter
given by 𝑤 ≡ −1. This implies that 𝜌Λ (𝑡) = const which can be seen
from the following conservation equation:

𝑇a
0;a = ¤𝜌Λ + 3𝐻 (𝜌Λ + 𝑝) = 0 , (5)

¤𝜌Λ + 3𝐻𝜌Λ (1 + 𝑤) = 0 , (6)
¤𝜌Λ = 0 , (7)

where 𝑇`a is the energy momentum tensor, 𝑝 the pressure, 𝜌 the
density and the over-dot denotes a derivative w.r.t. cosmic time.
Although this value is close to the best fitting value from supernova
surveys (Betoule et al. 2014), DE with a slightly time-dependent
equation of state parameter is not ruled out by the data currently

5 In this paper we use the notation CDM+∑
𝑚a in order to avoid confusion

with mixed DM (MDM) models with significant contributions from more
exotic warm or even hot DM species.

MNRAS 000, 000–000 (2019)
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available. The effects of DE perturbations become relevant only on
the largest scales (usually at 𝑘 . 0.1 ℎMpc−1) as has recently been
studied carefully in Dakin et al. (2019b). Nevertheless, the effects
of DE on the matter power spectrum can become quite significant,
primarily because changes in the DE component have an impact on
the scale factor 𝑎(𝑡) which in turn affects the power spectrum on all
scales.
Here we shall just briefly recap the key aspects of the theory

of time-dependent DE relevant in the context of EuclidEmula-
tor2. We shall follow closely the explanations given in Dakin et al.
(2019b) where this topic has been reviewed in greater detail. There
are two popular ways of describing DE in the setting of an effective
theory: the fluid description and the so-called parametrized post-
Friedmann (PPF) description (Hu & Sawicki 2007). In the fluid de-
scription, DE is considered a fluid with an equation-of-state param-
eter 𝑤(𝑎) (𝑎 being the cosmic scale factor) and a constant rest-frame
sound-speed 𝑐s. We will adopt the widely used parameterisation
𝑤(𝑎) = 𝑤0 + 𝑤𝑎 (1 − 𝑎). As can be seen in Equation (2.9) in Dakin
et al. (2019b), the Euler equation for a DE fluid features a factor
(1 + 𝑤)−1, leading to divergences for cosmologies with a DE equa-
tion of state (EoS) parameter that evolves across 1 + 𝑤 = 0 over
time. This is a manifestation of the fact that such a DE is gravitation-
ally unstable for the lack of additional internal degrees of freedom
(Fang et al. 2008). The case 𝑤 = −1.0 is sometimes referred to
as the “phantom divide” or “phantom barrier” and models crossing
it are called “phantom-crossing” cosmologies. It follows, unfortu-
nately, that the fluid description of DE is not well-suited to describe
phantom-crossing cosmologies and yet there is no reason why these
models should not be taken into account in our analysis.
As described in Fang et al. (2008), common approaches to deal

with this problem are either to ignore the DE perturbations in an ad
hoc manner or to simply turn them off which violates the energy-
momentum conservation for non-Λmodels and leads to inconsisten-
cies among the Einstein equations. For dynamical DE models it is
hence crucial to thoroughly address the issue of phantom-crossing.
The parameterisation of minimally coupled DE is not a complete

system of equations but rather it requires two closure conditions. The
relation between density and pressure fluctuations of DE, giving rise
to its EoS parameter and sound speed, serves as one of these closure
relations in the fluid description. The PPF formalism on the other
hand takes a direct relation between the momentum density of DE
and that of DM on large scales to close the system of equations (Fang
et al. 2008), thus circumventing the divergence of sound speed at
phantom-crossing. This describes the DE momentum perturbations
on large scales. To describe them on small scales, an effective sound
speed 𝑐Γ is introduced which is related to the scale below which the
DE field becomes sufficiently homogeneous compared to the matter
field. From an interpolation between these two limits one can obtain
an evolution equation for the potential of DE in its rest frame:

𝜕𝜏Γ =
𝜕𝜏𝑎

𝑎


𝑆

(
1 +

𝑐2Γ𝑘
2

H2

)−1
− Γ

(
1 +

𝑐2Γ𝑘
2

H2

)
, (8)

withH the conformal Hubble parameter and 𝜕𝜏 denoting the deriva-
tive w.r.t. conformal time 𝜏. Γ is related to the rest-frame DE density
field 𝛿𝜌restDE via the Poisson equation

𝑘2Γ = −4𝜋𝐺𝑎2𝛿𝜌restDE , (9)

𝑐Γ being the effective sound speed and 𝑆 being defined as

𝑆 ≡ 4𝜋𝐺𝑎2

H (𝜌DE + 𝑝DE)
\Nt
𝑘2

. (10)

In the last equation, in turn, \Nt denotes the velocity divergence field
of all other species than DE in the conformal Newtonian gauge. For a
more complete discussion we refer the reader to Dakin et al. (2019b),
section 2.1.2.

2.3 General relativity in N-body simulations: The N-body gauge

Traditionally, the formation of large-scale structure is simulated with
Newtonian N-body codes. There are two ways to bring the general
theory of relativity (GR) into these simulations, in order to study its
effects on structure formation. The first option is to replace the New-
tonian equations of motion of structure formation by their general
relativistic counterpart. However, this is not an easy task, in partic-
ular because scientists have optimised N-body codes for Newtonian
physics over the last decades. The second option is hence to still
use these optimised Newtonian N-body simulation codes which is
allowed under certain circumstances. As has been shown in Chisari
& Zaldarriaga (2011), Newtonian simulations predict the cluster-
ing properties of DM and galaxies with negligible errors even on
very large scales if non-relativistic components or relativistic but
non-clustering components are modelled and if a proper set of coor-
dinates (i.e. gauge) is chosen. According to Fidler et al. (2016, 2017)
it suffices to add a relativistic correction to the Newtonian potential
𝜙 in the Euler and the Poisson equation (for more practical detail see
e.g. Dakin et al. 2019b):

(𝜕𝜏 + H)vNbCDM+b = −∇𝜙 + ∇𝛾Nb , (11)

∇2𝜙 = 4𝜋𝐺𝑎2𝛿𝜌Nbtot , (12)

where 𝜏 is the conformal time and 𝛿𝜌Nbtot is the total density pertur-
bation from all species,

𝛿𝜌tot = 𝛿𝜌CDM + 𝛿𝜌b + 𝛿𝜌photon + 𝛿𝜌a + 𝛿𝜌DE , (13)

where we note that 𝛿𝜌DE ≠ 0 for 𝑤 ≠ −1. The GR correction
potential 𝛾Nb is built from any other gravitating quantity not already
accounted for by 𝛿𝜌Nbtot , i.e. the momentum density, pressure and
shear of photons, neutrinos and DE. We further parametrise this as

∇2𝛾Nb = −4𝜋𝐺𝑎2𝛿𝜌metric , (14)

where 𝛿𝜌metric is a fictitious density perturbation, the Newtonian
gravity of which implements all general relativistic effects of ∇2𝛾Nb.
Finally, the full effective potential is split into 𝜙−𝛾Nb ≡ 𝜙sim+𝜙lin,

with ∇2𝜙sim formally equal to 4𝜋𝐺𝑎2 (𝛿𝜌NbCDM + 𝛿𝜌Nbb ) but in the
simulation computed through usual N-body (particle) techniques,
while

∇2𝜙lin ≡ 4𝜋𝐺𝑎2
(
𝛿𝜌Nbphoton + 𝛿𝜌Nba + 𝛿𝜌NbDE + 𝛿𝜌metric

)
(15)

is solved on a grid using Fourier techniques and then applied to the
particles as a correction force to the main particle gravity. Notice that
𝜙lin is the object called 𝜙GR in other publications such as e.g. Tram
et al. (2019) or Dakin et al. (2019b,a).
Note that the continuity equation is formally not affected by this

additional GR potential 𝛾Nb. This then can be considered writing the
full general relativistic evolution equations of theN-body simulations
in a very special gauge, the so-called N-body gauge (indicated by
the superscript “Nb”). Doing so, it is possible to apply a gauge
transformation of the output in a post-processing step in order to
re-obtain general relativistic results in any observationally relevant
gauge up to first order.

MNRAS 000, 000–000 (2019)



The EuclidEmulator2 5

3 COSMOLOGICAL SIMULATIONS

Cosmic emulators are based on training data (also known as the ex-
perimental design) generated byN-body simulations.Unsurprisingly,
the quality of any emulator hence crucially depends on the quality of
the training data.We invested great efforts into optimising the quality
of the training set simulations. The construction of EuclidEmula-
tor2 training data relies mainly on three codes: PKDGRAV3, which
is the main simulation code, and CON CEPT which in turn depends
on the Einstein-Boltzmann solver CLASS. All three codes had to be
optimised in order to be able to fully self-consistently treat cosmolo-
gies with massive neutrinos and dynamical DE. In this section we
shall describe how these codes were optimised to generate a suite
of simulations used as the experimental design for EuclidEmula-
tor2 and thereby put emphasis on the differences with respect to the
generation of the experimental design of EuclidEmulator1.

3.1 Pipeline overview

Weshall give a quick overviewover the implemented pipeline in order
to facilitate the understanding of the steps involved in generating the
training data for the emulator. More detail is given for each step in
dedicated sections below.

Pre-computation of cosmological quantities: We have designed a
pipeline in which all cosmological background and linear quantities,
such as the time dependence of the Hubble parameter 𝐻 (𝑧), are com-
puted before running any simulation. This is done through CON CEPT
with CLASS in order to take all relevant physics into account (e.g.
this approach allows for a fully relativistic treatment). In this step,
transfer functions are computed to linear level at many different red-
shifts for all species contributing to 𝜙lin, that are later used to provide
the small corrective force contributions in the N-body simulations.
In the case of EuclidEmulator1, however, we only computed the
transfer function at 𝑧 = 0, which we later used for initial condition
(IC) generation via the usual back-scaling approach, and used an
analytical form for 𝐻 (𝑧) to compute the background evolution.

Gauge transformation: This step was entirely missing in Eu-

clidEmulator1 where we used the transfer function computed in
synchronous gauge to set up the ICs. CLASS, as well as CAMB, compute
quantities either in the synchronous or in the conformal Newtonian
gauge. However, in order to make Newtonian N-body codes consis-
tent with GR, their input transfer functions have to be mapped to
the N-body gauge described in section 2.3. This transformation is
performed by the CON CEPT code. The results are then stored into
look-up tables inside HDF5 files that can be queried by the N-body
code.

N-body simulation: Both the initial condition generation and the
actual N-body simulations are performed with PKDGRAV3. Paired-
and-fixed (P+F) (Angulo & Pontzen 2016) first order Lagrangian
perturbation theory (1LPT) initial conditions are set up at redshift
𝑧 = 99 (see also section 4 for a more in-depth discussion). The
nonlinear evolution of DM particles is computed with a binary tree-
based fast multi-pole method (FMM). To these tree forces we add a
particle-mesh (PM) field for the fluctuations due to massive neutri-
nos, photons, DE and the metric field in order to study their effect on
cosmological structure growth at linear level (for simulations treating
neutrinos fully nonlinearly see e.g. Banerjee et al. 2018; Bird et al.
2018). This aspect is one of the key differences between EuclidEm-
ulator1 and EuclidEmulator2.

Post-processing: From the simulations we obtain the power spectra
for each realisation of the fixed-IC simulation pair. In order to get the
final P+F power spectrumwe compute the average of those individual
realisations. As ultimately we are primarily interested in the NLC,
we compute it w.r.t. the linear theory power spectrum (in our case
computed by CLASS) at each redshift. Explicitly, the NLC 𝐵(𝑘, 𝑧) is
the dimension-less quantity defined through the relation

𝑃nl (𝑘, 𝑧) = 𝑃LinTh (𝑘, 𝑧)𝐵(𝑘, 𝑧) , (16)

where the sub-script nl stands for “nonlinear” and the sub-script
LinTh for “linear theory”. Notice that, in contrast, in Euclid Col-
laboration: Knabenhans et al. (2019) the NLC was defined slightly
differently: we computed it via division by the IC power spectrum of
the simulation. We also compute an additional factor that corrects for
power suppression at small scales caused by resolution effects in the
simulations. This factor we shall refer to as the resolution correction
factor (RCF) and it will be discussed in section 5.

Emulator construction: The obtained data matrix is then princi-
pal component analysed. The emulator then predicts the vector of
principal component weights.

3.2 Pre-processing with CONCEPT: Transfer functions

For generation of particle initial conditions inside PKDGRAV3, mat-
ter density and velocity transfer functions 𝛿CDM+b (𝑎ini, 𝑘) and
\CDM+b (𝑎ini, 𝑘) are required, where 𝑎ini is the scale factor at the
start of the simulation. As we seek to carry out the simulation in
N-body gauge, this is also the gauge of these transfer functions.
Note that, due to the contributions from species other than CDM, we
cannot obtain accurate particle velocities from only 𝛿CDM+b.
To keep the simulation in N-body gauge, we need to repeatedly

apply the linear GR correction force −∇𝜙lin. From (15) we see that
we are thus in need of 𝛿𝜌photon (𝑎, 𝑘), 𝛿𝜌a (𝑎, 𝑘), 𝛿𝜌DE (𝑎, 𝑘) and
𝛿𝜌metric (𝑎, 𝑘). Obtaining these N-body gauge transfer functions, the
CON CEPT code has been run in advance. This is a full N-body code
in its own right, with the added trait of very tight integration with
the CLASS code. Internally, CON CEPT takes the synchronous gauge
output from CLASS, converts it to N-body gauge and uses it for both
particle initial conditions and GR corrections. The relevant gauge
transformations are

𝛿𝜌Nb𝛼 = 𝛿𝜌s𝛼 + 3H(1 + 𝑤𝛼) �̄�𝛼
\stot
𝑘2

, (17)

\Nb𝛼 = \s𝛼 + 𝜕𝜏

(
ℎmp
2

− 3H \stot
𝑘2

)
, (18)

where superscripts ‘Nb’ and ‘s’ indicate the N-body and synchronous
gauge respectively, 𝛼 labels the species, ℎmp is the trace of the met-
ric perturbation in synchronous gauge and \tot is the total velocity
divergence of all species.
Though more complicated, the 𝛿𝜌metric (𝑎, 𝑘) transfer function is

similarly constructed from various CLASS outputs, some of which
are only available in the CLASS version that ships with CON CEPT

(see Dakin et al. 2019a for more details). We also note that the
computation of the DE pressure perturbation within CLASS, needed
for 𝛿𝜌metric, is wrong in the standard version of CLASS, but fixed
in the version shipping with CON CEPT (see Dakin et al. 2019b for
details).
For use with PKDGRAV3, the so-called CLASS-utility was added

to CON CEPT, which saves the N-body gauge transfer functions to
an external HDF5 file, which is then read in by PKDGRAV3. In the
HDF5 all requested transfer functions (i.e. on top of theCDM+baryon
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Figure 1. Ratio between the CDM+baryon transfer functions in the N-body
gauge (as used for the N-body simulations in this work) and the synchronous
gauge at three different redshifts. At redshift 𝑧 = 99 where the initial con-
ditions are realised, the two gauges lead to transfer functions differing by
almost 4% at very large scales. At the 𝑘 ∼ 0.006 ℎMpc−1 corresponding
to the fundamental 𝑘-mode of the simulations that will be used to construct
EuclidEmulator2 (see section 4), the effect is just about at the 1% level.

transfer function also that of the photons, the massive neutrinos,
the DE and the metric perturbations) are stored on a global (𝑎, 𝑘)
grid, where special attention must be given to the interpolations
performed within this grid in order to achieve the required precision.
Various background quantities, for example 𝐻 (𝑎), that are computed
by CLASS are also stored in the HDF5 and used by PKDGRAV3, as
these generally are non-trivial to compute in the presence of massive
neutrinos.

3.3 Initial condition generation

In order to get the initial conditions for the particle positions, we
generate a regular grid of particles which we displace from their grid
points using first-order Lagrangian perturbation theory. We imprint
an initial power spectrum 𝑃ini with the pairing-and-fixing technique
(Angulo & Pontzen 2016), i.e.

𝑃( |𝛿𝑖,lin |, \𝑖) =
1
2𝜋

𝛿D ( |𝛿𝑖,lin | −
√︁
𝑃ini) , (19)

with 𝛿D being the Dirac delta function and the index 𝑖 labelling the
Fourier modes (for more info about how we use the pairing-and-
fixing technique to generate initial conditions, please refer to Euclid
Collaboration: Knabenhans et al. 2019). The initial power spectrum
is computed based on the CDM+baryon overdensity field 𝛿m pre-
computed by CLASS+CON CEPT at 𝑧ini = 99. While PKDGRAV3 has no
further use for 𝛿m (𝑧 < 𝑧ini) we still tabulate these, as they are used
when computing the NLC factors. We then use

𝑃m, ini (𝑘, 𝑧ini) = Z2 (𝑘)𝛿2m (𝑘, 𝑧ini) , (20)

where the Z-function is defined as

Z (𝑘) = 𝜋
√︁
2𝐴s𝑘−3/2

(
𝑘

𝑘∗

) 𝑛s−1
2
exp

[
𝛼s
4
ln

(
𝑘

𝑘∗

)2]
. (21)

Here, 𝐴s is the spectral amplitude, 𝑛s is the spectral index, and the
running𝛼s = 0 in all cases. The pivot scale is set to its standardPlanck
value, 𝑘∗ = 0.05 Mpc−1. The resulting initial power spectrum is used
to displace the particles from their regular grid points.

3.4 Nonlinear evolution

Once the initial condition is generated, the DM particles are evolved
by the tree code PKDGRAV3 using FMM and a multi-timestepping
approach. For further technical details about the gravity evolution of
DM in PKDGRAV3, we refer to Potter et al. (2017).
What is newly introduced in the version of PKDGRAV3 that is used

for this work (which is also new compared to the version used to con-
struct EuclidEmulator1) is the interaction with massive neutrinos
as well as other linearly evolved species, namely photons, DE, and
the metric field. For this, PKDGRAV3 fetches the linear evolution of all
these linearly evolved species from the pre-computed CLASS transfer
functions at every base time step. Via the associated power spectrum,
the transfer function can be converted into a density field that is re-
alised on a grid which ultimately leads to a weak corrective mesh
force. This particle-mesh interaction provides an additional gravity
source term to the particle-particle interaction such that the DM field
is evolved taking the linear species into account.
During the early Universe, it is important to capture the effects

of the high-frequency oscillations in the linear fields, particularly in
the metric field, otherwise we would see a slight offset of the power
spectrum at linear scales. The linear evolution may only be done
when the simulation is “time synchronised” which happens at the
start of a base time step. One approach would be to take sufficient
base time steps to capture this effect at high redshift, but it would be
computationally wasteful at lower redshifts. Instead we adopted the
following scheme. Each N-body simulation was started at redshift
𝑧ini= 99 and evolved in 60 time steps to 𝑧intrm= 10. From 𝑧intrmwe
continued each simulation down to 𝑧fin= 0 in another 100 time steps
resulting in a total number of base time steps 𝑛𝑧 = 160. By employing
this approach we achieve agreement between the linear evolution of
all particle species and CLASS over the entire simulation starting from
𝑧ini all the way to 𝑧 = 0.

4 CONVERGENCE TESTS

We have performed extensive convergence tests for the power spec-
trum and the NLC in different dimensions. These convergence test
results serve to update those presented in Euclid Collaboration: Kn-
abenhans et al. (2019).

4.1 Volume

We start by determining the minimal volume required to achieve
convergence at the 1% level. We compare a series of box size of edge
lengths 𝐿 ∈ {512, 1024, 2048, 4096} ℎ−1Mpc to a reference volume
𝑉 = 𝐿3 = (8192 ℎ−1Mpc)3. In this process we fix the resolution
parameter to ℓ−1 ≡ 𝑁/𝐿 = 1/3 ℎMpc−1.6
Asour newpipeline (described in section 3) allows us to recover the

linear scales very accurately at all redshifts, we could try to actually
perform the convergence comparison directly against linear theory
itself. However, as for simulation box sizes 𝐿 < 2048 ℎ−1Mpc even
the smallest 𝑘 modes are already slightly nonlinear, the finite volume
effects overlap with the pre-virialisation dip such that particularly at
low redshifts no clear conclusion can be drawn.
For this reason,we performed additionally the volume convergence

test based on the NLC factor (i.e. we compare to the NLC factor of
the simulation in the 𝐿 = 8192 ℎ−1Mpc box). The result is shown
in Fig. 2. In this test the pre-virialisation dip is cancelled out such

6 Notice that in this paperwe use𝑁 for the number of particles per dimension.
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Table 1. Dependency on the redshift of the 𝑘 modes at which the ℓ−1 =
3 ℎMpc−1 simulation are converged at 1% and 2%, respectively. For redshifts
0, 0.5 and 1 the 𝑘2% values correspond to the highest 𝑘 mode obtained from
the simulations and hence should be understood as lower bounds.

𝑘1% [ ℎMpc−1 ] 𝑘2% [ ℎMpc−1 ]
𝑧 = 0 4.87 ≥9.42
𝑧 = 0.5 4.36 ≥9.42
𝑧 = 1 3.99 ≥9.42
𝑧 = 2.76 1.97 3.57
𝑧 = 10 1.34 1.99

that we are only left with the finite volume effects. We find that a
simulation box of 𝐿 = 1024 ℎ−1Mpc is converged at the level of
∼ 1% (the cosmic variance of only a few individual mildly nonlinear
𝑘 modes exceeds the 1% limit). Notice that this result is unchanged
if one would perform the comparison to the largest box at the power
spectrum level. As the NLC is computedwith respect to linear theory,
dividing two NLCs by each other leads to cancellation of the linear
theory out of the expression such that one is left with a ratio of power
spectra only:

𝐵𝐿

𝐵𝐿=8192
=

𝑃𝐿

𝑃LinTh

𝑃LinTh
𝑃𝐿=8192

=
𝑃𝐿

𝑃𝐿=8192
. (22)

Based on this result we choose the simulation box side length for our
simulations to be 𝐿 = 1 ℎ−1 Gpc.

4.2 Resolution

For the investigation of the mass resolution required to get conver-
gence of the power spectrum at a desired level, we are interested
in the minimal value of the resolution parameter ℓ−1 of N-body
simulations. In Euclid Collaboration: Knabenhans et al. (2019) we
claimed that the power spectra are converged at the level of 1% up
to 𝑘 ∼ 5 ℎMpc−1 for ℓ−1 ≥ 1.6 ℎMpc−1. We state clearly that this
statement was overly optimistic. We underestimated the minimal ℓ−1
because we compared to a simulation with ℓ−1 = 4 ℎMpc−1 which
at that time was the best we could do. For the present work we were
able to double the resolution parameter of our reference simulation
to ℓ−1 = 8 ℎMpc−1. In turn, this increases our current estimate of the
minimal ℓ−1 value required to achieve convergence at the 1% level.
From Fig. 3 one clearly observes that simulations with ℓ−1 ≥

4 ℎMpc−1 are required to be converged at the 1% level at 𝑘 =
10 ℎMpc−1 with respect to the ℓ−1 = 8 ℎMpc−1 simulation at 𝑧 = 0
and the resolution needs to be even higher if 1%-convergence at
higher redshifts is required. Given the minimal volume found in
section 4.1, such high ℓ−1 values imply prohibitively large parti-
cle numbers for our simulations. Taking our computational budget
into account, we decided to run simulations with ℓ−1 = 3 ℎMpc−1
thereby doubling the resolution parameter compared to EuclidEm-
ulator1. This means that our simulations, according to the cur-
rently best estimate available, are converged at redshift 𝑧 = 0 up to
𝑘2% = 9.42 ℎMpc−1 at the level of 2% and up to 𝑘1% ∼ 5 ℎMpc−1
at the level of 1%. Further results showing how the values for 𝑘1%
and 𝑘2% evolve with redshift are shown in Table 1.
Notice that the suppression of power due to low mass resolutions

is very systematic. We investigate this further in section 5.
Further we summarise that a compromise between the require-

ments estimated from the convergence tests and our computational
budget leads to the following specifications for our N-body sim-
ulations. We evolve 30003 particles in boxes with a volume of
1 ℎ−3 Gpc3.

4.3 Paired-and-fixed vs. Gaussian random field initial
conditions

We also re–evaluate the comparison between P+F simulations and
simulations based onGaussian randomfield (GRF) initial conditions.
For this comparison we ran one pair of fixed amplitude simulations
and an ensemble of 50 different GRF simulations. Over all redshifts
of interest (𝑧 ≤ 3), P+F simulations approximate the GRF ensemble
average very well on all but the largest scales. However, on all scales
the deviation of the P+F power spectrum w.r.t. the GRF ensemble
average lies well within the bound set bymax(𝜎GRF, 1%). This con-
firms the finding of Angulo & Pontzen (2016). It needs to be taken
into account, though, that in that publication an ensemble of 300GRF
simulations (i.e. six times larger than our ensemble) has been used for
comparison. Based on this exploration and the results found already
in Euclid Collaboration: Knabenhans et al. (2019) we again use the
pairing-and-fixing approach to efficiently reduce cosmic variance.

4.4 Quantities not investigated in this convergence series

Quantities we have not tested in this convergence series are the start-
ing redshift, the main time-stepping parameter and the resolution of
the PM-grid for the linear species. As we describe below, the soft-
ening is related to the mass resolution but its convergence was not
tested independently either. We set the softening parameter to default
values of PKDGRAV3: 𝜖 = 1/(50𝑁) and the time-stepping parameter
[ = 0.20. The number of PM-grid cells for the linear species has been
conservatively chosen to be a quarter of the CDM+b particle number
𝑁 per dimension, i.e. we use 𝑁lin = 750 PM-grid cells per dimen-
sion. The ratio 𝑁/𝑁lin = 4 has already been used in the generation
of the Euclid Flagship v2.0 Simulation (EFS2) simulation, where it
has been proved to be a more than adequate choice. We also follow
the EFS2 simulation for the choice of the initial redshift, 𝑧ini = 99.
Convergence of these quantities has been studied in Schneider et al.
(2016). Further, we have not investigated second order Lagrangian
perturbation theory (2LPT) ICs for this work but use 1LPT ICs to
set up our simulations. While 2LPT is expected to improve the reso-
lution convergence results presented above, PKDGRAV3 does not yet
support 2LPT for multiple fluids.

4.5 Results of this convergence analysis

We have identified that one requires simulations with 30003 particles
and a resolution parameter of ℓ−1 = 3 ℎMpc−1 (corresponding to
a minimally resolved mass of ∼ 3.3 × 109𝑀�/ℎ and a Nyquist
frequency of 𝑘max ∼ 9.4 ℎMpc−1) in order to achieve satisfactory
accuracy on both large and small scales. A simulation of this size and
resolution takes a bitmore than 2000 node hours (onGPU accelerated
nodes7).

5 RESOLUTION CORRECTION

In Fig. 3 in section 4.2 we show that too low a mass resolution leads
to a suppression of power on small scales where the amplitude of this
suppression grows both with a growing ratio ℓ−1lowRes/ℓ−1highRes and as
the redshift 𝑧 increases. However, as this effect is very systematic it
is possible to correct for it in a post-processing step by compensating
the suppression with a resolution correction factor (RCF).

7 The simulations were run on the Piz Daint supercomputer at the Swiss
National Scientific Supercomputing Centre (CSCS)
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Figure 2. Convergence test results for volume of the NLC factor B(k,z) of simulations with 𝐿 ∈ {512, 1024, 2048, 4096, 8192} ℎ−1Mpc. We show results for
two different redshifts. Apart from individual 𝑘 modes on mildly nonlinear scales, simulation boxes with 𝐿 = 1024 ℎ−1Mpc are converged at the 1% level.

5.1 Cosmology dependence of the resolution-induced power
suppression

In general it has to be assumed that the precise shape of the resolution-
induced power suppression (and equivalently that of the RCF) de-
pends on cosmology. To test this statement we compute a series
of simulations for twenty different cosmologies. We choose these
cosmologies to be a subset of the experimental design (ED) of Eu-
clidEmulator2. Of course, running multiple high-resolution refer-
ence runs in large boxes is too expensive, so we perform our test in a
smaller box. We run these simulations in boxes of 𝐿 = 128 ℎ−1Mpc
side lengthwith 𝑁3 = 3843 and 𝑁3 = 10243 particles, corresponding
to resolution parameters of ℓ−1 = 3 ℎMpc−1 and ℓ−1 = 8 ℎMpc−1,
respectively. The RCF is then simply defined as:

𝑓 3→8res (𝑘, 𝑧; 𝒄) = 𝑃ℓ−1=3 ℎMpc−1 (𝑘, 𝑧; 𝒄)
𝑃ℓ−1=8 ℎMpc−1 (𝑘, 𝑧; 𝒄)

, (23)

where 𝒄 denotes a specific cosmology. We thus compare the same
resolutions as we do in the case of the dark-green and yellow curves
in Fig. 3. We show the results of this analysis in Fig. 4. In this
figure, the two upper panels correspond to the lower panels in Fig. 3.
The variability in the ratio of power spectra due to variability in the
cosmology is then shown in the lower panels of Fig. 4. As is clearly
visible, the cosmology dependence of this ratio is weak, particularly
at very low redshifts.Also at high redshifts, the 1𝜎-standard deviation
is considerably smaller than the biases at the same 𝑘 modes for all

tested cosmologies. Accordingly, we may simplify

𝑓 3→8res (𝑘, 𝑧; 𝒄) ≈ 𝑓 3→8res (𝒄∗; 𝑘, 𝑧) := 𝑓 3→8res (𝑘, 𝑧) , (24)

where 𝒄∗ denotes any reasonable cosmology not too different from
the cosmologies for which low resolution simulations are run. In
our case the Euclid Reference Cosmology, the Planck 2015 best-fit
cosmology or the central cosmology of the parameter box defined
below in Table 2 would all be viable choices for 𝒄∗.
From this we conclude that a cosmology-independent correction

factor, although introducing a new source of uncertainty, improves
the power spectrum measurement of the N-body simulation by a
few percent at high 𝑘 . Of course, in future work this should be
improved even further by emulating the cosmology dependence of
the resolution correction factor. This would greatly reduce the newly
introduced uncertainty while still mostly removing the bias.
We do compute 𝑓 3→8res (𝑘, 𝑧) at the Euclid Reference Cosmology

as defined in Table 2. The RCF curve is shown in Fig. 4 for dif-
ferent redshifts covering the entire redshift range of interest. Notice
that values 𝑓 3→8res for 𝑘 < 2𝜋/(128 ℎ−1Mpc) are set to unity (see
discussion below in section 5.2).

5.2 Dependence on simulation box size

For this approach to be a practical strategy, the RCF must not depend
strongly on simulation box sizes. Otherwise, the RCF would itself
rely on high-resolution runs in large boxes which are exactly the sim-
ulations that are not affordable. Whether this is the case was tested by
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Figure 3. Convergence test results for mass resolution of full nonlinear power spectra showing results for simulations with ℓ−1 ∈ {1, 2, 3, 4, 8} ℎMpc−1. We
show results for two different redshifts. The faint, dark green vertical lines correspond to the 𝑘 values for which the dark green, solid curves (corresponding to the
𝑁 1536𝐿512-case) deviates more than 1% (dashed lines) and 2% (dotted lines), respectively, from the reference 𝑁 4096𝐿512 (ℓ−1 = 8 ℎMpc−1) simulation. At
𝑧 = 2.76, we find that the ℓ−1 = 3 ℎMpc−1 simulation is converged within 1% up to 𝑘 ∼ 2 ℎMpc−1 and within 2% up to 𝑘 ∼ 3.5 ℎMpc−1. At 𝑧 = 0, however,
the same simulation is converged within 2% all the way up to 𝑘 = 𝑘max ∼ 10 ℎMpc−1 and even stays within 1% from the reference up to 𝑘 ∼ 5 ℎMpc−1.

comparing the RCF from a 𝐿 = 128 ℎ−1Mpc box to the correspond-
ing RCF computed from a simulation run in a 𝐿 = 512 ℎ−1Mpc
box. As the latter curve (requiring a simulation with 𝑁3 = 40963
particles) is already very expensive to produce, we did this test for
only one single cosmology. Further, we tested if the RCF 𝑓 3→8res (𝑧, 𝑘)
depends on the box size and we found that it does not in any other
way than the fact that 𝑘min = 2𝜋/𝐿 is of course changed. There is
a limit to the minimally allowed box size, though. While comput-
ing an RCF one must make sure that a box size is chosen such that
𝑓 3→8res (𝑧, 𝑘min) = 1 for all 𝑧 of interest such that the resulting RCF
can be safely extrapolated to larger scales by setting 𝑓 3→8res (𝑧, 𝑘) ≡ 1
for all 𝑘 < 𝑘min.

5.3 Correction strategy

Our suggested strategy to fight this resolution effect is hence as
follows. Starting from a power spectrum with a resolution parameter
of ℓ−1 = 3 ℎMpc−1, we can resolution-correct it by multiplying it
with a 𝑘- and redshift-dependent (but cosmology-independent) RCF
𝑓 3→8res (𝑘, 𝑧), i.e.
𝑃ℓ−1=8 ℎMpc−1 (𝑘, 𝑧; 𝒄) ≈ 𝑓 3→8res (𝑘, 𝑧)𝑃ℓ−1=3 ℎMpc−1 (𝑘, 𝑧; 𝒄) . (25)

This corresponds to lowering theminimally resolvedmass by roughly
an order of magnitude from ∼ 3.3 × 109𝑀�/ℎ to ∼ 1.7 × 108𝑀�/ℎ
(corresponding to a Nyquist frequency of 𝑘max ∼ 25 ℎMpc−1).

As we define the NLC for EuclidEmulator2 with respect to
linear theory which is not affected by this resolution effect, the very
same correction can be applied to those quantities:

𝐵ℓ
−1=8 ℎMpc−1 (𝑘, 𝑧; 𝒄) ≈ 𝑓 3→8res (𝑘, 𝑧)𝐵ℓ−1=3 ℎMpc−1 (𝑘, 𝑧; 𝒄) . (26)

6 PROJECTION STUDIES USING CLASS-BASED MOCK
EMULATORS: TRAINING EUCLIDEMULATOR2

N-body simulations of the matter field in 𝑤0𝑤𝑎CDM+
∑
𝑚a cos-

mologies are expensive, even when the mass resolution is low. It
is hence not affordable to run thousands of simulations that would
allow for an in-depth analysis of a given emulator that involves (po-
tentially several) training, test and validation sets. In order to develop
an understanding of the final emulation error and its dependence
on the dimensionality of the parameter space as well as on the size
of the experimental design, we construct mock emulators based on
HALOFIT (Bird et al. 2012) data. We have followed this strategy al-
ready in Euclid Collaboration: Knabenhans et al. (2019) where it has
proved to yield a reliable estimate for the performance of the real,
simulation-based emulator.
In this section we first define the parameter space inside which

the emulator is constructed. This parameter space is the same for
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Figure 4. The resolution-induced power suppression is systematic and can be corrected for. In this plot we show the resolution corrections 𝑓 3→8res (𝑘, 𝑧; 𝒄)
computed from a sample of 20 cosmologies represented by the yellow curves. The newly introduced uncertainty due to variance in cosmology, which we neglect,
is merely 0.5% (standard deviation, green shaded region) or lower at 𝑧 = 0 and at the level of 1% at 𝑧 ∼ 2. Given the fact that the bias itself is at the 5% level at
higher redshifts, correcting for the resolution has a positive net effect. The curves corresponding to the Euclid Reference Cosmology are overplotted. We shall
use this cosmology to compute the RCF which we apply to all other cosmologies.

the HALOFIT-based emulator as for the actual simulation-based Eu-
clidEmulator2. In a next step we (approximately) optimise the
hyperparameters of the model in order to use the resulting “archi-
tecture” for the computation of learning curves, etc. We shall then
apply the findings to the training of the actual, simulation-based
EuclidEmulator2.

6.1 Definition of the parameter space

For EuclidEmulator2 we consider CDM models with dynam-
ical DE and including massive neutrinos, often abbreviated as
𝑤0𝑤𝑎CDM+

∑
𝑚a models. More precisely, this means that we

parametrise the considered cosmologies via the following eight pa-
rameters:

• Ωb, the total baryon density parameter in the Universe ,
• Ωm, the total matter density parameter in the Universe ,
• Σ𝑚a , the sum of masses of all neutrino families ,
• ℎ, the dimensionless Hubble parameter ,
• 𝑛s, the spectral index ,
• 𝑤0, the time-independent part of the DE EoS parameter ,
• 𝑤𝑎 , the linearly scale factor-dependent part of the DE EoS

parameter ,
• 𝐴s, the spectral amplitude .

The radiation density Ωrad is given by the CMB temperature which

we fix at 2.7255 K. The DE density ΩDE is then inferred from the
flatness condition given by Eq. (4) with Ω = 1 on the left-hand side.
We do not want to include any prior knowledge about a most

likely cosmology into the construction of the emulator other than
the assumption that a flat 𝑤0𝑤𝑎CDM+

∑
𝑚a model is sufficiently

accurate in order to describe our Universe. In the context of Eu-
clidEmulator2, we explicitly ignore alternative gravity and other
more exotic cosmological models. Emulators for such models have
been published by other research groups as e.g.Winther et al. (2019);
Giblin et al. (2019). We thus apply flat (uniform) priors to each of the
eight input parameters. In order to have a well defined, normalised
prior probability distribution function we thus need to define com-
pact intervals along each dimension over which the final emulator
will be defined. Mathematically this means that we have to define
intervals [𝑎1, 𝑏1], . . . , [𝑎8, 𝑏8] such that the final parameter box Π
is the Cartesian product of all intervals:

Π :=
8?

𝑖=1
[𝑎𝑖 , 𝑏𝑖] (27)

The choice of the interval boundaries is mostly arbitrary and depends
mainly on the tasks that will be tackled by the emulator. Without im-
posing any restrictions, we assume that EuclidEmulator2 will be
mostly applied to MCMC searches of the cosmological parameter
space to solve the inverse problem of finding the parameter values
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Table 2. Parameter box for EuclidEmulator2 defined through its lower
bounds (“min”) and its upper bounds (“max”). The central cosmology of
the parameter box (“EE2centre”), which is almost identical to the Euclid
Reference Cosmology, is also given here.Ωrad is the same for all cosmologies,
corresponding to 𝑇CMB = 2.7255 K.

min max EE2centre Euclid Reference
Ωb 0.04 0.06 0.05 0.049
Ωm 0.24 0.40 0.32 0.319∑
𝑚a 0.0 eV 0.15 eV 0.075 eV 0.058 eV

𝑛s 0.92 1.00 0.96 0.96
ℎ 0.61 0.73 0.67 0.67
𝑤0 −1.3 −0.7 −1.0 −1.0
𝑤𝑎 −0.7 0.7 0.0 0.0
𝐴s 1.7 × 10−9 2.5 × 10−9 2.1 × 10−9 2.1 × 10−9

best describing ourUniverse. It is reasonable to assume that these val-
ues are not too far away from the current best-fit values as published
by modern cosmological experiments. We centre the parameter box
for EuclidEmulator2 around the cosmology “EE2centre” which is
defined in Table 2. Notice that this central cosmology is identical to
the Euclid Reference Cosmology (up to two decimal places) for all
dimensions but the sum of the neutrino masses. We are thus left with
the definition of the width of the intervals along each dimension in
such a way that the resulting parameter box remains small enough
that a sample of size∼ 200 (corresponding to our computational bud-
get) contains enough information to achieve a generalisation error of
. 1%. To determine these in a systematic way we run a number of
full N-body simulations along each parameter axis, both below and
above the central value. This allows us to determine by how much
each individual parameter has to be varied in order to cause roughly
a ±10% variation in the output NLC factor (the emulation target).
Following this prescription, the output variation is an order of mag-
nitude larger than the uncertainty in the output ensuring significant
discrimination power while keeping the parameter box, Table 2, rea-
sonably small. Yet, for certain tasks (particularly in the field of weak
gravitational lensing), the resulting parameter box may be too small.
However, further away from the central cosmology, 1% accuracy is
no longer necessary and EuclidEmulator2 could be extended via a
multi-fidelity procedure. In addition, it is expected that cosmologies
outside this parameter box can be ruled out by the linear theory power
spectrum alone.
The range for neutrino masses allows for less than 10% of output

variability.We accept this compromise in order to improve emulation
accuracy (due to a reduced volume of the parameter box). At the
same time we do not expect this cut to have a large impact because
the neutrino signal is expected to mostly affect the linear scales.
Notice further that, for reasons discussed in section 6.4, we trained
EuclidEmulator2 only on cosmologies with 𝑤𝑎 < 0.5. This does,
however, not change the parameter box over which the emulator is
defined.

6.2 Halofit mock data sets

For the HALOFIT-based analyseswe createmultiple data sets for train-
ing and validation. The training data sets were sampled using Latin
hypercube sampling (LHS) first published in McKay et al. (1979),
just in the same way as reported on in Euclid Collaboration: Kn-
abenhans et al. (2019). We create a series of Latin hypercube (LH)
samples with different sizes, 𝑛ED ∈ {25, 50, 100, 200, 300, 400}. For
each size we generate 5𝑛ED sets and choose the realisation that max-
imises the minimum distance between all sampling points.

For validation we create much larger sets than for training. Notice
that sampling large sets with LHS is computationally demanding as it
scales polynomially with the number of points to sample. Addition-
ally, we are primarily interested in the performance of the emulator
inside an axis-aligned ellipsoid inscribed in the parameter box (Ta-
ble 2). LHS, however, is designed to be space-filling and thus the high
computational cost comes with a low efficiency as due to the high
dimensionality of the parameter space most sample points lie outside
that ellipsoid. We hence decided to sample the validation sets purely
randomly and filter the sample with an ellipsoidal mask. Following
this procedure we generate in total 30 validation sets with roughly
1500 sampling points each (resulting in 45 000 validation points).
In addition to these data sets, we have also created data sets for

cosmologies organised in a grid of 50 × 50 points in each parameter
plane, resulting in another 70 000 HALOFIT evaluations. These sets
are on the one hand used for analysis of the principal component
analysis (PCA) eigenvectors (see section 6.4) and, on the other hand,
also for validation purposes (see section 6.7 and 6.9).
For each sampled cosmology in all of the sets mentioned above,

we run HALOFIT and evaluate the matter power spectrum at redshift
𝑧 = 0. This result is then divided by the linear matter power spectrum
in order to get the NLC factors which ultimately form the data sets
of interest.

6.3 Emulation strategy: PCE

We use a supervised regression technique called polynomial chaos
expansion (PCE) to emulate the NLC factor. We use the implementa-
tion of this method in the MATLAB package UQLab8 (Marelli & Su-
dret 2014, 2017;Marelli et al. 2017). PCE in its generality is well doc-
umented in several publications such as Xiu & Karniadakis (2002);
Blatman (2009); Blatman & Sudret (2009, 2010, 2011); Marelli &
Sudret (2017, 2018); Torre et al. (2019) and its application to cosmo-
logical emulation is discussed in Euclid Collaboration: Knabenhans
et al. (2019). As a reminder we repeat that we express NLC factors
using PCA and PCE with the following emulation equation

𝐵(𝑘, 𝑧; 𝒄) ≈ `PCA (𝑘, 𝑧) +
𝑛PCA∑︁
𝑗=1

∑︁
𝛼∈A𝑝,𝑞,𝑟

𝑗

[̂ 𝑗 ,𝛼Ψ
𝛼
𝑗 [ 𝑓 (𝒄)]PC 𝑗 (𝑘, 𝑧) ,

(28)

where 𝒄 stands for a vector of the eight cosmological parameters
discussed here which is transformed through 𝑓 into the standard unit
hypercube [−1, 1]8. The PCA quantities are the mean `PCA (𝑘, 𝑧)
and the eigenvectors PC 𝑗 (𝑘, 𝑧). The actual PCE is given by the inner
sum, with Ψ𝛼

𝑗 being the PCE basis functions, [̂ 𝑗 ,𝛼 the coefficients
and 𝛼 being an element from a multi-index set A 𝑝,𝑞,𝑟

𝑗 .
We shall also stress again that this procedure of combining PCE

and PCA is the standard approach for emulating vector-valued quan-
tities with PCE (Blatman & Sudret 2013). This implies, however,
that EuclidEmulator2, having a target space of 𝑛PCA dimensions,
is actually a conglomerate of 𝑛PCA single, scalar-valued emulators.
The actual learning algorithmwe use is a regularised (i.e. LASSO-

type) version of a least-squares minimisation called Least angle re-
gression (LAR), discussed in detail in Efron et al. (2004); Blatman &
Sudret (2011). This regression algorithmminimises the loss function

8 www.uqlab.com
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[̂ 𝑗 ,𝛼 = argmin
[ 𝑗 ∈R|A 𝑗 |

E


(
[>𝑗 · Ψ 𝑗 (𝒄) − 𝑤 𝑗 ,true (𝒄)

)2
+ _

∑︁
𝛼∈A 𝑗

|[ 𝑗 ,𝛼 |

.

(29)

Here, 𝑤 𝑗 ,true denotes the true value of the 𝑗-th principal component
weight and we use A 𝑗 as a shorthand notation for A 𝑝,𝑞,𝑟

𝑗 for the
sake of readability.
The regularisation term enforces low-rank (i.e. sparse) solutions.

This is motivated by the so-called sparsity-of-effects principle ac-
cording to which most of the variance of the underlying model is
encoded in interaction terms among only a small number of pa-
rameters. Further, enforcing sparse basis representations serves the
purpose of reducing the memory requirements of the emulator code.

6.4 Principal component analysis

Vanilla PCE can only predict scalars. In order to create a PCE em-
ulator for a non-scalar quantity like NLC, it is thus mandatory to
decompose the full signal into a series such that only scalar coeffi-
cients have to be emulated. This is done in the standard way using
PCA (also used in other emulators based on different techniques than
PCE, such as e.g. Heitmann et al. 2010; Nishimichi et al. 2019 and
others). The coefficients of the principal components (also called
weights or eigenvalues) are thus the quantities that are actually em-
ulated. To our knowledge, the dependence of those coefficients on
the cosmological parameters has not been investigated in any of the
papers about cosmic emulators employing PCA published over the
last decade. As we use a polynomial regression method of finite order
for emulation, we implicitly assume that the dependence of the PC
weights on the cosmological parameters is sufficiently polynomial.
To investigate if this assumption is justified we perform a PCE on
each set of the above mentioned 2 500 data points sampled in the
coordinate planes and plot the resulting first order coefficients 𝑤PC1
as heatmaps. The (𝑤0, 𝑤𝑎) plane stands out as for 𝑤0 + 𝑤𝑎 → 0 the
corresponding first order coefficient grows exponentially (see Fig. 5).
From a physical point of view this does not come as a surprise as a
cosmology with such a DE EoS is highly exotic as it implies a DE
with an almost matter-like nature shortly after the big bang. Such a
cosmology is not of interest to us as it is highly unrealistic. We have
thus identified a clear non-polynomial dependence in the functions
we try to emulate. We mitigate this problem by masking out the
critical region. In practice, we train our emulator based on all cos-
mologies within our training set but exclude the very 19 cosmologies
that do not meet the condition:

𝑤𝑎 < 0.5 . (30)

As we will show in section 6.7, this modification of the training data
set is crucial for the performance of the emulator (although its size
is decreased from 127 to only 108 training cosmologies!). This does,
however, not restrict the allowed input parameters of the resulting
emulator in any way. Clearly, the generalisation performance of the
emulator is considerably worse in the masked region than for cos-
mologies with 𝑤𝑎 < 0.5. We have tried other, less aggressive cuts,
too (e.g. cutting along𝑤0+𝑤𝑎 < 0.5) but have found that only the cut
along 𝑤𝑎 < 0.5 leads to a satisfactory generalisation performance.

6.5 About error measurements

As in all machine learning (ML) and uncertainty quantification (UQ)
tasks, error quantifications play a central role in this work. Ultimately,

Figure 5. Evolution of the first order principal component weight 𝑤PC1 as
a function of 𝑤0 and 𝑤𝑎 . The exponentially increasing value is evident for
𝑤0+𝑤𝑎 → 0. The white, dashed line indicates where the cut is made in order
to avoid the problematic region.We have investigated also less aggressive cuts
all of which lead to worse performance of the emulator suggesting that the
problematic region is even more extended in higher dimensions.

we are primarily interested in creating an emulator that generalises
well in an 𝐿1 sense in the cosmological parameter space. To be more
precise, we try to minimise the generalisation error of the emulator
given by the maximum of the relative mean absolute error:

YmaxrMAE = max
𝑘,𝑧

〈����𝐵emu (𝑘, 𝑧; 𝒄) − 𝐵true (𝑘, 𝑧; 𝒄)
𝐵true (𝑘, 𝑧; 𝒄)

����
〉
𝒄∈𝐶

. (31)

Notice that the mean indicated by the angle brackets is taken over the
cosmologies 𝒄 defined in the parameter space𝐶 given in Table 2. The
maximisation, on the other hand, is performed over the non-regressed
parameters 𝑘 and 𝑧. This generalisation error will be approximated
by a validation error of the form

ŶmaxrMAE = max
𝑘,𝑧

1
𝑁val

∑︁
𝒄∈𝐶val

����𝐵emu (𝑘, 𝑧; 𝒄) − 𝐵true (𝑘, 𝑧; 𝒄)
𝐵true (𝑘, 𝑧; 𝒄)

���� (32)

where 𝐶val designates the set of validation cosmologies.
However, since an estimate of the above error requires a validation

set which we do not have readily available in all situations, we also
often use a cross-validation error metric as an alternative. This is
given by the leave-one-out (LOO) error defined as

YLOO, 𝑗 =

∑𝑛ED
𝑖=1

[
𝑤true, 𝑗

(
𝒄 (𝑖)

)
− 𝑤

PCE\𝑖
emu, 𝑗

(
𝒄 (𝑖)

)]2
∑𝑛ED
𝑖=1

[
𝑤true, 𝑗

(
𝒄 (𝑖)

) − ˆ̀𝑤𝑗

]2 . (33)

Here,𝑤 stands for the eigenvalues of the PCAwhich are the quantities
that are actually emulated in this work (for more details on this
refer to Euclid Collaboration: Knabenhans et al. 2019). Each 𝑤 𝑗

corresponds to the inner sum in Eq. (28) running over the multi-index
𝛼. To compute this error one trains a PCE emulator on all training
example but the 𝑖-th one (indicated by the superscript PCE\𝑖). In
this very example the emulator is then evaluated (second term in the
numerator). The quantity is finally rescaled by the overall variance
of the quantity 𝑤 𝑗 . More details on this quantity and how to compute
it efficiently can be found in Marelli & Sudret (2017). It shall be
emphasised that the subscript 𝑖 runs over cosmologies in the training
set and no reference to any validation examples is made. Further, this
metric measures the emulator performance not in the NLC space but
rather in the more abstract, associated principal component space
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(hence the subscript 𝑗 which refers to the order of the principal
component).

6.6 Hyperparameter optimisation using the Halofit mock data

The hyperparameters of PCE for emulation of non-scalar quantities
are given by

• the minimum percentage 𝑎PCA of explained variance retained
in the PCA (strongly related to the number 𝑛PCA of principal com-
ponents taken into account),

• the polynomial order 𝑝 at which the PCE is truncated,
• the maximum interaction 𝑟 (number of factors per monomial in

PCE),
• the 𝑞-norm.

Remember that actually there is a separate PCE for each principal
component (as described in section 6.3). As a result, the hyperparam-
eters 𝑝, 𝑞 and 𝑟 can be chosen differently for each 𝑖 = 1, . . . , 𝑛PCA and
the accuracy parameter 𝑎 is the only hyperparameter that has to be
chosen globally for obvious reasons. As training a PCE is relatively
cheap, there is no need for a sophisticated optimisation algorithm.
Rather, we perform a (partially greedy) grid search over the grid
given by

𝑎PCA ∈ {0.9, 0.99, . . . , 0.99999999} ,
𝑟 ∈ {1, 2, . . . , 5} ,
𝑝 ∈ {2, 3, . . . , 20} ,
𝑞 ∈ {0.3, 0.35, 0.4, . . . , 0.9} .

(34)

The small set of low numbers looked at for 𝑟 are motivated by
the “sparsity-of-effects” principle (Marelli & Sudret 2017). Strictly
speaking, there are two steps here. In the first step a vector of 𝑎PCA-
values is created and, in the second step, for each value of 𝑎PCA a
multitude of (𝑝, 𝑞, 𝑟)-grids is searched (one for each principal com-
ponent). This is important because the optimal point in the (𝑝, 𝑞, 𝑟)-
grid is chosen based on a different criterion than the optimal 𝑎PCA
value. The former is chosen based on a minimisation of the LOO
cross-validation error without ever seeing a validation point. This
happens entirely on the level of principal component weights (i.e.
eigenvalues of the covariance matrix) and thus this step is performed
independently for each principal component. For identification of
the (near-)optimal 𝑎PCA value, in contrast, an emulator is trained
for each value of 𝑎PCA and evaluated on a validation set. We then
aim to minimise ŶmaxrMAE as defined in Eq. (32). Notice that, while
the latter error is the correct quantity to look at when judging the
overall performance of the emulator, this can only be investigated
once a separate emulator is trained (and, as well, a separate set of
hyperparameters is optimised) for each principal component. It is of
paramount importance to understand that we go through this proce-
dure really only to fix the values for 𝑎PCA. As 𝑝, 𝑞 and 𝑟 can be
optimised without the need of a separate validation set, they can be
optimised once the final emulator is being trained based on actual
simulations without the risk of overfitting to a validation set. Af-
ter evaluating the ŶmaxrMAE for all candidate values of 𝑎PCA, we
conclude that

𝑎PCA = 0.99999 (35)

is the optimal (i.e. loss minimising) value for this global hyperparam-
eter. If we continue to increase 𝑎PCA, we find thatwe are attempting to
capture the numerical noise in the simulations, leading to an increase
again of ŶmaxrMAE.

6.7 Learning curves

Now that we have defined the bounds for all parameters, have created
the necessary data sets and optimised the global hyperparameter
𝑎PCA, it is natural to ask the following two questions:

• How does the validation error of the emulator decrease as the
number of training examples increases?

• Given a fixed number of training examples, how does the vali-
dation error increase as a consequence of adding the two additional
dimensions compared to version 1 of EuclidEmulator?

To answer these questions we train emulators for different cosmo-
logical models with different dimensionalities, namely ΛCDM (5D),
𝑤0CDM (6D, corresponding to EuclidEmulator1), 𝑤0𝑤𝑎CDM
(7D) and 𝑤0𝑤𝑎CDM+

∑
𝑚a (8D, corresponding to EuclidEmula-

tor2). Each model is trained on the series of training sets mentioned
in section 6.2. The emulators are then validated on the 30 ellipsoidal
validation sets. In this context it becomes evident why we have pro-
duced so many validation sets: It allows one to get statistics on the
validation error (namely the standard error of the estimated mean
error). Notice that such a representative test is by far beyond what
is achievable with simulation data as several tens of thousands of
simulations with at least moderate mass resolution would have to be
run. The resulting learning curves are plotted in Fig. 6.
While it is easy to achieve validation errors < 1% for the 5D and

6D models with only 50 training examples, the complexity of the 7D
and 8D models is considerably higher, particularly if we train based
on examples in the entire original parameter space without masking
out the problematic region in the (𝑤0, 𝑤𝑎) plane (see the discussion
in section 6.4). In this scenario, we would require & 400 training
examples to reach accuracies of 1% or better. Masking out the region
where 𝑤0 + 𝑤𝑎 ∼ 0 in the training set, reduces the training set size
to only 100 to 200 examples.
Notice that in Fig. 6 we show the error estimate for 𝑛ED = 127 for

the case of 𝑤0𝑤𝑎CDM+
∑
𝑚a cosmologies. This measurement was

added in hindsight because it turned out that the actual simulation-
based emulator would achieve the target accuracy already with a
training set of only 127 simulations selected from an LHS of size
200 (see section 7.2 for a short discussion).

6.8 Application to the training of EuclidEmulator2

We shall now anticipate some training aspects of the actual,
simulation-based EuclidEmulator2. We use the same surrogate
model in order to train the emulator as for the HALOFIT-based mock
emulator discussed above and for EuclidEmulator1, i.e. sparse
PCE combined with PCA. The number of principal components
is defined through the threshold value for the minimally explained
variance in the data set (which is independent of the size of the
training set). As this was investigated in section 6.2 and found that
𝑎PCA = 0.99999 is the optimal value, we can now use the same value
for the training of the actual emulator. Having found in the learning
curves analysis that a training set of 127 cosmologies is enough to
achieve the targeted accuracy, this value for 𝑎PCA corresponds to
retaining 𝑛PCE = 14 principal components (i.e. the target space of
the full vector-valued emulator is 14-dimensional).
Also, we found for the HALOFIT-based mock emulator that setting

the maximal interaction 𝑟max = 4, the maximal polynomial order
𝑝max = 20, and varying the 𝑞-norm between 𝑞min = 0.3 and 𝑞max =
0.9 leads to convergence in the selection of terms in the expansion
series. So we recycle this here, too. The parameters 𝑝 and 𝑞, as well
as the actual interaction number 𝑟, are optimised individually for

MNRAS 000, 000–000 (2019)



14 Euclid Collaboration

Figure 6. Learning curve for CLASS-based emulators for four different cos-
mological models. On the 𝑦-axis the estimated mean of the validation error
distribution over the 30 different validation sets is plotted. The error bars
show the standard error of this estimated mean. Notice that we explicitly plot
the point at 𝑛ED = 127 for the 𝑤0𝑤𝑎CDM+

∑
𝑚a model as this point cor-

responds to our actual training set. The learning curves have been computed
(i) taking all training examples into account (dashed lines, labelled “uncut”)
and (ii) ignoring those training examples with 𝑤𝑎 > 0.5 (solid lines, la-
belled “cut”). For the ΛCDM and 𝑤0CDM models this distinction makes no
difference because for those models 𝑤𝑎 was fixed to 0.

Validation examples were sampled randomly inside axis-aligned hyperellip-
soid inscribed in the parameter box (see section 6.2 for a description of the
data sets).

Table 3. Table with optimal hyperparameter values for all 14 scalar-valued
PCEs of EuclidEmulator2. The resulting PCE contains 574 non-trivial
terms.

PC order 𝑝 𝑟 𝑞

1 3 2 0.45
2 3 2 0.45
3 4 2 0.5
4 4 2 0.45
5 3 2 0.45
6 4 2 0.4
7 4 2 0.5
8 4 2 0.45
9 4 2 0.5
10 16 3 0.4
11 4 2 0.5
12 12 4 0.5
13 4 3 0.5
14 15 2 0.4

each principal component and listed in Table 3. The full training
process (i.e. optimising the values for 𝑝, 𝑟 and 𝑞 for each principal
component and fitting the coefficients) takes only 9 seconds on a
usual MacBook pro with a 2.8 GHz Intel Core i7 CPU. As a result
we get a PCE with a total of 574 terms (all other coefficients vanish).
Notice that this corresponds to a very small number of terms, i.e.
an extremely sparse PCE, as in our case there were 3 108 105 terms
without sparsification.

6.9 Performance estimation of the mock emulator

From the learning curves presented above we can expect EuclidEm-
ulator2 to be sub-1% accurate at 𝑧 = 0 over the entire 𝑘 range
of interest for the available training set of 108 simulations (being a

subset of the originally planned set of 200 training examples). While
this is the final goal, it is yet interesting to see how the error evolves
as a function of cosmology. For this we evaluated the HALOFIT-based
mock emulator on all 70 000 validation cosmologies sampled in the
28 parameter planes of the feature space. The results are 28 error
maps that we show in Appendix B. It is clearly visible that the val-
idation error is below 2% (and hence at the same level as the mass
resolution-related uncertainty in the simulations at small scales) for
the vast majority of cosmologies lying inside the axis-aligned hyper-
ellipsoid inscribed in the parameter box (indicated by a grey ellipse in
the error maps). Only for cosmologies with a large value of 𝑤0 +𝑤𝑎

the error grows to ∼ 5%. We reiterate, however, that on average over
the entire 8D-hyperellipsoid the error drops below 1%. Outside that
ellipsoidal region, the errors sometimes exceed the 2% limit. We also
designate the 𝑤𝑎 = 0.5 boundary by a grey dashed line.

7 THE TRAINING SET OF EUCLIDEMULATOR2

7.1 Experimental design: sampling

We sample the points in the parameter space defined in Table 2 using
LHS, as we have done already in Euclid Collaboration: Knabenhans
et al. (2019). LHS is a very straightforward sampling technique that is
widely used and accepted in the cosmological emulator community
(Heitmann et al. 2009, 2010, 2014; Nishimichi et al. 2019; DeRose
et al. 2019; Gration & Wilkinson 2019; Rogers et al. 2019) and
extensively presented in the statistical sampling literature (McKay
et al. 1979; Tang 1993; Liefvendahl & Stocki 2006; Crombecq et al.
2011; Damblin et al. 2013; Sheikholeslami & Razavi 2017; Yang
et al. 2017; Garg & Stogner 2017; Swiler et al. 2006). Endowed with
an additional optimisation step (we use a distance-based criterion),
its main advantage is that it combines good space-filling properties
with a high degree of randomness. For an in-depth explanation of the
exact steps we go through to generate the sample we refer to Euclid
Collaboration: Knabenhans et al. (2019).
We chose to generate a sample with 200 points based on the

argument that in Fig. 6 we show that a training set of this size should
be large enough to achieve a validation error below 1%, while a set
of only 100 examples is expected to just miss this requirement in
the 8D parameter box. In fact, we use exactly the same LHS of size
𝑛ED = 200 to run the simulations as we used in the investigation of
the mock emulators in section 6.
The resulting sample of cosmologies is shown in blue in Fig. 7.

7.2 Experimental design: simulations

As the generation of each training example (i.e. each pair of simu-
lations per cosmology) corresponds to an investment of about 4000
node hours of computation, we tested the performance of PCE-based
emulators along the way also before the planned training set of 200
cosmologies was completed. Doing so we noticed that the emulator
achieved the targeted sub-percent accuracy when trained on only 127
examples. In this case the sample of course is no longer an LHS
but rather resembles a random sampling. Consequently, there was no
need to invest more time and effort in running the remaining 73 pairs
of simulations. The completed set of 127 simulation pairs used for
the training of EuclidEmulator2 is plotted in Fig. 7. Notice that it
was for this very reason why we also looked at the sample of size 127
when investigating the HALOFIT-based mock emulator in section 6.7.
From this fact we can learn two important conclusions for future

projects:
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Figure 7. Distribution of LH-sampled cosmologies represented in the coordinate planes of the parameter space. The blue circles and histograms show the full
ED of 200 data points while the green dots indicate the subset of 127 training examples actually used to create EuclidEmulator2. The ranges of each subplot
exactly matches that specified in Table 2.

• At least as long as the marginal distributions of sample points
along all parameter dimensions do not have regions where there are
no sampling points at all, LHS is not a necessity for good performance
of PCE as random sampling works fine too.

• When generating an ED is related to large computational costs
(and hence to a non-negligible risk of failing to generate a large sam-
ple in one go), it is advisable to choose an enrichable sampling tech-
nique such as e.g. the LHS-based adaptive response surface method
(LHS-ARSM, Wang 2003) or active learning (as e.g. done in Rogers
et al. 2019).

We thus use an experimental design of 127 (respectively 108 af-
ter applying the cut in 𝑤𝑎) P+F simulations randomly sampling the
parameter box. Each simulation samples the power spectrum at 613
𝑘-modes and 100 time-steps between 𝑧intrm= 10 and 𝑧fin= 0. While
all this data are used to compute the emulator, we only allow the user
to emulate up to 𝑧max = 3.0 because the overall accuracy decreases
considerably for higher redshifts (primarily because the underlying
simulations have not converged for higher redshifts as can be extrap-
olated from Fig. 3).

7.3 Post processing: Computation of the NLC

We compute the NLC for each power spectrum by dividing the non-
linear power spectrum resulting from the simulation by the linear
theory power spectrum computed by CLASS. Notice that this is dif-

ferent from what is done for EuclidEmulator1where the NLC was
computed via a division by the re-scaled power spectrum measured
from the simulation particle realisation at the initial condition. For
training the emulator, the NLC is converted into log space because
we have shown in Euclid Collaboration: Knabenhans et al. (2019)
that this improves the generalisation of the emulator. We stress that
the resolution correction factor introduced in section 5 is not applied
to the training data set such that users of EuclidEmulator2 can
decide individually whether they want to apply this correction or not
to the emulated result. We compile the NLC data into a data matrix
DCDM+b ∈ R𝑛ED×𝑛𝑧𝑛𝑘 . This data matrix is then decomposed into its
principal component basis {PC𝑖 |𝑖 ≤ 𝑛PCA} where 𝑛PCA denotes the
number of principal components taken into account. As a result, the
𝑚-th row in D can be represented as follows:

D𝑚 =
𝑛PCA∑︁
𝑖=1

𝑤𝑖 (𝑐𝑚)PC𝑖 (𝑘, 𝑧) , (36)

where the argument 𝑐𝑚 of the PC weight stands for the vector of
parameters defining the 𝑚-th cosmology and the arguments of the
principal components are the 𝑘 mode and the redshift. We hence
build 𝑛PCA individual training sets defined by

T𝑖 = {𝑤𝑖 (𝑐𝑚) | 𝑚 ≤ 𝑛ED} , ∀ 𝑖 ∈ {𝑖, . . . , 𝑛PCA} (37)

that are used to train the 𝑛PCA individual, scalar-valued emulators.
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8 EMULATOR PERFORMANCE, ERRORS AND
SENSITIVITY TO PARAMETERS

8.1 Sensitivity analysis

As for EuclidEmulator1, we have again performed a Sobol’ anal-
ysis to investigate the relative importance of each cosmological pa-
rameter on the final NLC. Notice that since the parameterisation of
the emulator changed significantly from EuclidEmulator1, it can-
not be expected that the Sobol’ indices remain unaltered. Clearly, for
EuclidEmulator2, the matter density parameter Ωm dominates the
behaviour of the resulting NLC. At the same time, to first principal
component order,

∑
𝑚a and 𝑛s are almost entirely negligible. While

in the case of neutrino masses this does not come as a surprise (the
effect of massive neutrinos is mostly captured by the linear signal
already), one might not have guessed that for the spectral index. This
is resolved when looking at the Sobol’ indices of the second principal
component where the neutrino mass still has almost no impact at all,
while the spectral impact becomes actually the dominant parameter.
The fact that the sum of the neutrino masses is almost entirely

negligible when computing the NLC supports our suggestion men-
tioned in Euclid Collaboration: Knabenhans et al. (2019) that to good
approximation one can emulate nonlinear power spectra with mas-
sive neutrino cosmology by simply computing the corresponding
linear power spectrum and multiplying that by an NLC as produced
by EuclidEmulator1, i.e. an NLC that does not know anything
about massive neutrinos. The test of this hypothesis is deferred to
section 8.2.2 (see Fig. 11 in particular).

8.2 Generalisation Performance of EuclidEmulator

In this section we shall compare EuclidEmulator2 to other fast
prediction techniques such as HALOFIT (Bird et al. 2012), HMCode
(Mead et al. 2016), CosmicEmu (Lawrence et al. 2010, 2017), the very
recent emulator based on the BACCO simulation project (Angulo
et al. 2020), hereafter referred to as the “BACCO-emulator”, and the
predecessor EuclidEmulator1 (Euclid Collaboration: Knabenhans
et al. 2019) as well as with PKDGRAV3 (Potter et al. 2017; Potter &
Stadel 2016; Stadel 2001) simulations. While the comparisons of
EuclidEmulator2 with EuclidEmulator1 and with PKDGRAV3,
respectively, can be conducted at the NLC-level, all comparisons
with HALOFIT, HMCode and CosmicEmu are performed at the level
of the fully nonlinear power spectrum. To this end we multiply the
NLC computed by EuclidEmulator2with a linear power spectrum
computed by CLASS for the same cosmological parameters.
We compare each pair of predictors in two ways. On the one hand,

we compare them for a set of different cosmologies at redshift 𝑧 = 0,
while on the other hand we chose a single cosmology equal to the
Euclid Reference Cosmology but with a higher total neutrino mass
for comparison at different redshifts 𝑧 ≤ 2.
For the comparison between EuclidEmulator2 and PKDGRAV3

we have used a small validation data set containing three validation
cosmologies.
In order to compare EuclidEmulator2 to EuclidEmulator1,

we primarily focus on two extreme cases: the Euclid Reference Cos-
mology as defined in Euclid Collaboration: Knabenhans et al. (2019),
once with massless and once with massive neutrinos.
For all comparisonswith HALOFIT, HMCode and CosmicEmu in this

section, we choose the cosmologies from a set of 291 cosmologies,
put together by an LHS of size 200, cosmologies along the coordinate
axis and along one of the diagonals. From this set, we filter out all
cosmologies that are not accepted by any of the emulators. This

Figure 8. Sobol’ analysis plots for the first three principal components.
Clearly, Ωm is by far the most impactful cosmological parameter of all as
its Sobol’ index 𝑆1 is large for the first two principal components. While the
neutrino mass, the spectral index and both DE EoS parameters have only
a weak influence on the first order principal component, the spectral index
is the most important parameter for PC2 and 𝑤0 and 𝑤𝑎 are dominant at
third PC level. Neutrino mass becomes only relevant in the seventh principal
component (not shown) highlighting the fact that its impact is very small (see
discussion in section 8.2.2, right panel of Fig. 11 in particular, and section 9).

results in a set of 84 comparison cosmologies (47 in the case of the
comparison to the BACCO-emulator).

8.2.1 Comparison of EuclidEmulator2 and PKDGRAV3

simulations

We start our series of comparisons by checking howwell EuclidEm-
ulator2 is able to approximate simulation data. To this end, we
generate a validation set of P+F simulations with the same resolution
as the training data. The validation set contains only three cosmolo-
gies (all unseen by the training process) because the generation of
a significantly bigger training set is too expensive. These three cos-
mologies are all sampled from the ellipsoid inscribed the parameter
box with axes given by the limits of each parameter range.
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Figure 9. Comparison of NLC factors predicted by EuclidEmulator2 and
ones computed directly from PKDGRAV3 simulations (averaged over three
different cosmologies). The agreement is at the sub-percent level and thus
respects the target accuracy.

We observe in Fig. 9 that the validation error (given by the relative
mean absolute error, rMAE) between emulated and simulated NLC
factors is well below 1% for 𝑘-modes and redshifts of interest to the
Euclid mission, i.e. 𝑘 ≤ 10 ℎMpc−1 and 𝑧 ≤ 3. Of course, as the
validation set is very small, there is a substantial uncertainty on this
estimate and the rMAE is likely to exceed the 1% limit as one exits
the hyperellipsoid inscribed by the parameter box. Yet, the overall
error is expected to be dominated by uncertainties in the underlying
simulations, especially at very small scales, 𝑘 & 5 ℎMpc−1.
In the context of comparing EuclidEmulator2 to PKDGRAV3,

it is natural to compare our emulator to the EFS2 simulation. To
this end, we evaluate both EuclidEmulator2 and CLASS at the
Euclid Reference Cosmology defined in Table 2. We then produce a
nonlinear power spectrum by multiplying the linear power spectrum,
the NLC and the RCF. This product is then compared to the EFS2
power spectrum in Fig. 10. Because EFS2 is not a P+F simulation,
the cosmic variance is clearly visible as oscillations at the level
of a few percent at linear scales. Generally, the agreement between
EuclidEmulator2 andEFS2 is at the 1% level or better for nonlinear
𝑘 modes.

8.2.2 Comparison of EuclidEmulator1 and EuclidEmulator2

It is natural to compare the performance of EuclidEmulator2 with
its predecessor EuclidEmulator1 (cf. Fig. 11). As both emulators
predict the NLC, we can perform the comparison on this level. In a
first step we perform this comparison using the version of the Euclid
Reference Cosmology as defined in Euclid Collaboration: Knaben-
hans et al. (2019), i.e. a cosmology without massive neutrinos.
We observe very good agreement on large scales which is achieved

by construction as the variability of the NLC is negligible at these
scales. The sub-percent differences at these scales are due to the fact
that the simulations volumes of the training simulations underlying
both emulators are different.
On intermediate scales around the baryon accoustic oscillations

(BAO) one observes a peaky pattern at the level of . 2.5%. We show
in Fig. 12 that this can be explained by cosmic variance. We reiterate
a point already reported in Euclid Collaboration: Knabenhans et al.
(2019): For EuclidEmulator1, cosmic variance is strongest not on
large but on intermediate scales. This is because on large scales the

Figure 10. Comparison of full nonlinear power spectra between EFS2 and
resolution-corrected product of a CLASS linear power spectrum times an
EuclidEmulator2-emulated NLC at the Euclid Reference Cosmology as
defined in Table 2. The agreement is generally very good and even at the 1%
level or better at small scales. The oscillations at linear scales are expected as
EFS2 is not a P+F simulation. We also show the comparison to EuclidEmu-
lator2 when we do not apply the resolution correction factor, which shows
a clear 2% bias at nonlinear scales.

cosmic variance is not significantly amplified by nonlinear structure
formation. As a consequence the residual (after pairing and fixing)
cosmic variance drops out because we compute the NLC for Eu-
clidEmulator1 by dividing the nonlinear power spectrum at 𝑧 by
the properly rescaled initial condition. On the other hand, we show
in Fig. 2 that for EuclidEmulator2 we choose the volume large
enough to render cosmic variance irrelevant. However, on intermedi-
ate scales, the residual cosmic variance did not get cancelled out even
for EuclidEmulator1 as on these scales it is already non-negligibly
amplified by nonlinear evolution. As a result, when comparing Eu-
clidEmulator1 to EuclidEmulator2, one actually divides two
signals with oscillatory behaviour on intermediate scales, manifest-
ing itself as oscillations on intermediate scales observed in Fig. 11.
Unsurprisingly,EuclidEmulator1 underestimates power at small

scales compared to EuclidEmulator2. This is simply due to too low
a mass resolution of the training simulations of EuclidEmulator1.
Here we can confidently report that the baseline in Fig. 11 given by
EuclidEmulator2 is the (more) correct answer.
Now, as we claimed above that massive neutrinos do not have

a significant impact on the NLC we should test this hypothesis.
To actually do so, we compared predictions of EuclidEmulator1
and EuclidEmulator2 to each other in Fig. 11: We evaluated each
emulator at the respective cosmology in Table 4. The ratio between
the two NLC factors is clearly dominated by cosmic sample variance
and resolution effects. This suggests that EuclidEmulator1 can
indeed be used to estimate theNLC to good approximation for 𝑧 < 0.5
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Figure 11. In this figure we compare the NLC prediction of EuclidEmulator2 to that of EuclidEmulator1 for two cosmologies: one for which∑𝑚a = 0.0 eV
(left panel) and

∑
𝑚a = 0.15 eV for the other (right panel). 𝐴s is the same in both cosmologies, however the value of 𝜎8 differs due to the mass difference in

the neutrino sector. It is not surprising that the agreement on the largest scales is nearly perfect for both cosmologies as both emulators return values close to
unity irrespective of the cosmology by construction. The oscillations around BAO scales are due to cosmic variance. The vertical, black, dashed lines indicate
the two 𝑘-modes where the curves for EuclidEmulator1 and EuclidEmulator2 deviate the most from each other in Fig. 12. The time-dependent mismatch
on small scales is due to the different mass resolutions of the training of the two emulators. A key point is that this plot shows that the agreement between
EuclidEmulator1 and EuclidEmulator2 is not only very good for massless neutrino cosmologies where EuclidEmulator1 is supposed to work well by
construction, but also for 𝑤0CDM+∑

𝑚a models which EuclidEmulator1 was not designed for. This suggests that EuclidEmulator1 is able to predict the
nonlinear power spectrum within 1% of accuracy for 𝑧 < 0.5 even if the cosmology contains massive neutrinos (of course, the linear power spectrum must be
computed taking the neutrino masses into account).

for 𝑤0CDM+∑
𝑚a models. The key point to get the correct answer

is to account for the difference in Ωm. Given a particular ΩEE2m =
Ωb+ΩCDM+Ωa for EuclidEmulator2, one needs to chooseΩEE1m =
Ωb + ΩCDM for EuclidEmulator1, such that ΩEE2m = ΩEE1m + Ωa .
As a result, the value for 𝜎8 has to be adjusted accordingly. The
value 𝜎8 = 0.799, corresponding to 𝐴s = 2.1 × 10−9 at the “EE1”
cosmology listed in Table 4, was computed by CLASS.

8.2.3 Comparison to HALOFIT

EuclidEmulator2 is compared to the extension of HALOFIT by Bird
et al. (Bird et al. 2012) in Fig. 13. The comparison across multiple
cosmologies shows almost perfect agreement for all cosmologies on
large scales. This is expected as HALOFIT builds on linear theory as
does EuclidEmulator2. On intermediate scales around BAOs we
find systematic oscillationswhich are in agreementwithwhatwe have
found in the corresponding comparison between HALOFIT by Taka-
hashi et al. (Takahashi et al. 2012) and EuclidEmulator1 (Euclid
Collaboration: Knabenhans et al. 2019). While there we attributed
those oscillations to HALOFIT’s inability to capture the BAOs cor-

Table 4. Mutually corresponding cosmologies in order to approximate the
EuclidEmulator2-based NLC with an EuclidEmulator1-based NLC ne-
glecting massive neutrinos. The relative difference of the NLC factors pro-
duced with the respective version of EuclidEmulator are shown in Fig. 11,
right panel. Notice that Ωrad is the same for both cosmologies corresponding
to 𝑇CMB = 2.7255 K.

EE1 EE2
Ωb 0.049 0.049
Ωm 0.3154 0.319∑
𝑚a 0.0 eV 0.15 eV

𝑛s 0.96 0.96
ℎ 0.67 0.67
𝑤0 −1.0 −1.0
𝑤𝑎 0.0 0.0
𝜎8 0.799 -
𝐴s - 2.1 × 10−9

rectly, this may play a less relevant role for this version of HALOFIT.
Rather, the oscillations may be mostly explained by the higher mass
resolutions and smaller simulation box sizes used in Bird et al. (2012)
compared to the those used in this work. The fact that on average
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Figure 12. Comparison of EuclidEmulator1 and EuclidEmulator2 to
the NLC computed from an ensemble average of fifty Gaussian random
field simulations. It can be seen that the cosmic variance is responsible for
the oscillatory peaky pattern in Fig. 11, as the vertical, black, dashed lines
correspond to the two highlighted peaks in that figure.

less power is found by EuclidEmulator2 compared to HALOFIT (at
the level of roughly 3%) is consistent with the findings presented
in Fig. 2 of Bird et al. (2012) where it is reported that PM-based
neutrino simulations tend to find less power on intermediate to small
scales compared to simulations treating neutrinos as particles. This
is also why on small scales we then find an overestimation of power
in HALOFIT relative to EuclidEmulator2. The mean including the
1𝜎-region stays within the 5 to 10% error margin, respecting the
bounds published in Takahashi et al. (2012); Bird et al. (2012). The
error evolution with redshift looks again very similar to what we
have already found for EuclidEmulator1. The systematic oscilla-
tions on intermediate scales grow with time while on small scales
the disagreement is largest for higher redshifts.

8.2.4 Comparison to HMcode

The comparison of EuclidEmulator2 and HMCode is shown in
Fig. 14. In Mead et al. (2016) it is reported that HMCode achieves an
accuracy of a few percent for cosmologieswithmassive neutrinos and
dynamical DE. We find an agreement at the few percent level both
over all tested cosmologies as well as over all redshifts (see Fig. 14).
Independent of redshift and cosmology the agreement on large scales
is virtually perfect. This does not come as a surprise as HMCode is
built on top of HALOFIT which performs almost perfectly on these
scales, too. Around BAO scales we find a systematic overprediction
of power in HMCode relative to EuclidEmulator2 (degrading as 𝑧
increases) which relaxes again at 𝑘 ∼ 0.6 ℎMpc−1. On small scales,
however, the variance in the relative difference is quite large (though
always within the few percent limit) both as the cosmology varies as
well as over the probed redshift range.

8.2.5 Comparison to CosmicEmu

The comparison of EuclidEmulator2 and CosmicEmu is shown in
Fig. 15. In Lawrence et al. (2017), they report that for predictions
of the 8-parameter model they find an approximation accuracy of
10 to 15% or better. On average over all probed cosmologies, the
comparison error is far below that and it is even relatively constant
over the entire 𝑘-range of interest. Even the standard deviation of
the entire set of comparisons is only at the level of five percent

Figure 13. The comparison between HALOFIT (Bird et al. 2012) and Eu-
clidEmulator2 is consistentwithwhat is found inEuclidCollaboration:Kn-
abenhans et al. (2019). While there are disagreements on intermediate and
nonlinear scales, the measured errors stay within the bounds of 5 to 10% as
reported in Bird et al. (2012).

over all 𝑘 (for 𝑧 = 0). There are, however, a few cosmologies for
which the comparison is significantly poorer. The fact that there is
no 𝑘-region where the comparison is nearly perfect is explained by
the fact that CosmicEmu emulates the full nonlinear power spectrum
directly while EuclidEmulator2 emulates the NLC only. It is thus
not surprising that there is some generalisation error also on large
scales for CosmicEmu, while EuclidEmulator2 is accurate in this
regime by construction.

8.2.6 Comparison to the BACCO-emulator

The quantity emulated by the BACCO-emulator (Angulo et al. 2020)
is also the NLC. For this very reason the comparison between Eu-
clidEmulator2 and the BACCO-emulator (version 1.1.1) is con-
ducted at the level of the NLC rather than at the fully nonlinear power
spectrum level. The result of this comparison is shown in Fig. 16.
Clearly, the agreement between these two state-of-the art emulators
is extremely good over wide ranges of spatial scales and redshifts.
First we discuss the comparison between the two emulators at the
Euclid Redshift Cosmology for different redshifts. Notice that the
BACCO-emulator allows prediction of the NLC only up to 𝑧 = 1.5.
For this reason, the comparison at 𝑧 = 2 included in the previous
comparisons to HALOFIT, HMCode and CosmicEmu is omitted here.
It is found that the agreement at the tested redshifts is mostly at
the per cent level, where a suppression of power in the BACCO-
emulator is observed relative to EuclidEmulator2 at small scales.
This is explained by the fact that the BACCO-emulator is based on
simulation with a resolution parameter of ℓ−1 = 3 ℎMpc−1 while the
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Figure 14. Comparison between EuclidEmulator2 and HMCode over a set
of 84 cosmologies at 𝑧 = 0. The agreement on large scales is nearly perfect
while the errors stay within the few percent level over all 𝑘 as reported in
Mead et al. (2016).

Figure 15. Comparison between EuclidEmulator2 and CosmicEmu over a
set of 84 comparison cosmologies at 𝑧 = 0. The mean and even the standard
deviation are well below the 10 to 15% level reported in Lawrence et al.
(2017).

Figure 16. Comparison between EuclidEmulator2 and the BACCO em-
ulator over several redshifts. The relative error is mostly smaller than 3%
corrisponing to the expected accuracy of the BACCO emulator reported in
Angulo et al. (2020).

EuclidEmulator2 NLC were resolution corrected as explained in
section 5.
The two emulators were also compared at 47 different cosmologies

at redshift 𝑧 = 0. The overall agreement is also mostly at the 3%
level over the entire 𝑘-range, where it is reported in Angulo et al.
(2020) that the BACCO-emulator is expected to predict the NLC
with an accuracy of 3%. The high-frequency oscillatory pattern at
intermediate 𝑘-scalesmay be explained by a somewhat poor sampling
of the BAOs in the BACCO simulations.

9 EXPLORATION OF DEGENERACIES IN THE
NONLINEAR MATTER POWER SPECTRUM

EuclidEmulator2 is expected to be applied to parameter forecasts
because it is able to very efficiently produce highly accurate predic-
tions of the NLC and hence of the fully nonlinear power spectrum.
The Euclid mission aims at measuring the absolute neutrino mass
scale (Laureĳs et al. 2011) by analysing the effects of neutrinos on
cosmic structure formation. Massive neutrinos suppress power par-
ticularly at small scales (see e.g. Viel et al. 2010; Bird et al. 2012;
Hannestad et al. 2012 and others). While this is true also for the
linear power spectrum, the effect is largest in the nonlinear power at
scales around 𝑘 ∼ 1 ℎMpc−1. The reaction of the linear and non-
linear power spectra to varying the total neutrino mass is shown in
Fig. 17. In this figure, the base line is given by the Euclid Reference
Cosmology with

∑
𝑚a = 0.058 eV.

While of course a proper Bayesian inference is required to forecast
the neutrino mass (as is done e.g. in Audren et al. 2013), we shall use
EuclidEmulator2 in order to investigate the uniqueness of the neu-
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Figure 17. Linear and nonlinear power spectra variation due to varying the cosmological parameters (neutrino mass in the left panel, 𝑤𝑎 in the right panel).
The power spectra are normalised to the Euclid Reference Cosmology power spectrum. The NLCs for the nonlinear power spectra have been predicted with
EuclidEmulator2 in all cases. These plots show clearly that the power spectra differ the most at scales around 𝑘 ∼ 1 ℎMpc−1.

Table 5. Two cosmologies with nonlinear power spectra that agree to better
than 1% over all scales 0.01 ℎMpc−1 ≤ 𝑘 ≤ 10 ℎMpc−1 at 𝑧 = 0.

reference fit
Ωb 0.049 0.049
Ωm 0.3194 0.309∑
𝑚a 0.15 eV 0.00 eV

𝑛s 0.96 0.97
ℎ 0.67 0.67
𝑤0 −1.0 −1.0
𝑤𝑎 0.0 0.0
𝐴s 2.1 × 10−9 2.01 × 10−9

trino signal in the nonlinear matter power spectrum. To this end, we
use a reference cosmology which has all parameters set identically to
the Euclid Reference Cosmology except the sum of neutrino masses,
which is set to 0.15 eV. We then try to fit the corresponding non-
linear power spectrum with a 𝑤0𝑤𝑎CDM cosmology that has only
massless neutrinos. Our goal is to fit the reference with an accuracy
≤ 1% on all scales 0.01 ℎMpc−1 ≤ 𝑘 ≤ 10 ℎMpc−1. We emphasise
that we do not perform a proper forecasting by any means, we simply
manually adjust all other cosmological parameters but

∑
𝑚a until

we find a fit. It is worthwhile to note that such a procedure would
not be practical without an emulator. The result of this procedure is
shown in Fig. 18. We find that the nonlinear power spectra of the
two cosmologies defined in Table 5 agree at a level of better than
1% over the entire 𝑘 range of interest at 𝑧 = 0. We thus managed to
find a cosmology (we call it “fit”) which is highly degenerate with
the reference. The relative difference between the resulting power
spectra is below the expected measurement accuracy of the Euclid
mission and hence, based on this information alone, Euclid would
not be able to tell these two cosmologies apart. However, taking the
information from higher redshifts into account, the degeneracies are

broken. This emphasises the importance of weak lensing tomogra-
phy for the Euclid survey in particular and of tomographic surveys
in general.
We have further found yet another two different cosmologies (not

shown) whose nonlinear power spectra fit that of the reference cos-
mology very well only at linear and only at nonlinear wave modes,
respectively. This fact makes it very clear once again why modern
cosmological surveys need to exploit asmuch information as possible
from both regimes, linear and nonlinear.

10 CONCLUSION

For this work we have modified PKDGRAV3 in such a way that DM is
not only evolved fully nonlinearly due to self-interaction but also is
subject to an additional gravity source due to massive neutrinos, ra-
diation, DE and the metric field perturbations. The latter four species
themselves are, however, only evolved linearly. To this end, PKD-
GRAV3 has been interfaced with CON CEPT and CLASS. While in older
simulations, as those used in Euclid Collaboration: Knabenhans et al.
(2019), the traditional back-scaling approach has been used for the
construction of initial conditions of the N-body simulations, now we
employ a novel approach taking advantage of the fully correct linear
evolution of particles carried out in Einstein-Boltzmann codes (here
CLASS). As a result, PKDGRAV3 recovers linear theory accurately at
all redshifts even in the presence of massive neutrinos.
Moreover, we work with transfer functions in the N-body gauge

instead of the more standard synchronous gauge. In this way, results
computed with a purely Newtonian N-body code such as PKDGRAV3
can be interpreted within the framework of general relativity without
the need of including general relativistic corrections at the N-body
code level.
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Figure 18. Fit of a nonlinear power spectrum of 𝑤0𝑤𝑎CDM+∑
𝑚a cosmol-

ogy with a cosmology with only massless neutrinos. The purple line in the
upper panel is a fit of the reference data to better than 1% at all scales of
interest. The different colours correspond to different redshifts. It is evident,
that even though the “fit” cosmology approximates the reference very well at
𝑧 = 0, the degeneracies between the neutrino mass and the other parameters
are broken at different redshifts, highlighting the importance of tomographic
surveys.

In a next step we have performed an extensive convergence study
with the goal to pin down the smallest volume and the lowest mass
resolution necessary in order simulate CDM+baryon NLC factors
that have converged at the 1%-level all the way up to 𝑘 = 10 ℎMpc−1.
As references, we have used a simulation box of 𝐿 = 8192 ℎ−1Mpc
for the volume convergence series and a simulation of resolution
ℓ−1 = 𝑁/𝐿 = 8 ℎMpc−1 for the resolution convergence series. We
identify 𝐿 = 1 ℎ−1 Gpc to be just barely enough for the side length of a
simulation box necessary to achieve the 1% target accuracy, although
this is only true if pairing-and-fixing is used for the construction of the
initial conditions. We find that resolution convergence at the targeted
level of accuracy is increasingly difficult for higher redshifts. Even
at 𝑧 = 0 one only achieves the 1% accuracy at 𝑘 = 10 ℎMpc−1 with
simulations of ℓ−1 > 4 ℎMpc−1, which is beyond our capabilities
given the minimal box size. From the convergence series one can
further extrapolate that amass resolution of roughly ℓ−1 ∼ 6 ℎMpc−1
is required to achieve convergence at the 1% level at 𝑘 = 10 ℎMpc−1
at 𝑧 ∼ 3. To put this in context we remind the reader that the Euclid
Flagship v2.0 simulation (EFS2), using 4 trillion N-body particles,
has resolution parameter of ℓ−1 = 4.4 ℎMpc−1.
In order to correct for the power suppression at small scales

resulting from the low mass resolution, we present a way to cor-
rect the power spectrum (and equivalently the NLC) curves using
a cosmology-independent resolution correction factor, which can

be applied in a post processing step. The result of applying this
correction to a power spectrum measured in a ℓ−1 = 3 ℎMpc−1-
simulation is a power spectrum that approximates very closely that
obtained from an equivalent simulation with ℓ−1 = 8 ℎMpc−1 up to
𝑘 ∼ 10 ℎMpc−1.
We have then produced a set of 127 P+F simulations of 1Gpc3/ℎ3

with 30003 particles, corresponding to a resolution of ℓ−1 =
3 ℎMpc−1. This corresponds to a computational cost of roughly
650 000 node hours which we have invested using the Piz Daint su-
percomputer located at the SwissNational Scientific Supercomputing
Centre (CSCS). At redshift 𝑧 = 0 this implies that the simulations
are converged at the 2% level at 𝑘 = 10 ℎMpc−1 (and at 1% up to
𝑘 ∼ 5 ℎMpc−1). At redshift 𝑧 = 2.76 we achieve 1% convergence
up to 𝑘 ∼ 2 ℎMpc−1 and 2% up to 𝑘 ∼ 3.5 ℎMpc−1. By apply-
ing the resolution correction factor, the convergence is subsequently
improved to ∼ 0.5% at 𝑘 ∼ 10 ℎMpc−1 and 𝑧 = 0 and to ∼ 1%
at 𝑘 ∼ 10 ℎMpc−1 and 𝑧 = 2 at the cost of introducing an addi-
tional source of uncertainty (see Fig. 4). We leave the decision about
whether or not the resolution correction should be applied to the user
of EuclidEmulator2 by not including it in the training data.
The key goal of this publication was to construct an emula-

tor which is able to quickly and accurately predict the NLC for
𝑤0𝑤𝑎CDM+∑

𝑚a cosmologies up to scales of 𝑘 ∼ 10 ℎMpc−1.
The emulator takes inputs from within the parameter box defined
in Table 2. In order to investigate the behaviour of such an emula-
tor and its dependencies on various quantities such as training set
size or number of principal components taken into account, we cre-
ated a mock emulator based on HALOFIT data. We project that we
can achieve a generalisation error of sub-1% inside the axis-aligned
hyperellipsoid inscribed in the parameter box if we exclude a prob-
lematic region in the (𝑤0, 𝑤𝑎)-plane in which the first order principal
component weight shows exponential behaviour. We exclude this re-
gion from the training set by ignoring all cosmologies with𝑤𝑎 > 0.5,
reducing the training set to 108 training examples.
Finally, we construct the actual emulator EuclidEmulator2

based on the PKDGRAV3 simulation data containing 108 training cos-
mologies. We train the emulator using the MATLAB package UQLab
within only 9 seconds. The projected error of below 1% up to scales
of 𝑘 ∼ 10 ℎMpc−1 is confirmedwith a small validation set.We stress
that for smaller scales EuclidEmulator2 does not allow the com-
putation of the NLC. At these scales one has to fall back on suitable
alternative methods as e.g. HALOFIT. Further, EuclidEmulator2 is
compared to multiple other fast predictors such as its predecessor
EuclidEmulator1 (Fig. 11), HALOFIT (Fig. 13), HMCode (Fig. 14)
and CosmicEmu (Fig. 15). In all comparisons the error bounds as
reported on in the corresponding publications have been respected.
We have also performed a Sobol’ sensitivity analysis (Fig. 8) which
clearly revealed that 𝑤𝑎 is a parameter that adds considerable com-
plexity to the underlying model while

∑
𝑚a is quasi negligible, at

least for the relatively narrow range in
∑
𝑚a we have considered.

In first benchmark tests using UQLab we have measured that Eu-
clidEmulator2 can be evaluated in∼ 0.3 seconds on a usual laptop.
This compareswell to the∼ 0.4 seconds per evaluation ofEuclidEm-
ulator1 using the python wrapper e2py. We reiterate here that this
implies that the computation of the linear power spectrum by CAMB or
CLASS is now the bottleneck in the computation of the fully nonlinear
power spectrum.
We have applied EuclidEmulator2 to investigate degeneracies of

the nonlinear matter power spectrum between the total neutrino mass
and the other seven cosmological parameters. We have shown that
tomographic surveys exploiting both linear and nonlinear scales are
critical as it is possible to find different cosmologies with nonlinear
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matter power spectra agreeing better than 1% at 𝑧 = 0 (in our case we
have tested a massive neutrino and a massless neutrino cosmology).
Further efforts should be taken in multiple directions. While the

power spectrum (and thus the NLC) clearly belong to the most
used summary statistics of cosmic large-scale structure, higher-order
statistics are becoming more and more used and thus emulators for
their prediction are desirable. An example for such a predictor was
recently published (Takahashi et al. 2019). A different, more holistic
approach is taken in He et al. (2019) where the displacement field
is emulated directly, such that any statistic can be derived from the
predicted density field. For simulations of resolution as high as the
ones used in this work, it is however questionable to what extent
such an approach is practical. Further, in order to assess more deeply
the accuracy of the NLC predictions at small scales, it is not only
necessary to estimate the generalisation error and the convergence
of the underlying simulations depending on box size and resolution
but also to investigate how well different codes agree with each other
at the scales under consideration. While such a study has been per-
formed in Schneider et al. (2016) (and augmented by another code in
Garrison et al. 2019) we advocate for new efforts in this direction, as
with the new updates to PKDGRAV3 and developments in other codes
the situation may have changed significantly.
Disregarding such uncertainties in the underlying N-body code, at

this point we shall summarise the error contributions to EuclidEm-
ulator2 and their dependence on spatial scales and redshift. At low
redshifts, the emulation-only generalisation error is virtually zero by
construction on large scales (𝑘 < 0.01 ℎMpc−1) such that in this
regime the dominant error contribution in the emulator comes from
cosmic variance. Based on the results of Angulo & Pontzen (2016),
the cosmic variance is expected to be sub-percent. At small scales
(𝑘 & 1 ℎMpc−1), cosmic variance is expected to be irrelevant. In
this regime, the dominant error contribution (neglecting additional
physics such as baryons) is due to emulation itself. The level of the
dominant error at high 𝑘 is estimated to be at the ∼ 0.7% level ac-
cording to Fig. 9. This error is estimated from only a very small
sample of validation simulations, however, the error level is also
consistent with the estimate in Fig. 6 and hence we regard this error
estimate to be representative at small scales. Estimating the overall
error level in the intermediate 𝑘 range is tricky because several ef-
fects contribute errors at a similar level: on the one hand it is evident
in Fig. 9 that an accurate prediction of the NLC around the BAOs is
challenging (the observed accuracy is also at the level of ∼ 0.6%).
At the same time, residual cosmic variance (after pairing-and-fixing)
is nonlinearly amplified at these scales. We estimate the error in the
intermediate range (0.01 ℎMpc−1 < 𝑘 < 1 ℎMpc−1) to be at the
level of 1%. The comparison as shown in Fig. 11 suggests an error at
the 2% level. This may, however, be overly conservative because the
cosmic variance in EuclidEmulator1 is phase-shifted with respect
to EuclidEmulator2, leading to an enhancement of errors within
this comparison.
The redshift evolution does not greatly change the error contri-

butions discussed above. However, the overall error at intermediate
scales is reduced at higher redshifts compared to the low-redshift
case. At small scales the resolution effects become the dominant
source of error as is visible in Fig. 4. As resolution is currently not
corrected in a cosmology-dependent manner, the error is expected
to be at the level of 1% at small scales (𝑘 & 1 ℎMpc−1) and higher
redshift (𝑧 ∼ 3).
Last but not least we have seen how the large number of dimensions

of the parameter space is really starting to become a major challenge
regarding the number of simulations required to arrive at the targeted
generalisation error. As more and more dimensions can be expected

to be added in the next couple of years, it may be of interest to
also compare different emulation strategies to each other in order to
potentially identify the strategy that generalises best based on only
very few examples per dimension.
EuclidEmulator2 is the successor of EuclidEmulator1

and will again be published on https://github.com/miknab/

EuclidEmulator2.

GLOSSARY

Codes:

CAMB Code for anisotropies in the microwave back-
ground 5, 22

CLASS Cosmological linear anisotropy solving system
3, 5, 6, 14–17, 21, 22

CONCEPT Cosmological N-body code in Python 5, 6, 21
CosmicEmu Cosmic emulator based on the Mira-Titan

cosmological simulation suite (successor of
FrankenEmu based on the Coyote simulation
suite). 2, 16, 19, 20, 22

EuclidEmulator1 Version 1 of EuclidEmulator. This is a code to
predict the nonlinear corrections to DM power
spectra for 𝑤0CDM cosmologies. 2, 5–7, 13,
15–19, 22, 23

EuclidEmulator2 Version 2 of EuclidEmulator. This is a code to
predict the nonlinear corrections to DM power
spectra for 𝑤0𝑤𝑎CDM+∑

𝑚a . 2–6, 8–11, 13–
23, 25

HALOFIT Analytical code to produce nonlinear power
spectra 2, 3, 10, 11, 13, 14, 16–20, 22, 25

HMCode Fast predictor for the nonlinear power spectrum
based on the halomodel approach. 2, 16, 19, 20,
22

NGenHalofit Code to produce non-linear power spectra us-
ing a semi-analytical approach for large and a
smoothing-spline-fit model for small scales 2

PKDGRAV3 parallel k-D tree gravity code (version 3); Cos-
mological N-body tree code 3, 5–7, 16, 17, 21–
23

UQLab Matlab-based uncertainty quantification frame-
work 11, 22

e2py Python wrapper for EuclidEmulator 22

Acronyms:

1LPT first order Lagrangian perturbation theory 5, 7
2LPT second order Lagrangian perturbation theory 7
BAO baryon accoustic oscillations 17–20, 23
CDM cold dark matter 3, 5, 6, 10, 18, 20–22
CMB cosmic microwave background 2, 10
DE dark energy 2–6, 10, 12, 16, 19, 21
DM dark matter 2–6, 21
ED experimental design 8, 15
EFS2 Euclid Flagship v2.0 Simulation 7, 17, 21, 26
EoS equation of state 4, 10, 12, 16
FMM fast multi-pole method 5, 6
GR general theory of relativity 4, 5
GRF Gaussian random field 7, 26
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IC initial condition 5, 7
LAR Least angle regression 12
LH Latin hypercube 11, 15
LHS Latin hypercube sampling 11, 13–15
LOO leave-one-out 12, 13
MCMC Markov chain Monte Carlo 2, 11
ML machine learning 12
NLC nonlinear correction 2, 5–9, 11–13, 15–23
P+F paired-and-fixed 5, 7, 15–17, 22, 25
PCA principal component analysis 11–13
PCE polynomial chaos expansion 11–14
PM particle-mesh 5, 19
PPF parametrized post-Friedmann 4
RCF resolution correction factor 5, 8–10, 17, 26
UQ uncertainty quantification 12
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APPENDIX A: SIMULATION TABLE

Here we summarize all simulations that we have produced specifi-
cally for this paper. For each simulation, its unique ID as well as its
specifications are listed. The specifications consist of the box size
(𝐿), the number of particles per side length (𝑁), whether it is a
P+F run (PF yes/no), what order of Lagrangian perturbation theory
(LPT) was used to construct the initial conditions, the number of
runs, the run time in node hours and on what machine the simulation
was executed. Simulations T001 to T127 are the runs that form the
actual training set of EuclidEmulator2 while HRV001-HRV003
were used for the end-to-end test reported in section 8.2.1. The runs
VCT1-VT5 were used for the volume convergence test and RCT1-
RCT5 for the resolution convergence test (see Fig. 2 and Fig. 3).
We used the RES3 and RES8 simulations in order to estimate the
variance of the cosmology dependence in the resolution correction
factor (see Fig. 4). The PF simulation was used in the comparison
to the simulations GRF1-GRF50 in order to investigate the cosmic
sampling variance in P+F simulations (see Fig. 12). The PV runs
were used to estimate the output variance on both boost factor and
power spectrum level when one of the parameters 𝐴s, 𝑤𝑎 or

∑
𝑚a

is varied based on which the parameter box of EuclidEmulator2
was chosen. The total run time for all simulations sums up to over
700 000 node hours.

APPENDIX B: ERROR MAPS OF THE HALOFIT-BASED
MOCK EMULATOR

In this appendix we plot error maps for a two exemplary coordinate
planes of the 8D parameter box: the (∑𝑚a , ℎ)- and the (𝑤0, 𝑤𝑎)-
plane. The errors are defined as follows:

Y =

����� max
𝑘∈[0.01,10.0] ℎMpc−1

(
𝐵emu (𝑘, 𝑧 = 0) − 𝐵sim (𝑘, 𝑧 = 0)

𝐵sim (𝑘, 𝑧 = 0)

)����� B1

The emulator for this investigation was trained with HALOFIT based
on exactly the same 108 cosmologies that were used for the actual,
simulation-based EuclidEmulator2. We stress that the errors all
are measured at 𝑧 = 0. The colour bars are ranging from 0% to 8%
for both plot panels. The hyperellipsoid inscribed in the parameter
box is shown. Notice that the vast majority of cosmologies inside
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Table A1. Simulations used for this publication. The table is organized as follows: The training simulations are in the first row followed by the validation
simulations in the second and third row. In rows 4 to 13 we list all simulations used in the volume convergence tests (VCT) and the resolution convergence tests
(RCT), respectively. Then, in rows 14 and 15 we list the simulations used to investigate the RCF dependence on cosmology. In rows 16 and 17 the simulations
used to compare the P+F approach to the traditional ensemble averaging of GRF simulations are listed. Ultimately, we mention the simulations used to estimate
the parameter ranges in the rows 18-21.

Simulation identifier 𝐿 [ ℎ−1Mpc] 𝑁 PF LPT number of total runtime machine
runs [node hours]

T001-T127 1000 3000 yes 1LPT 254 ∼ 500 000 Piz Daint (★)
EFS2 3600 16000 no 1LPT 1 ∼ 1 000 000 Piz Daint (★)
HRV001-HRV003 1000 3000 yes 1LPT 6 ∼ 37 000 zBox4+
VCT1 512 170 yes 1LPT 2 10 zBox4+
VCT2 1024 342 yes 1LPT 2 24 zBox4+
VCT3 2048 682 yes 1LPT 2 118 zBox4+
VCT4 4096 1356 yes 1LPT 2 435 zBox4+
VCT5 8192 2730 yes 1LPT 2 2780 zBox4+
RCT1 512 512 no 1LPT 1 37 zBox4+
RCT2 512 1024 no 1LPT 1 212 zBox4+
RCT3 512 1536 no 1LPT 1 919 zBox4+
RCT4 512 2048 no 1LPT 1 1987 zBox4+
RCT5 512 4046 no 1LPT 1 10 353 zBox4+
RES3_1-RES3_20 128 384 yes 1LPT 40 ∼ 320 zBox4+
RES8_1-RES8_20 128 1024 yes 1LPT 40 ∼ 4800 zBox4+
PF 1024 980 yes 1LPT 2 69 zBox4+
GRF1-GRF50 1024 980 no 1LPT 50 ∼ 3400 zBox4+
PV𝐴s 640 1024 no 2LPT 6 ∼ 1100 zBox4+
PV𝑤𝑎 640 1024 no 2LPT 6 ∼ 1100 zBox4+
PV∑

𝑚a
640 1024 no 2LPT 6 ∼ 670 zBox4+

PVcenter 640 1024 no 2LPT 1 77 zBox4+

★ with GPUs

this region features errors at the 2% level (or even lower). There are,
however, also regions with larger errors. This does not contradict the
result reported on in Fig. 6 as the error metric in that figure was
averaged over all cosmologies. It is not surprising that particularly
validation cosmologies with 𝑤𝑎 > 0.5 feature fairly large errors as in
this region there are no training cosmologies. This cut is indicated by
a grey, dashed line in all plots with 𝑤𝑎 as one of the two dimensions.
All parameter planes that have 𝑤𝑎 as one of the two dimensions,
exhibit larger errors for larger values of 𝑤𝑎 .
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Figure B1. Error map of the (Σ𝑚a , ℎ)-plane (top) and the (𝑤0, 𝑤𝑎)-plane
(bottom). These two error maps represent also those of the remaining 26
parameter planes. Most error maps feature only very low errors like the top
panel (all errors in the top panel are . 1%) in this figure.
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