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Abstract

The consideration of imprecise probability in engineering analysis to account for missing,
vague or incomplete data in the description of model uncertainties is a fast-growing field of
research. Probability-boxes (p-boxes) are of particular interest in an engineering context,
since they offer a mathematically straightforward description of imprecise probabilities, as
well as allow for an intuitive visualisation. In essence, p-boxes are defined via lower and
upper bounds on the cumulative distribution function of a random variable whose exact
probability distribution is unknown. However, the propagation of p-boxes on model inputs
towards bounds on probabilistic measures describing the uncertainty on the model responses
is numerically still very demanding, and hence is subject of intensive research. In order
to provide an overview on the available methods, this paper gives a state-of-the art review
for the modelling and propagation of p-boxes with a special focus on structural reliability
analysis.
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1 Introduction

Numerical models give an unparalleled insight into the response of the structure under consider-
ation to a set of predefined loading conditions, and hence, allow for a largely virtualized design
optimization workflow. Examples of such models include finite element models of structures
or thermal systems, but also other numerical schemes aimed at approximating complex multi-
physical systems from the nanoscopic to the largest possible level can be considered. However,
despite the highly detailed numerical predictions that can be obtained, these results often do
not achieve a satisfactory level of agreement with ‘reality’, i.e., the actual physical behaviour of
the considered continuum in the effective operational environment. This discrepancy is caused
by epistemic (reducible) and aleatory (caused by variation) uncertainty in the model. Usually, a
distinction between model form and parametric uncertainty is made, where the former describes
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possibly unwarranted approximations of the mathematical description of reality, whereas the lat-
ter refers to discrepancies in the parameters of these models with respect to reality. This paper
solely focuses on parametric uncertainties. In recent years, several highly performing methods
based on stochastic analysis (Schuëller, 2011), fuzzy set theory and interval analysis (Faes and
Moens, 2019b) have been introduced in literature to account for these type of uncertainties
in the model parameters x. Also several authors compared the applicability of a selection of
these techniques in applications such as Geotechnical engineering (Beer et al., 2013) or inverse
uncertainty quantification for stochastic dynamics (Broggi et al., 2018), (Faes et al., 2019).

1.1 Probabilistic analysis

Probabilistic analysis is a powerful and mature tool to deal with aleatory uncertainties in numer-
ical analyses. In order to express aleatory uncertainty in the model parameters, they are usually
modelled as random variables, denoted by X = (X1, . . . , Xnx) with support domain DX ⊆ Dx.
Their values are outcomes of a random experiment where a probability P can be assigned to
X taking a value within a specific measurable set that is a subset of DX . The probability
that X is less than or equal to x is modelled as a joint cumulative distribution function (CDF)
FX(x) = P (X1 ≤ x1, . . . , Xnx ≤ xnx) for x ∈ DX . Its derivative is denoted by fX and is known
as the joint probability density function (PDF). Since the inputs of the model are represented
by a random vector, it follows that the model responses become random variables Y , which are
distributed according to the (generally unknown) CDF FY . Note that FX and FY in general
do not belong to the same family of distribution functions.

Let M represent a function that maps a set of nx input parameters x ∈ Dx ⊆ Rnx , with Dx a
set of feasible input parameters (e.g., non-negative Young’s moduli or contact stiffness values),
to a set of ny output parameters y ∈ Rny via following relationship:

y =M(x), (1)

where M may represent numerical model that provides a discretized approximation of the
continuum physics that describe the modelling problem at hand. Usually, given fX , an analyst is
then interested in computing the expected value of some random variable H(X), i.e., E[H(X)].
Here, E is the expected value operator and H is a function defined on DX . Typically, in this
context, H is used to compute the nth central moments of Y , with n ∈ N. Hereto, H represents
the component-wise exponentiation of the model responses y = M(x), i.e., H(x) = yn, or
H(x) = (y−µY )n with µY = E[Y ]. In an engineering context, an analyst is mostly interested
into whether their design, be it a structure, system or a complex network, will perform reliability
given the uncertainties in their manufacturing and operating conditions. Usually, the probability
of failure is estimated in this context to assess the reliability of their design. The probability of
failure can be computed as pf = P (M(X) ≤ 0), whereM with ny = 1 represents a performance
function that indicates whether the design failed (M(x) ≤ 0) or not (M(x) > 0) for x ∈ DX .
In this context, H(x) is defined as H(x) = IM(x) with IM the indicator function that has
value 1 in case M(x) ≤ 0, x ∈ DX , and 0 otherwise. Overall, the expected value of H(X) is
determined by solving an integral equation of the following form:

P =

∫

DX

H(x)fX(x) dx, (2)

where P = E[H(X)] denotes, depending on the definition of H. For the remainder of the paper,
the notation H is used to abstract the specific application (i.e., calculation of the moments or
failure probability approximation) from the method that is being discussed. While at first sight
it might be tempting to solve this equation using numerical quadrature schemes, such solutions
become quickly unfeasible with respect to the non-linearity of the limit state function and/or
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the number of considered random variables (Schuëller and Pradlwarter, 2007), even though
lower/upper bounds (Marti, 1997) or approximate solutions (Taflanidis and Beck, 2006) exist in
certain cases. In general, even integrating just the joint PDF (i.e., H = 1) is not so trivial by
quadrature, as they tend to be extremely non-linear, especially when the random variables are
highly correlated. Therefore, Eq. (2) is usually solved by asymptotic approximations (Breitung,
1989) or advanced simulation methods such as subset simulation (Au and Beck, 2001), directional
importance sampling (Misraji et al., 2020) or the probability density evolution method (Li and
Chen, 2006) in case of stochastic dynamics.

1.2 Imprecise probabilistic analysis

In most real-life applications, an analyst has only partial information about FX or fX due to
the presence of epistemic uncertainty. This is a result of the often imprecise, diffuse, fluctuating,
incomplete or vague nature of the available information. Moreover, the available information
might be objective or subjective and consist of collected data (e.g., via experiments or data
mining) and theoretical knowledge on the considered problem, but also expert opinions with
different levels of trustworthiness (Beer et al., 2013). Some illustrations of such situations can be
found in the benchmark study presented in (Oberkampf et al., 2004). In engineering analysis, the
main challenge is then to formulate suitable models that incorporate these various sources of data
in an objective way, without introducing unwarranted conclusions and/or ignoring significant
information to ensure that the calculated results do not deviate from reality. The class of
imprecise probabilistic approaches attempts to solve this general problem and includes a plethora
of different methods, including Bayesian methods (Faber, 2005; Kiureghian and Ditlevsen, 2009;
Veneziano et al., 2009; Bi et al., 2019), random sets (Tonon and Bernardini, 1998; Tonon,
2004; Alvarez et al., 2017), sets of probability measures (Fetz and Oberguggenberger, 2004),
evidence theory-based methods (such as Dempster-Shafer Theory) (Dubois and Prade, 1988;
Shafer, 2016; Helton et al., 2004; McGill and Ayyub, 2008) and interval probabilities (Augustin
et al., 2014) of which probability bounds methods (Kreinovich and Ferson, 2004) and fuzzy
stochastic methods (Möller and Beer, 2004a; Beer et al., 2011) are extensions. Furthermore, a
study of Monte Carlo methods for the general case of propagating imprecise probabilities is given
for instance in (Decadt et al., 2019) or (Troffaes, 2018). Answering the question on which of these
methods is the most appropriate method from this broad class of techniques is in general not
possible as the most appropriate mathematical framework depends on the nature of the available
information that is available to the analyst. It should be noted that the application of the
general framework of imprecise probability theory requires complex mathematical descriptions
and methods. Furthermore, due to several restricting assumptions that are required, the methods
are sometimes also very hard to translate to engineering practice. For a thorough treatment on
the selection of the most appropriate method, the reader is referred to (Beer et al., 2013).

In many engineering applications, simplified imprecise probability models are often preferable for
simpler utilization and representation. A popular representative thereof are probability-boxes
(p-boxes), which provide a set of possible probability distributions for FX bounded by a lower
CDF FX and an upper CDF FX . This type of credal set encompassing the unknown CDF is
computationally efficient (Hall, 2006), easy to construct (Ferson et al., 2003), and offers a simple
graphical representation, see Fig. 1. This figure shows the two main types of p-boxes, being
parametric and distribution-free p-boxes. Distribution-free p-boxes consider only the upper and
lower CDF, and any CDF that complies with these bounds is admissible. Parametric p-boxes on
the other hand impose additional constraints on admissible distribution functions, for instance
by defining a family of distribution functions. A rigorous and more detailed definition of both
types of p-boxes is given in Section 2.1.

Their simpler utilization and representation make the application of p-boxes particularly in-
teresting for engineering analysis. However note that even with all their benefits over other,
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Figure 1: Illustration of parametric and distribution-free p-boxes. The black lines indicate the
graphs of FX and FX , being the bounds on the p-boxes. The dotted lines illustrate a set of
admissible distribution functions for FX that constitute the p-box.

more general, imprecise probability models, computations involving p-boxes still require large
computational budgets as they incorporate effectively a set of probability distributions that all
need to be accounted for. Hence, advanced methods for p-box propagation have been subject
to intense research over the past decades and various efficient methods addressing numerous
applications of different complexity were proposed. This paper aims at giving an overview of a
selection of promising approaches for the propagation of p-boxes in engineering analysis. This
is complemented by a introduction to p-boxes showing their relationship to related imprecise
probability models including their translation, and capabilities how to construct p-boxes based
on given information.

1.3 A guideline to read this paper

Depending on the need of the reader, this paper can be used in several ways. For instance, a
newcomer in the field of imprecise probabilities and/or p-boxes might use the entire manuscript
to get the overall ideas on the methods, as well as obtain the references to recent key works in
the field. In this case, it is recommended to consider all sections of the paper. On the other
hand, an analyst that is knowledgeable with imprecise probabilities, but is unsure how to model
them based on available data will gain most from the information in Section 3. Conversely,
if an analyst is unsure which state-of-the-art propagation method is best applicable for their
problem, they are kindly referred to Section 4 and the references therein included. To give
the full overview; Section 2 describes the theoretical foundations of p-boxes and their analysis.
Section 3 discusses the construction of p-boxes based on various sources of information. Section 4
highlights a selection of developments for the propagation of p-boxes, published during the last
few years and ends with a summarizing table. Finally, Section 5 lists the conclusions of this
paper.
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2 Probability boxes

In the following two sections, the case nx = 1 is considered for notational simplicity. This is
furthermore warranted since most engineering literature on the subject, as will be clear from
Section 3, either considers the univariate case of nx = 1, or when nx > 1 full independence
among all Xi, i = 1, . . . , nx, with FX(x) =

∏nx
i=1 FXi(xi), x ∈ DX . For more information

on the general modeling of multivariate p-boxes including dependence, the reader is referred to
(Oberkampf et al., 2004; Montes and Miranda, 2017).

2.1 Theoretical background

The main idea of a p-box is that there exist a unknown CDF FX of the random variable X
for which only bounds can be provided. Thus, a p-box is described by a lower CDF FX ∈ F
and an upper CDF FX ∈ F, where F expresses the set of all CDFs on DX ⊆ R. These
CDFs are collected as a pair

[
FX , FX

]
which yields a set of possible CDFs {FX ∈ F | FX(x) ≤

FX(x) ≤ FX(x), x ∈ DX} for the unknown CDF of X. The definition of a p-box corresponds to
defining a lower probability P and upper probability P on events {X ≤ x} = (−∞, x]∩DX , i.e.,
P (X ≤ x) = FX(x) and P (X ≤ x) = FX(x) for x ∈ DX , which yields a credal set of probability
measures. Via the p-box framework, the epistemic uncertainty that comes for example from
incomplete data on FX(x) is accounted for by assigning an interval

[
FX(x), FX(x)

]
for each

value of x ∈ R, see (Ferson et al., 2003). In case sufficient high quality information over the
entire range of possible values for x is available to the analyst,

[
FX(x), FX(x)

]
will be a tight

interval, and the p-box will be close to a crisp (deterministic) distribution. Otherwise, when
less information is available, the bounds may become wider to acknowledge weaker confidence
in the results. In case no further assumptions are made concerning the set of possible CDFs,
this type of p-box is also denoted a distribution-free p-box. Clearly, this is the most general
type of p-box, which allows for the most flexibility in the modelling of parameters subject to
aleatory and epistemic uncertainty since any càdlàg function (i.e., non-decreasing and right-
continuous) that is consistent with these bounds is admissible. Indeed, it can be shown that
crisp values, intervals and crisp probability distributions are all special cases of the distribution-
free p-box (Kreinovich and Ferson, 2004). As a final note, since distribution-free p-boxes are
so general in their definition, also CDFs that are questionable from a physical perspective are
explicitly included in the definition.

Besides distribution-free p-boxes, there are parametric p-boxes, which are described by a
family of CDFs whose parameters θi ∈ R are unknown up to the property that they must be
contained within intervals [θi, θi], i = 1, . . . , nθ. These parameters describe specific distribution
properties and are collected in the vector θ ∈ Rnθ . The Cartesian product of the intervals
is also denoted as Dθ, i.e., it holds θ ∈ Dθ. Hence, a parametric p-box yields the set of
possible CDFs {FX(·,θ) ∈ F | θ ∈ Dθ} for the unknown CDF of the random variable X.
An example of a parametric p-box can be defined as the Gaussian distribution family with
parameters θ = (µ, σ) contained in Dθ = [µ

X
, µX ] × [σX , σX ]. Parametric p-boxes have the

property to clearly distinguish between aleatory uncertainty, represented by the distribution
family, and epistemic uncertainty, represented by the intervals for the parameters θ. The upper
and lower bounding CDFs of a parametric CDF can be computed as

FX(x) = min{FX(x,θ) | θ ∈ Dθ}, (3)

FX(x) = max{FX(x,θ) | θ ∈ Dθ} (4)

for x ∈ DX . Note that the distribution-free p-box defined by these bounds does not correspond
to the parametric p-box as the latter one is more restrictive in general, i.e. there are CDF within
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these bounds not belonging to the family of the parametric p-box. Both types of p-boxes are
illustrated in Fig. 1.

In order to account for more information about the shape of CDFs, such as an admissible
distribution family, symmetry, or about bounds on one or more statistical moments of FX ,
a p-box can also be described by a quintuple

(
FX , FX , µ

I
X , σ

I
X ,F

)
, see (Beer et al., 2013).

Here, e.g. the confidence interval of the mean value µIx ⊆ [−∞,∞], the confidence interval
σIx ⊆ [0,∞] of the standard deviation, and the family of admissible CDFs F ⊆ F can be
specified. Note that also a distribution-free p-box can also be represented as a quintuple, noted(
FX , FX , [−∞,+∞], [0,∞],F

)
. The p-box framework was recently extended to account for

imprecision in stochastic processes by explicitly accounting for additional epistemic uncertainty
in the process’ autocorrelation structure (Dannert et al., 2018; Faes and Moens, 2019a).

In the following subsections, the connection of p-boxes to some closely related uncertainty models
for imprecise probabilities is demonstrated. This may help the reader in both understanding the
similarities and differences between p-boxes and these models and converting them into p-boxes
or vice versa.

2.2 Hierarchical probabilistic models

An alternative approach to deal with parametric p-boxes is to apply hierarchical probabilistic
models. Following this approach, the epistemic uncertainty related to the parameters θ of
the CDF FX(·,θ) are represented using a random variable Θ with distribution FΘ. On the
one hand, hierarchical probabilistic models can be regarded as a special case of a p-box where
intervals are used to bound possible values of θ. According to possibility theory, these intervals
encode the set of all distribution functions bounded by the interval. As such, selecting a single
distribution function out of this set introduces knowledge into the analysis that might not be fully
objective. On the one hand, parametric p-boxes might be constructed using credible intervals
from Bayesian methods along with hierarchical probabilistic models, see Section 3.4. In this
case, p-boxes describe an excerpt of this modelling where the tails of FΘ are neglected.

Using hierarchical probabilistic models, the effect of the epistemic uncertainty on the proba-
bilistic measure under consideration depends on the applied propagation schemes. For instance,
when re-weighting schemes such as presented in (Wei et al., 2019a,b; Faes et al., 2020) are ap-
plied to infer the bounds, this is not problematic since they allow for a clear separation between
aleatory and epistemic uncertainty. In these types of methods, the distribution FΘ is a purely
instrumental tool to determine a functional relationship between P and θ, the influence of which
is integrated out of the result in later stages of the analysis, see Section 4. However, when this
single distribution is used to make strong inference on the bounds of P, e.g., via sampling, this
will lead to inherent bias on the results of the analysis.

2.3 Random sets

A p-box can be regarded as a special case of a random set, which has important implications for
some of the propagation methods explained in Section 4. To see this, consider a probability space
(Ω,FΩ, PΩ) and a subset KX of the power set of DX ⊆ X. A random set ΓX is then a mapping
ΓX : Ω → KX , α 7→ ΓX(α), where each ΓX(α) ∈ KX ,α ∈ Ω, is called a focal element. When

distribution-free p-boxes are defined as ΓX(α) =
[
F
−1
X (α), F−1

X (α)
]

for α ∈ Ω and Ω = [0, 1] with

uniform probability distribution, they are a specific case of random sets, see (Alvarez, 2006).
Furthermore note that for finite KX , random sets correspond to a Demspter-Shafer structures,
see also (Alvarez, 2006).
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Since a random set is not capable of representing a single distribution family, a direct relation-
ship with parametric p-boxes cannot be established (Patelli et al., 2014; Alvarez et al., 2017).
Conversion is possible however by first converting the parametric p-box into a distribution-free
p-box, see Eq. (3) and (4). Moreover, ΓX(α) can also be defined directly here via the inverse
distributions of the family FX(·,θ), θ ∈ Dθ, i.e.,

ΓX(α) =

[
min
θ∈Dθ

F−1
X (α,θ), max

θ∈Dθ
F−1
X (α,θ)

]
, (5)

as shown in (Alvarez et al., 2017).

2.4 Fuzzy probabilities

An extension to the p-box is provided by fuzzy probabilities, which allow for considering a fuzzy
set of probability models, each having their own level of plausibility according to the available
information (Beer et al., 2013). According to this framework, the fuzzy membership function
serves as an instrument to combine various plausible intervals [FαX(x), F

α
X(x)], α ∈ [0, 1], for

x ∈ DX to define distribution-free p-boxes in a single scheme, and hence, allows for assessing the
sensitivity of the bounds Pα and Pα of P. Indeed, sensitivities of P are found by considering
the rate of change of the bounds on the interval with respect to the size of the input intervals
represented in the fuzzy numbers. It holds [FαiX (x), F

αi
X (x)] ⊆ [F

αj
X (x), F

αj
X (x)], x ∈ DX and

therefore [Pαi ,Pαi ] ⊆ [Pαj ,Pαj ] for 0 ≤ αj ≤ αi ≤ 1. Furthermore, the concept can be
also applied to parametric p-boxes, see (Möller and Beer, 2004b). Here, the fuzzy membership
function is used to assign an α-level to the parameters θ of FX(·,θ). Then, the same analysis can
be conducted as for distribution-free p-boxes. As the methods discussed further in the paper,
which are developed for p-boxes, can always be applied to fuzzy probabilities in an α-cut sense,
the latter are not discussed in more detail.

3 Construction of p-boxes for engineering analysis

This section provides an overview how distribution-free and parametric p-boxes can be con-
structed based on given information. Here, a distinction is made between the three types of
information: incomplete or imprecise distribution properties, datasets, or multiple sources of
p-boxes. In the following, the focus is put on distribution-free p-boxes first. They are rec-
ommended when there is no knowledge in favour of a particular distribution family. If this
information is available but the parameters θ of FX(·,θ) are unknown, parametric p-boxes are
preferred. A guide to find an appropriate construction method is provided in Table 1.

Furthermore note that distribution-free p-boxes can be always constructed as an approximation
or an actual conversion of uncertainty models yielding lower and upper probabilities for events
X ≤ x, see Section 2. For a general introduction on the construction of p-boxes, the reader is
referred to (Ferson et al., 2003), where most of the approaches presented in the following are
included. A comparison of selected methods can be found, e.g. in (Montgomery et al., 2009;
Schöbi, 2017).

3.1 Incomplete distribution properties

In the case that only a limited number of distribution properties are known, like its shape
or support, moments, or quantiles, various methods to construct a p-box are available, see
(Ferson et al., 2003). These methods use the information about the distribution properties
to derive proper bounds on the distribution. Often, they are based on well-known statistical
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Table 1: An overview where an appropriate p-box construction method can be found based on
the given information and p-box type.

type distribution-free p-box parametric p-box

incomplete distribution information mean, variance, support: Sec. 3.1 parameters: Sec. 3.4.1
dataset Sec. 3.2 Sec. 3.4.2
multiple sources Sec. 3.3

inequalities. In the following, three methods addressing the support DX and the first two
moments of a random variable X are presented exclusively. These assume limited but precisely
known distribution properties.

3.1.1 Support

If only the support of a distribution is known, the interval DX = [x, x] can be used as a
representation in case the support is bounded. This corresponds to a p-box described by two
unit step functionsHx andHx at its minimum and maximum values x and x, i.e., FX(x) = Hx(x)
and FX(x) = Hx(x) for x ∈ DX .

3.1.2 Mean and variance

If the values of the mean µX and the variance σ2
X are known, the two-sided Chebyshev’s in-

equality can be used to construct a p-box as described in (Oberguggenberger and Fellin, 2008),
i.e.,

FX(x) =

{
0 for x < µ+ σ,

1− σ2

(x−µ)2
, for x ≥ µ+ σ,

(6)

FX(x) =

{
σ2

(x−µ)2
, for x < µ− σ,

1, for x ≥ µ− σ.
(7)

for x ∈ DX . Instead of Chebyshev’s inequality, Cantelli’s inequality is used to construct a p-box
based on the mean and variance in (Troffaes and Basu, 2019).

3.1.3 Mean, variance, and support

If both its bounded support DX and its first two moments are known, the p-box bounds can be
formulated as

FX(x) =





0 for x ≤ µ+ σ2

µ−x ,

1− b(1+a)−c−b2
a for µ+ σ2

µ−x < x < µ+ σ2

µ−x ,
1

1+ σ2

(x−µ)2
for µ+ σ2

µ−x ≤ x < x,

1 for x ≥ x,

(8)

FX(x) =





0 for x ≤ x,
1

1+
(x−µ)2
σ2

for x < x ≤ µ+ σ2

µ−x ,

1− b2−ab+c
1−a for µ+ σ2

µ−x < x < µ+ σ2

µ−x ,

1 for x ≥ µ+ σ2

µ−x ,

(9)
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where a = x−x
x−x , b = µ−x

x−x , c = σ2

(x−x)2
, see e.g. (Zhang et al., 2013). Eq. (8) and (9) are based on

the one-sided Chebyshev’s inequalities and are tighter compared to the bounds in Section 3.1.1
and 3.1.2.

3.2 Dataset

In case limited information about the probability distribution is available in form of a dataset
X ⊂ Rnx , the properties that are used in the methods of Section 3.1 can be estimated. In order
to account for this estimation however, these methods need to be slightly adapted to inform
the p-boxes, as described in (Saw et al., 1984; Troffaes and Basu, 2019) for the sample mean
and sample variance. Moreover, there are also methods which do not require an estimation
of distribution properties for a given dataset: the methods of Kolmogorov-Smirnoff confidence
bounds and robust Bayes. They are widely used in literature and are described briefly below.
Note that data-based methods generally do not provide absolute bounds for p-boxes due to their
nature, e.g. by using a confidence level smaller than 1 to avoid conservatism.

3.2.1 Distribution support estimation

In case very few data-points are available, estimating the bounds of the support of the p-
box might be the only option for an analyst. This estimation can for instance be based on
worst-case likelihood estimation (Crespo et al., 2019), potentially in combination with Bayesian
approaches (Imholz et al., 2020). Scenario optimization (Campi et al., 2018) can also be used
in this context to obtain bounds with a proven degree of robustness under mild assumptions.

3.2.2 Kolmogorov-Smirnoff confidence bounds

Given a dataset X with N samples, an empirical distribution FX can be computed. Then,
Kolmogorov-Smirnoff (K-S) confidence bounds for FX define the bounds of a p-box as proposed
in (Ferson et al., 2003). For x ∈ DX , it holds

FX(x) = min(1,max(0, FX (x)−Dα
N )), (10)

FX(x) = min(1,max(0, FX (x) +Dα
N )), (11)

where Dα
N is a K-S critical value at significance level α for a dataset with N samples which can

be found in (Kolmogoroff, 1941).

3.2.3 Robust Bayes

Furthermore, a p-box can be obtained by using robust Bayes methods, introduced by (Berger,
1985). Here, the basic idea is to consider the parameters θ also as random variables expressed in
Θ and to apply standard Bayesian inference to all plausible likelihood functions L(·,X ) and all
plausible prior distributions. Here, fΘ denotes the PDF of the prior and L(·,X ) is the likelihood
of observing X depending on the incorporated distribution family FX(·,θ). This implies a class
of posterior PDFs of Θ, denoted by fΘ(·|X ), via Bayes theorem

fΘ(θ|X ) =
L(X ,θ)∫

DΘ
L(X ,θ)fΘ(θ) dθ

fΘ(θ) (12)

and pairwise combination. Then, a p-box can be constructed by the envelope of all result-
ing CDFs using Bayesian point estimates, see (Schöbi and Sudret, 2017a), or credible inter-
vals/regions like discussed in Section 3.4.2, see (Montgomery et al., 2009). Moreover, a Bayesian
pointwise approach that considers specific percentiles of all resulting CDFs can be used for the
construction of a p-box as well, see (Aldenberg and Jaworska, 2000).
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3.3 Aggregation of p-boxes

In the methods above, the intention was to obtain a p-box based-on given information. If there

are already np p-boxes [F
(j)
X , F

(j)
X ] available to describe a single quantity, aggregation methods

can be used. In the following, three popular methods, namely the envelope, intersection, and
mixture strategy, are reviewed. For further methods, the reader is once again referred to (Ferson
et al., 2003).

3.3.1 Envelope and intersection

If there are multiple p-boxes of which it at least one encompasses the unknown CDF of X, but
there is no information which p-boxes really encompass it, the envelope strategy can be used.
Here, an envelope p-box is defined as

FX(x) = min{F (j)
X (x) | j = 1, . . . , ns}, (13)

FX(x) = max{F (j)
X (x) | j = 1, . . . , ns} (14)

for x ∈ DX . This corresponds to a conservative modelling. Opposite to the envelope strategy,
there is the intersection strategy for which all available p-boxes are considered as reliable. Here,
the intersection of all p-boxes is used, see (Ferson et al., 2003). For this strategy, the min and
max operators in Eq. (13) and (14) are exchanged.

3.3.2 Mixture

If there are multiple p-boxes which were constructed for specific situations that suffer under
variability, the mixture strategy can be used for the condensation in a single p-box. Here, the
idea is to use weights wj > 0 with W =

∑ns
j=1wj to express the relative frequencies. Then, the

mixture p-box is defined as

FX(x) =
1

W

ns∑

j=1

wjF
(j)
X (x), (15)

FX(x) =
1

W

ns∑

j=1

wjF
(j)
X (x) (16)

for x ∈ DX . A special case are even weights, e.g., wj = 1, j = 1, . . . , ns with W = ns, which
correspond to an arithmetic averaging of the p-boxes.

3.4 Parametric p-box construction

In order to construct a parametric p-box, the distribution family must be known. Hence, the
problem of constructing a p-box reduces to establishing bounding intervals for the corresponding
parameters θ of FX(·,θ). Usually, these intervals are assumed or estimated for a given dataset,
see the methods below. Note that all methods to obtain a parametric p-box can be also used
to build a distribution-free p-box by using Eq. (3) and (4) which yield the envelope of the
parametric p-box.
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3.4.1 Bounds on distribution parameters

In case bounds on the parameters θ are available, e.g., from expert knowledge, the intervals
for these parameters can be specified directly. For lower bounds θi and an upper bounds θi,
i = 1, . . . , nθ their domain is denoted by Dθ(see Section 2.1). If there are ns sources that provide
different intervals, aggregation methods similar to Section 3.3 could be used, e.g., an envelope

of all candidate domains D
(j)
θ , where θi = min{θ(j)

i | j = 1, . . . , ns} and θi = max{θ(j)
i | j =

1, . . . , ns}, i = 1, . . . , nθ.

3.4.2 Dataset

Given a dataset X , there are several methods to obtain interval estimates for the parameters θ
of FX(·,θ). Popular methods comprise confidence intervals from classical statistics, which cover
the unknown, but deterministic parameters with a probability α, or credible intervals from
Bayesian statistics, in which the random vector Θ, representing the parameters of the CDF, can
be found with a probability α, see (Held and Sabanés Bové, 2020) for further information on
their computation. Note that in general independence between the parameters θ needs to be
assumed for nθ > 1 in order to obtain interval regions.

4 Propagation methods for p-boxes

This section discusses commonly applied numerical schemes for propagating p-boxes towards
bounds on the nth central moment of the model response to a load and/or the probability of
failure of the designed structure, system or complex network. In the case where X is represented
as a p-box, a direct calculation of P, as introduced in Eq. (2), is no longer possible since a set
of PDFs that are consistent with the definition of the p-box has to be considered. Indeed, the
consideration of a set of fX causes the probabilistic measure P to become set-valued, too. The
solution of this problem requires dedicated numerical procedures, which are described in the
proceeding sections.

4.1 Double loop approaches

In case X represents a distribution-free p-box, the lower and upper bounds P ≤ P ≤ P can be
obtained by solving the following optimization problems:

P = min
fX

∫

DX

H(x)fX(x) dx (17)

and:

P = max
fX

∫

DX

H(x)fX(x) dx. (18)

Note that these optimization problems are potentially very complicated since the optimization
has to be carried out over the set of all possible fX consistent with the definition of the p-box.
Hence, this constitutes a non-convex, discontinuous optimization problem, which are notoriously
difficult so solve exactly. In certain cases, tighter bounds on P can be obtained by means of
linear programming, without having to construct the probability bounds of the input random
variables (Liu et al., 2017; Wang et al., 2018).

A first approach simplify the optimization problems is to slice the p-box in order to transform the
above problem into the propagation of a large number of intervals, each having a corresponding
probability mass, which are then propagated throughM to infer bounds on P. The propagation
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of intervals is a well-understood problem in the context of uncertainty propagation (Faes and
Moens, 2019b). However, following this approach the required number of evaluations of Eq. (1)
scales exponentially with nx (Zhang et al., 2010). This led to the development of methods
such as interval Monte Carlo simulation (Zhang et al., 2010) or interval Quasi Monte Carlo
simulation (Zhang et al., 2013). These methods manage to break this exponential scaling of the
computational cost by bounding P using following formulations:

P =
1

n

N∑

k=1

H(rk), (19)

P =
1

n

N∑

k=1

H(rk) (20)

with H(rk) and H(rk) defined as:

H(rk) = max{H(x) | F−1
X (rk) ≤ x ≤ F−1

X (rk)}, (21)

H(rk) = min{H(x) | F−1
X (rk) ≤ x ≤ F−1

X (rk)}. (22)

The parameters rk, j = 1, . . . , N are realisations of a sample of N independent and identically
distributed (i.i.d.) random variables according to a multivariate standard uniform distribu-
tion. As is clear from these equations, a large number of model evaluations is still required
to estimate of the bounds on P with sufficiently small variance, especially since an interval
propagation problem (Eq. (21)) has to be solved for each rk. Note that in the general case,
this interval problem has to be solved using global optimization approaches to accommodate
possible non-convexity in M with respect to x and/or θ (Qiu and Elishakoff, 1998). Further
improvement in computational efficiency can be obtained by resorting to efficient interval propa-
gation schemes such as those based on Bernstein polynomials (Zettler and Garloff, 1998; Crespo
et al., 2013), Cauchy deviates (Kreinovich and Ferson, 2004) (as recently applied in (Calder
et al., 2018) and (De Angelis et al., 2019)), the Transformation method (Hanss, 2005) or Taylor
series expansion methods (Neher, 2005; Enszer et al., 2011). Further improvements in terms of
efficiency can be obtained by using saddle-point approximations, as introduced in (Xiao et al.,
2014). A more general version of the interval Monte Carlo approach was introduced by Alvarez
in (Alvarez, 2006, 2009) based on random sets (see also subsection 2.3). The main advantage of
considering the full random set is that this representation is more general, and hence, intervals
and Dempster-Shafer structures can be considered as well in the same framework (Alvarez et al.,
2018). Furthermore, the framework allows for including efficient sampling schemes, such as e.g.,
subset simulation (Alvarez et al., 2018).

In the case of parametric p-boxes, Eq.(17) and Eq.(18) can be solved directly since the set of
all possible fX is readily parameterized. In this case, for each realisation of these parameters of
fX , a reliability problem is solved, for instance for linear limit-state functions using FORM as
presented in (Du, 2008), or in more general cases using simulation methods. Using simulation
methods, even in the simplest case where the p-box describes a set of possible fX by means
of interval-valued statistical moments, such calculation can be prohibitively demanding from a
numerical standpoint. On the one hand, the calculation of the failure probability for a fixed
value of the parameters associated with the stochastic process is quite costly. On the other
hand, solving the associated optimization problems in this simple case is far from trivial, as
it constitutes a double loop problem, where the inner loop comprises probability estimations,
leading to possibly non-smooth behaviour of the objective function due to the inherent vari-
ance on the estimator of P. Hence, apart from considering near-trivial simulation models, the
propagation of p-box-valued parameters towards the bounds on the probabilistic measure P is
computationally intractable. Note that in some very specific cases, analytical solutions are also
available (Sadeghi et al., 2020).
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4.2 Decoupling methods

The class of decoupling methods aims at decoupling the double loop, presented in Eqs. (17)
and (18) by separating the propagation of aleatory and epistemic uncertainties. This class of
methods includes techniques based on importance sampling and operator norm theory. Both
methods are restricted to parametric p-boxes, more precisely, p-boxes that are constructed by
defining some parameters θ of the distribution FX(x|θ) to be interval valued.

4.2.1 Importance sampling-based methods

The core idea of importance sampling based methods is to propagate a single, well-chosen
realisation f̂X of a parameterized p-box (where f̂X is optimal with respect to a predefined
measure), and reweigh the obtained samples of y to infer bounds on P.

A first such method is Extended Monte Carlo simulation, as introduced by (Wei et al., 2019a),
which is applicable to the propagation of parameterized p-boxes subjected to epistemic uncer-
tainty in their first two moments, as well as the probability of failure. As a first step, the
parameters θ of the p-box, which account for µx and σx in the quintuple description, are repre-
sented by a subjective probability model fΘ(θ) =

∏nθ
i=1 fΘi(θi). Then, a local estimation for P,

being p̂f, is derived as:

P̂(θ) =
1

N

N∑

k=1

H(xk)
fX(xk | θ)

fX(xk | θ∗)
(23)

which is an unbiased estimator, but highly affected by the selection of θ∗. ‘Local’ in this context
denotes that the estimator is derived for a fixed value of θ inside its support θI . This fixed
value, θ∗, should be selected such that it minimizes the variance on the estimator P̂(θ) (Wei
et al., 2014), similarly to conventional Importance Sampling, as:

θ∗ = argmin

∫

Dθ

T (θ,θ∗)fΘ(θ) dθ (24)

with T (θ,θ∗) = V [H(X)fX(X | θ)/fX(X | θ∗)] and V the variance operator with respect to
fX(· | θ∗). The global version of this approach is based on realizations (xk,θk), k = 1, . . . , N
of a joint sample distributed according to a joint PDF fX,Θ. The estimator P̂(θ) is in this case
expressed as:

P̂(θ) =
1

N

N∑

k=1

H(xk)
fX(xk | θ)

fX(xk | θk)
(25)

where xk and θk are generated by applying the correct inverse probabilistic transform to the
corresponding variables of a multivariate standard uniform distribution. The global estimator
gives a better estimation of P over the entire support of θ, at the cost of lower accuracy around
θ∗ and a higher computational cost, since in this case, also convergence in terms of the effect of
θ has to be ensured.

An alternative optimal sampling density to propagate parameterized p-boxes following a reweighted
sampling scheme was proposed by (Zhang and Shields, 2018, 2019). Following the approach
of (Zhang and Shields, 2018, 2019), the optimal density should obtained by minimizing the
total expected squared Hellinger distance between fX(· | θ) and the optimal sampling density
fX(· | θ∗) under an isoperimetric constraint that ensures that the derived optimal sampling
density is a valid density function. The main difference with optimal sampling density presented
in Eq. (24) is that this approach is not aimed at minimizing the variance, but rather that the
sampling density is as close as possible to the target density.
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4.2.2 Advanced Line Sampling

As an alternative decoupling strategy to deal with p-box valued uncertainty, Advanced Line
Sampling was recently introduced (de Angelis et al., 2015). Opposed to ‘conventional’ line
sampling (Koutsourelakis et al., 2004), this approach adaptively looks for the so-called important
direction in standard normal space. Furthermore, due to this adaptive refinement, the same
important direction can be used for the entire p-box analysis. Additionally, the method allows
for reusing samples that are generated within the inner loop to be re-used during other iterations
of the outer loop, significantly increasing the computational efficiency (de Angelis et al., 2015).
Based on these properties, a gain in computational efficiency of a factor of 4 over regular line-
sampling approaches can be obtained, as reported in (de Angelis et al., 2015).

4.2.3 Operator norm theory

Operator norm theory provides an alternative pathway to decouple the double loop in Eq. (17)
and (18), as presented first in (Faes et al., 2020) for the case of the class of linear models M.
In case an affine formulation of the imprecise random variables in terms of their parameters
is possible, the propagation of the imprecise stochastic load can be performed in a two-step
procedure. First, the values of the epistemic parameters that yield an extremum for P are
determined by maximizing/minimizing the operator norm. Specifically, the operator norm is
computed over the product of the linear mapping provided by the numerical model M with a
basis B that represents the auto-correlation of the load on the model:

θ∗ = argmin
θ∈θI

‖A(θ)‖p(1),p(2) (26)

θ∗ = argmax
θ∈θI

‖A(θ)‖p(1),p(2) (27)

with A = MB, where B can for instance be determined following the well-known Karhunen-
Loève expansion (Faes et al., 2020). The operator norm ||A||p(1),p(2) is generally defined as (Tropp,
2004):

||A||p(1),p(2) = inf
{
c ≥ 0 : ||Av||p(1) ≤ |c| · ||v||p(2) ∀v ∈ RnKL

}
, (28)

and gives a measure for how much A lengthens vector v in the maximum case. The practical
calculation of the operator norm is case dependent. For instance, when considering first excursion
problems (Soong and Grigoriu, 1993; Marti, 1995; Zhang and Der Kiureghian, 1994), i.e., P ≡ pf,
the selection of p(1) →∞ and p(2) = 2 has been found to be a good choice (Faes and Valdebenito,
2020). In this case, the operator norm corresponds to the maximum L2 norm of a row of
A (Tropp, 2004). Then, two failure probabilities, corresponding to pf(θ

∗) and pf(θ
∗) have to be

computed to determine the bounds on P. As such, the double loop is effectively replaced by
two deterministic optimizations and two crisp reliability estimations. Gains in computational
efficiency with several orders of magnitude have been reported (Faes et al., 2020; Faes and
Valdebenito, 2020). The main drawback of the method is the limited scope, since the approach
is only applicable to uncertain linear models with epistemic uncertain structural parameters,
subjected to imprecisely defined load conditions.

4.3 Surrogate modelling for p-boxes

Surrogate models approximate well-selected ‘regions’ of M by a computationally more efficient
surrogate model M̂(· | a). For instance, in the specific case of reliability analysis, M̂(· | a) is
designed to be highly accurate in the region around the limit state function (i.e.,M(x) = 0. This
surrogate M̂, which is parameterized by a vector a ∈ Rna , is usually trained by means of an a
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set of training data {(xi,yi) | i = 1, ..., N} via a supervised learning approach as to minimize the
discrepancy between ŷi = M̂(xi | a) and yi, according to a predefined measure (e.g., in an L2

sense). These training data are generated either a priori (e.g., in case of sensitivity analysis) or
enriched following active learning approaches (Marelli and Sudret, 2018a; Lelièvre et al., 2018),
which is most commonly applied in the field of reliability analysis. Examples of such maps to
represent M̂ that have been used in the context of propagating p-boxes include Gaussian process
models (Zhang et al., 2019) (also known as Kriging), polynomial response surface models (Sofi
et al., 2020) or techniques based on Taylor series expansions (Gao et al., 2011). Also adaptive
schemes based on Kriging have been introduced in literature (Schöbi and Sudret, 2017a) that
are applicable to both parametric and distribution-free p-boxes. In this section, three classes of
methods are explained in detail that are highly promising from an engineering point of view due
to their ‘black-box’ nature (i.e., they require no interaction with the inner operations of M),
theoretical implications and numerical efficiency. Note that in essence, each type of surrogate
model can be used in combination with a double-loop approach since they are very cheap to
evaluate. The selection of the appropriate type of surrogate model in fact only depends on M.

4.3.1 Polynomial Chaos Expansions & Kriging models

Polynomial chaos expansion (PCE) and Kriging are two widely used surrogate modelling tech-
niques that approximateM via intricate regression schemes. In general, PCE and Kriging have
different fields of application in the propagation of uncertainties. On the one hand, if the an-
alyst is interested in propagating uncertainty in general (e.g., when H(x) = (y − µY )n ) PCE
generally is better suited. Conversely, when considering reliability analysis, Kriging approaches
are generally more performing since they allow for performing active learning (Lelièvre et al.,
2018; Angelikopoulos et al., 2015; Ling et al., 2019), even though active learning approaches for
PCE have also been introduced (Marelli and Sudret, 2018b).

A sparse PCE surrogate model is given by:

M̂(x | a) =
∑

α∈A
aαφα(x), (29)

where φα are multivariate orthonormal polynomials and A ⊂ Nnx is a finite set of multi-indices
that is obtained by sparse decomposition. In (Schöbi and Sudret, 2017b), distribution-free p-
boxes are propagated in a two-level approach in which first M, and second M and M (in the
sense of Eq (21) and (22)) are substituted using sparse PCE. The training set is generated for
an auxiliary input vector X and least angle regression (LARS) is used for training. In case of
parametric p-boxes, it is proposed in (Liu et al., 2020) to model the sparse PCE coefficients
aα as quadratic polynomial functions of the parameters θ of the p-box and using a double-loop
sampling for the propagation.

Whereas PCE methods focus on the global behaviour of M and are therefore suitable for a
general propagation of p-boxes, Kriging methods focus on a local behaviour of M and are
therefore often preferred for reliability analysis. Indeed, in this context, a high accuracy in the
vicinity where {M = 0} is especially crucial. Using Kriging, a surrogate M̂ for the limit-state
function is considered to be a realization of a Gaussian process. It is:

M̂(x | a) = βT
aψ(x) + Za(x, ω), (30)

where the first term, consisting of coefficients βa and regression functions ψ, is the mean value
of the process, and the second term is a zero-mean, stationary Gaussian process, characterized
by a variance and an auto-correlation function depending on a. Similar to above, a two-level
approach in which firstM, and secondM andM are substituted is considered for distribution-
free p-boxes in (Schöbi and Sudret, 2017a). Here, adaptive Kriging Monte Carlo simulation
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(AK-MCS) is used for an accurate estimation of the failure probabilities and random slicing is
used to obtain P and P, see Eq. (19) and (20). Also in (Schöbi and Sudret, 2017a), a failure
probability P(θ) which depends on the parameters θ is estimated via AK-MCS and efficient
global optimization (EGO) for parametric p-boxes. A similar, but more detailed, Kriging-based
procedure for parametric p-boxes is also described in (Xiao et al., 2020).

4.3.2 High-dimensional model representation based methods

The Extended Monte Carlo framework, as introduced in Section 4.2.1 allows for propagating
parametrized p-boxes by a single probabilistic simulation and a reweighting step. Nonetheless,
still a considerable number of evaluations of M are required, which might impede practical
applications. Therefore, in (Wei et al., 2019a), both the local and global Extended Monte Carlo
methods were integrated with a high-dimensional model representation (HDMR) decomposi-
tion of M as a surrogate modelling strategy. Following a HDMR deceomposition, P can be
represented as:

P(θ) = pf,0 +

nθ∑

i=1

pf,i(θi) +
∑

1≤i<j≤d
pf,ij([θi, θj ]) + . . .

+ pf,12...nθ(θ).

(31)

Note that HDMR decompositions are more widely applicable than to represent P. In the context
of propagating p-boxes, in (Wei et al., 2019a), it is proposed to apply a cut-HDMR strategy in
combination with the local Extended Monte Carlo Method, allowing for a rigorous estimation of
the variances of the estimators, as well as an estimation of the sensitivity of the parameters in
θ. Similarly, it is proposed to perform a Random Slicing HDMR decomposition in combination
with the Global Method. For the details concerning the implementation of these techniques, as
well as the corresponding proofs, the reader is referred to (Wei et al., 2019a). These methods
were recently also extended to be applied in combination with Line Sampling in (Song et al.,
2020).

An alternative application of the Sobol-Hoeffding decomposition in the context of propagating
imprecise probabilities through numerical models is given by (Fina et al., 2020). In (Fina et al.,
2020), the authors apply a fuzzy probabilistic approach in the study of designing cylindrical shells
under geometric imperfections, which are modelled as a random field. Specifically, imprecision in
the auto-correlation structure of the random field is accounted for by means of fuzzy arithmetic,
and the S-H decomposition is applied to speed up the corresponding α-level optimization.

4.3.3 Interval predictor models

An interval predictor model (IPM), as introduced in (Crespo et al., 2016), is a type of surrogate
model that approximates M by means of an interval-valued map M̂I(·,θ) : Rnx → IR, where
IR is the set of all intervals in R. This map can be constructed with a minimal number of
assumptions on the mapping provided by M. Specifically, M̂I(x,θ) given by:

M̂I(x,θ) =
{
y = θTφ(x) | θ ∈ θI

}
(32)

with φ a basis (e.g., polynomial or trigoniometric), θ the fitting parameters of the IPM and
θI = [θ,θ] an nθ-dimensional hyper-rectangular set. An optimal IPM is constructed by mini-
mizing E

[
(θ − θ)|φ(x)|

]
. Scenario Optimization (Campi et al., 2018) can be used to judge the

generalization properties of the IPM. In case the corresponding optimization problem is convex,
the reliability R of the IPM (i.e., the probability that a future unobserved data point will be
contained in the IPM) is bounded by:

P (R ≥ 1− ε) > 1− β, (33)
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where ε and β are the confidence and reliability parameters, which for our hyper-rectangular
model can be obtained from

β ≥
(
k + nθ − 1

k

) k+nθ−1∑

i=0

(
N

i

)
εi(1− ε)N−i, (34)

where k is the number of data points discarded by some algorithm and ε can be chosen as a very
small number (e.g., ε = 1 · 10−06). An approach to apply IPMs in the context of propagating
parametrized p-boxes is introduced by (Sadeghi et al., 2020). They show that IPMs can be used
as surrogate model to speed up the calculation of Eq.(17) and Eq.(18), including a strategy to
intelligently construct the set {(xi,yi) | i = 1, ..., N}. Furthermore, they show that the IPM
can also be used as a surrogate model for g, which in its turn can be used in combination with
importance sampling to determine [P,P]. Other applications include estimating the bounds on
P resulting from the surrogate model inaccuracy in a deterministic case (Faes et al., 2019).

The main advantages of these techniques are that (1) they are completely black-box as they
don’t require any assumption on M and (2) that under the mild assumption of convexity of
the training guaranteed reliability bounds on the accuracy are obtained based on the rigorous
framework of Scenario Optimization, which was recently extended to non-convex optimization
problems too (Campi et al., 2018). Unfortunately, active learning of this type of surrogate
models is not feasible, since this violates the required assumptions on independence between the
training samples (Faes et al., 2019).

4.4 Concluding discussion

As an attempt to create some clarity in the applicability of the multitude of available methods
for the propagation of p-boxes, Table 2 summarizes the discussed methods, including their class,
limitations and to which type of p-box they are applicable. Note that no precise statements
on accuracy and/or numerical efficiency are given, as these depend fully on the problem under
consideration. For instance, for linear models, the operator norm will undoubtedly give the
best results from all ’direct’ solution methods, as it reduces the solution of the problem to
two deterministic optimization problems and two reliability analyses. On the other hand, for
highly nonlinear problems, this method will fail, and potentially methods based on surrogate
modelling will outperform the other methods. To make a fully fair comparison between these
methods in this respect, a dedicated benchmark is study is required, which falls outside the
scope of this paper. It should be noted, however, that in case there is no prerogative to use
the numerical model, the computational efficiency of propagating imprecise probabilities with
surrogate modelling approaches is orders of magnitude higher as compared to the approaches
that directly use the numerical model. This is particularly true when advanced active learning
methods such as AK-MCS (Lelièvre et al., 2018) are applied in the context of reliability analysis.

Generally, optimization approaches such as double loop or sampling methods provide inner
approximations of the bounds on Pf as they generate realisations within [FX(x), FX(x)] and
try to approach P, respectively P from the inside-out (Patelli et al., 2014). Note that, in case
distribution-free p-box methods such as those based on random sets are applied to parametric
p-boxes, this effectively constitutes an outer approximation.

5 Conclusions

The development of highly efficient approaches to perform engineering computations with im-
precise probabilities, represented as p-boxes, is a quickly expanding field of research. The main

1More general imprecise probability models can be considered too, please refer to Section 2.3 for more infor-
mation
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Table 2: Summary of black-box propagation schemes for p-boxes

Method class Type p-box Limitation ref

Double loop Direct Both Computational cost
Interval Monte Carlo Direct Free Computational cost (Zhang et al., 2010)
Random set methods Direct Both1 Computational cost (Alvarez et al., 2018)

Advanced Line Sampling Decoupling Param. Moderate linearity (de Angelis et al., 2015)
Extended Monte Carlo Decoupling Param. Stochastic hyper-parameters (Wei et al., 2019a)

Operator norm Decoupling Param. Linear models (Faes et al., 2020)
PCE Surrogate Both Global approximation of M (Schöbi and Sudret, 2017a)

Kriging Surrogate Both Local approximation of M (Schöbi and Sudret, 2019)
HDMR Surrogate Param. Dimension of x (Fina et al., 2020)

IPM Surrogate Param. No adaptive refinement (Sadeghi et al., 2020)

challenge in this context is to overcome the required double loop propagation framework to esti-
mate the bounds on probabilistic measures of the structure under consideration (such as, e.g., the
probability of failure). Apart from near-trivial numerical simulation models, such double loop
calculations are computationally intractable without resorting to high-performance computing
facilities.

This problem is currently being tackled from two sides: (1) by improving the propagation
efficiency of p-boxes aimed at breaking the double loop and (2) developing efficient surrogate
models for the numerical models to be used in the double loop. Concerning the former set of
solutions, highly efficient propagation schemes have been introduced in recent years. However,
these methods are either limited in terms of the admissible descriptions of the uncertainty, or
the non-linearity of the underlying numerical model. Future developments in these areas should
concentrate on expanding the scope of applicability of these techniques. Concerning the latter,
surrogate models usually only require some smoothness constraints on the underlying numerical
model, which allows for a greater flexibility. Nonetheless, the accuracy of the calculation of
the bounds on the probabilistic measures is limited to the accuracy of the underlying surrogate
model. Furthermore, also the training of these surrogate models can entail a non-negligible
numerical cost, which is commonly mitigated by resorting to active learning.

As such, to conclude, the last 15 years brought many highly performing approaches to compute
with imprecise probabilities in general, and p-boxes in specific. The main challenge at this point
appears to translate this set of highly performing methods to industrial applications involving
multi-physical and/or million degree-of-freedom numerical models.
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Schöbi, R. and B. Sudret (2017a). Structural reliability analysis for p-boxes using multi-level
meta-models. Probab. Eng. Mech. 48, 27–38.
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