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Abstract

Surrogate models have shown to be an extremely efficient aid in solving engineering prob-

lems that require repeated evaluations of an expensive computational model. They are built

by sparsely evaluating the costly original model and have provided a way to solve otherwise

intractable problems. A crucial aspect in surrogate modelling is the assumption of smoothness

and regularity of the model to approximate. This assumption is however not always met in real-

ity. For instance in civil or mechanical engineering, some models may present discontinuities or

non-smoothness e.g., in case of instability patterns such as buckling or snap-through. Building

a single surrogate model capable of accounting for these fundamentally different behaviours or

discontinuities is not an easy task. In this paper, we propose a three-stage approach for the

approximation of non-smooth functions which combines clustering, classification and regression.

The idea is to split the space following the localized behaviors or regimes of the system and

build local surrogates that are eventually assembled. A sequence of well-known machine learn-

ing techniques are used: Dirichlet process mixtures models (DPMM), support vector machines

and Gaussian process modelling. The approach is tested and validated on two analytical func-

tions and a finite element model of a tensile membrane structure.

Keywords: Surrogate modelling - non-smooth functions - discontinuities - Dirichlet process

mixture models – uncertainty quantification

1 Introduction

Computational models, which allow scientists and engineers to accurately simulate complex

systems and predict their behaviour in various contexts, are nowadays a key tool present in
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virtually all fields of applied sciences and engineering. Cast as computer experiments, they

are able to predict with high fidelity the behaviour of the studied system in replacement of,

or as a complement to laboratory experiments. The downside of such high-fidelity models is

however that they are computationally demanding. This is even more relevant in the context

of uncertainty quantification or design optimization, where the models need to be evaluated

multiple times.

Surrogate models have become paramount in such fields as they allow for an efficient so-

lution of otherwise computationally intractable problems. They are inexpensive proxies that

can be used in lieu of expensive computational models. Examples of such surrogates include

Gaussian process models also known as Kriging (Santner et al., 2003; Rasmussen and Williams,

2006), polynomial chaos expansions (Xiu and Karniadakis, 2002; Blatman and Sudret, 2011),

support vector machines (Vapnik, 1995), polynomial response surfaces (Myers and Montgomery,

2002), etc. These methods have been applied in various problems pertaining to uncertainty

quantification or design optimization. The use of surrogate models in such fields are now mature

as shown by the recent reviews in reliability analysis (Teixeira et al., 2021; Moustapha et al.,

2022), Bayesian inversion (Yan and Zhang, 2017) or design optimization (Chatterjee et al., 2019;

Moustapha and Sudret, 2019a).

In most of these applications, it is assumed that the computational models to approximate

feature some accommodating properties such as smoothness, differentiability or stationarity.

Yet there exists cases when these assumptions do not hold. In mechanical engineering, this may

happen for instance when solving non-linear problems involving instability such as snap-through

or bifurcations in the solution path, e.g., crash simulation. In computational fluid dynamics,

simulations of compressive flows that involve shocks also belong to this category. In other cases,

the underlying phenomenon may present different localized features or extreme regime variations

which are strongly dependent on the inputs.

Various methods have been developed in the field of uncertainty quantification to tackle such

problems. The first class of methods borrows from digital signal processing and image detection

to identify discontinuities or strong gradients of the function to approximate using techniques

such as polynomial annihilation (Le Mâıtre et al., 2004; Gorodetsky, 2012). Such approaches

however rely on uniformly sampled grids and are often limited to two-dimensional problems.

Sargsyan et al. (2012) proposed a technique combining Bayesian inference and polynomial chaos

expansions that does not require using a regular grid and hence allowing for a reduced number

of samples. However, their approach was also developed for two-dimensional problems and the

authors did not investigate how well it scales with dimensionality.

Another class of methods relies on Gaussian process (GP) regression where the irregularities

on the model to approximate are tackled by introducing non-stationary covariance functions or
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kernels. Indeed, such kernels allow one to capture heterogeneous variations or heteroscedastic

noise while keeping the computational budget low. The direct approach to build such ker-

nels is to consider the noise variance, signal variance and/or characteristic length scale to be

input-dependent, such as in Paciorek and Schervish (2003). Heinonen et al. (2016) proposed

an approach where all three parameters are considered latent variables and inferred as hyper-

parameters of the GP. Such an approach has shown increased efficiency compared to vanilla GP

but it also comes with an increased inference cost due to the fact that there are no more closed-

form solution and the hyperparameters need to be calibrated using sampling based techniques

(See Rasmussen and Ghahramani (2001)). Furthermore, they do not allow to tackle problems

with discontinuities.

A more sensible approach based on non-stationary GP consists in splitting the input space

using for instance treed Gaussian processes or a mixture of experts (Tresp, 2000; Rasmussen

and Ghahramani, 2001; Meeds and Osindero, 2005). Similarly, it is also possible to define non-

stationary Gaussian process models by partitioning the training data into smaller subsets using

clustering techniques, such as in Zhang et al. (2019) and Konomi et al. (2019), where K-means

and nearest-neighbors clustering are used. Such approaches also have the advantage of offering

faster training and testing of the model as the experimental design is divided into smaller and

more computationally manageable subsets. Finally, another popular way to define non-stationary

kernels is by warping the input, and sometimes the output, space. By doing so, one may find

a latent space where the function to approximate is smoother. Examples of such techniques

include warped GP (Marmin, 2018) or manifold GP regression (Calandra et al., 2016; Kuleshov

et al., 2018).

In this work, we will focus on multi-stage techniques where the problem is solved by using

a sequence of well-known machine learning techniques. More specifically, we consider the class

of methods based on the following three-stage approach: clustering, classification and regression

(Boroson and Missoum, 2017; Dupuis et al., 2018). Basudhar and Missoum (2008); Serna and

Bucher (2009) were the first to propose decomposing the problem of identifying multiple failure

domains of mechanical systems using support vector machines. However, they do not include the

regression step as they are only concerned with an optimization problem where only the state of

a sample is of interest (i.e., whether it belongs to the failure domain or not). Moustapha (2016);

Moustapha and Sudret (2019b) extended the approach to the prediction of the model responses

by building local Kriging surrogates in each identified domain. However in all these approaches, it

was assumed that the clusters were identified either using expert knowledge or by only considering

the model responses which span different ranges. Niutta et al. (2018) proposed identifying the

clusters by detecting jumps in the model responses for relatively close samples. However, this

technique works only in low-dimensional problems and when the response of different clusters are
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disjoint. This is a strong limitation and was to some extent overcome by using joint clustering of

both the inputs and outputs in Bernholdt et al. (2019). In that work, they use K-means clustering

to identify the clusters and multi-layer perceptrons for classification and regression tasks. The

number of clusters is defined here using the elbow approach, which is a visual technique requiring

user interaction. Furthermore it is not robust w.r.t. the initialization of the K-means algorithm

and noise in the data. More generally, an important limitation in the contributions presented

above is that the three steps are disconnected and the prediction uncertainty in one step is not

accounted for in the subsequent ones.

In this paper, we propose an approach that aims at solving these two limitations. First,

to automatically identify the number of clusters in a robust way, we consider a non-parametric

Bayesian technique, namely Dirichlet process mixture models (DPMM). The interest in using

DPMM are three-fold: i. they automatically estimate the optimal number of clusters according

to patterns identified in the data, ii. they offer a probabilistic framework that allows one to

propagate the epistemic uncertainty related to this clustering task to both the subsequent clas-

sification and regression steps, and iii. they are flexible enough and their complexity can grow

as new data is observed (for instance in an active learning scheme, where new regimes of the

model could be identified).

In the remainder of this paper, we first present the three-stage methodology and how the steps

are connected in Section 2. In Section 3, we present in details the three methods used in each

step, namely, Dirichlet process mixture models, support vector machines for classification and

Gaussian process modelling. We finally illustrate the proposed approach in Section 4 using two

analytical examples and an engineering application related to the design of a tensile membrane

structure (Valdés-Vázquez et al., 2020, 2021).

2 Problem set-up and three-stage approach

Let us consider a set of N data points (X ,Y) where X =
{
x(i) ∈ X ⊂ RM , i = 1, . . . N

}
is a set

of M -dimensional inputs and Y are corresponding scalar outputs such that

Y =
{
y(i) = M

(
x(i)

)
∈ R, i = 1 . . . N

}
. The model M is assumed black-box, meaning that it

is only accessible through an evaluation over a finite set of input points. We further assume in

this setting that the model is non-smooth, i.e., it exhibits sharp localized features and, most

noticeably, discontinuities. As the model can only be evaluated on a finite set of samples,

discontinuities in the current work is assumed when the model presents extreme variations in

the outputs for seemingly close input points.

The goal of the analysis is to learn the input-output relationship of the model M through the

limited set of training data D = (X ,Y), also known as experimental design. This ultimately leads
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to a cheaper-to-evaluate surrogate model that can be used to predict the response of the model

for any new point. Generally, this type of problems is tackled using regression techniques where a

class of parameterized models are assumed and then their hyper-parameters are calibrated so as

to minimize a generalization error. Such models would however fail when there are discontinuities

or heterogeneous variations associated to limited observations.

In this work, we consider tackling this problem by splitting the space along the discontinuities

and building local regression models in each of the obtained subdomains. To achieve this, we

consider a three-stage framework which is illustrated in Figure 1 and summarized as follows:

Clustering Classification Regression

Figure 1: Illustration of the three-stage approach.

1. Clustering: The first learning step aims at identifying patterns in the data that hint to

subdomains separated by discontinuities. To achieve this, we cluster the joint input-output

data points. This is an unsupervised learning problem for which numerous techniques have

been developed (Pham and Afify, 2017). K-means clustering (Lloyd, 1982) is probably the

most common approach thanks to its simplicity. However, it assumes that the number of

clusters is known and further fails when the clusters are of disproportionate sizes. Another

approach that partially overcomes difficulties related to K-means clustering are Gaussian

mixture models which offer a probabilistic framework for clustering (Rokach and Maimon,

2005). They hence allow for a more nuanced clustering of the data by providing soft cluster

memberships, i.e., each data point is assigned with a probability of belonging to a given

cluster. This feature allows one to solve more complex problems, e.g., when the clusters

are partially overlapping. However, similarly to K-means, they assume that the number

of clusters is known in advance. In general, trial-and-errors approaches are used to define

the optimal number of clusters for such problems, which is not optimal.

We therefore consider in this work a more holistic approach where the number of clusters
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is also inferred from the data using a non-parametric Bayesian model, more specifically

Dirichlet process mixture models (Li et al., 2019) as described in Section 3.1.

At the end of this step, the experimental design is split into K subsets Ck, k = 1, . . . ,K.

2. Classification: Assuming that the data have been clustered, we can now place labels on

them and turn to supervised learning. More specifically, let us assume K clusters are iden-

tified in the previous step. We thus define the labels {ℓ1, . . . , ℓK} and the labelled training

data X × L where each couple
(
x(i), ℓ(i)

)
is defined such that ℓ(i) = ℓk if

(
x(i), y(i)

)
∈ Ck.

The goal of this step is then to partition the input space such that any new sample can

be mapped to at least one of the clusters Ck. This will ultimately allow us to select the

appropriate local regression model(s) to evaluate the new point.

This task is carried out in this work by using support vector machines (SVM) for binary

and multi-class classification (Vapnik, 1995). The probabilistic framework is introduced

by considering Platt’s approach to computing posterior probabilities given a binary SVM

prediction (Platt, 2000). For multi-class problems, binary classifiers are appropriately

combined to provide both class membership and posterior probabilities.

3. Regression: In this final step, Gaussian process (GP) models (Rasmussen and Williams,

2006) are employed to make the final prediction. We further investigate the use of three

different approaches for combining the various GP models built in this stage. In the first

two approaches, local surrogate models M̂k are built for each of the K identified clusters.

When it comes to prediction, the recombination is made as follows:

� Hard recombination: In this approach, the surrogate model which corresponds to the

cluster predicted by the classifier is solely used to make the final prediction, i.e.,

M̂ (x) =
K∑

k=1

1Ck
(x)M̂k (x) , (1)

where 1Ck
(x) is equal to 1 if x is predicted to belong to the cluster Ck, i.e.,MSVC (x) =

ℓk and 0 otherwise;

� Soft recombination: In this approach, the prediction for each point is obtained as a

weighted combination of all the local surrogate models, i.e.,

M̂ (x) =
K∑

k=1

wk (x)M̂k (x) , (2)

where the weight wk (x) ∈ [0, 1] with
∑K

k=1 wk (x) = 1 may be related to the actual

probability that the point x belongs to the cluster Ck as defined by the classifier.

� Categorical recombination: Contrary to the previous two approaches, a single Gaussian

process model is built here. This is achieved by using an additional variable which

is a categorical parameter indicating which cluster a given point belongs to, i.e., the
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training set is the couple {X ,L} × Y where L =
{
ℓ(i), i = 1, . . . , N

}
are the labels

of the training set identified in the clustering stage. The surrogate model is therefore

built on a space of dimension M + 1: M̂ (x) = M̂cat
(
x̃ =

(
x, ℓ̂ (x)

))
, where the

categorical variable is given by the SVC prediction, i.e., ℓ̂ (x) = MSVC (x).

The following section describes in details each of the ingredients introduced in the proposed

framework.

3 Description of the components of the proposed method

3.1 Clustering using Dirichlet process mixture models

Gaussian mixture models

Let us now consider the set of available data W =
{
w(i), i = 1, . . . , N

}
, where w(i) =

(
x(i), y(i)

)
is a vector gathering both inputs and outputs, and let us assume that they are

associated to some latent variables z. In a clustering set-up, say using a Gaussian mixture,

the latent variables would be z = {π,µ,Σ} where π are mixing coefficients and µ and Σ are

the mean and covariance of multivariate normal random variables. The goal is then to find the

posterior distribution p(z|w) of the latent variables given the data and using Bayes rules, i.e.,

p(z|w) =
p (w, z)

p (w)
=

p (w|z) p (z)
p (w)

∝ p (w|z) p (z) , (3)

where p (w|z) is the data likelihood, p (z) = p (π,µ,Σ) is the prior over the latent variables and

p (w) is the evidence.

The prior can be fully factorized into p (π) p (µ) p (Σ) since the three parameters are con-

sidered mutually independent. The prior on the mixing coefficients p (π) is usually chosen as a

Dirichlet distribution with parameters α/K where α is a positive scaling parameter and K is

the predefined number of clusters:

p (π1, . . . , πK |α) = Dirichlet (α/K, . . . , α/K) =
Γ (α)

Γ (α/K)
K

K∏

k=1

π
α/K−1
k , (4)

where Γ is the Gamma function.

The Dirichlet distribution is chosen precisely because it is the conjugate distribution to the

multinomial distribution, which is used for clusters membership assignment, later denoted by c.

The generative model for data derived from a Gaussian mixture model can therefore be cast as

πk ∼ Dirichlet (α/K, . . . , α/K) , k = {1, . . . ,K} ,

c(i) ∼ Multinomial (π1, . . . , πK) , i = {1, . . . , N} ,

w(i)|
{
c(i) = k

}
∼ N (µk,Σk) , i = {1, . . . , N} ,

(5)
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where µk and Σk are respectively the mean and covariance parameters of each local Gaussian

distribution in the mixture.

It is generally assumed in such a model that K << N , which in other words means that

samples from all clusters have been observed. However, there may exist cases when K is in the

same order or even larger than N . An alternative view to such cases is that at any moment all

clusters have not yet been observed and drawing more data from the generative model will reveal

new clusters. This naturally leads to extending this finite mixture model into an infinite one

using non-parametric Bayesian models whose complexity can grow as more data are observed.

This is precisely what a Dirichlet process mixture model does. It generalizes the generative

model described in Eq. (5) by assuming an infinite number of clusters, i.e., that K → ∞. This

corresponds to choosing a Dirichlet process (Ferguson, 1973) as prior for the mixing coefficients,

as explained in the sequel.

Dirichlet process

A Dirichlet process (DP) is a distribution over distributions defined by a base distribution

G0 and a positive scaling parameter α. The output from a Dirichlet process is therefore a

discrete distribution. It is however not possible to directly draw from G considering the formal

definition of a Dirichlet process. Other alternative views such as the Chinese restaurant process

(Aldous, 1985), the Pólya urn scheme (Blackwell and MacQueen, 1973) or the stick-breaking

representation (Sethuraman, 1994) have been proposed instead.

In this work, we consider the latter approach. More specifically, let us consider an infinite

collection of two random variables Vk ∼ Beta(1, α) and η∗k ∼ G0 with k = {1, 2, . . .}. The

stick-breaking representation of G is then defined as follows:

πk = vk

k−1∏

j=1

(1− vj) ,

G =
∞∑

k=1

πk (v) δη∗
k
(ηk) ,

(6)

where δ is the Kronecker symbol. This representation is illustrated in Figure 2 where the η∗k are

location parameters also known as atoms and πk are corresponding weights.

In a DP, there is a countably infinite number of atoms and the weights sum up to 1, making

G a discrete distribution. This infinite set of atoms lends itself to modelling priors in infinite

mixture models. More specifically, the DP is used in Dirichlet process mixture models as a

non-parametric prior in a hierarchical Bayesian model specified as follows (Antoniak, 1974; Blei
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Figure 2: Illustration of a Dirichlet process: G0 is the base distribution from which the atoms η∗k

are sampled, πk are the corresponding weights and G a realization of the DP.

and Jordan, 2006):

G| {α,G0} ∼ DP (α,G0),

η(i)|G ∼ G,

W (i)|η(i) ∼ p(w(i)|η(i)).

(7)

Given a datasetW, each data pointw(i) is assumed to be generated by first drawing a component

label c(i) = {1, 2, . . .} with probability distribution p(c(i) = k|V ) = πk(v) and then drawing w(i)

from p(w(i)|ηk). In this work, p is chosen as a distribution from the exponential family for which

G0 is a conjugate prior, which turns out to also belong to the exponential family and hence

making inference easier.

Posterior estimation

The latent variables in this setting are therefore z = {v,η, c}. The goal of the analysis is

then to find the posterior distribution of these latent variables given the observed data W, which

is denoted by p (z|W,θ). There is no closed-form solution to this problem and typical solution

schemes rely on Markov Chain Monte Carlo (MCMC). MCMC algorithms allow one to obtain an

approximation of the posterior using Markov chains whose stationary distribution is the sought

posterior. The usual approach in Dirichlet process mixture models is Gibbs sampling which is

particularly suited to this task as one can have access to the conditional distributions of the

latent variables analytically (Neal, 2000; Ishwaran and James, 2001). However, the difficulty

with MCMC algorithms is that they are expensive, as they require a large number of samples,

often generated sequentially, and their convergence is difficult to monitor.

An alternative approach to circumvent these issues is variational inference, where the esti-
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mation of the posterior is replaced by an optimization problem (Wainwright and Jordan, 2003).

More specifically, the intractable posterior is replaced by a parametric family of variation distri-

butions denoted here by qν(z|ν). In this paper, we consider the approach proposed by Blei and

Jordan (2006) which relies on the mean-field approximation, i.e., the variational distribution is

fully factorized (all the latent variables are mutually independent). The optimization problem

then consists in finding within the selected family of variational distributions the values of the

hyperparameters ν that will minimize the Kullback-Liebler (KL) divergence between the true

posterior and its approximation. This quantity reads

KL (qν(z|ν)||p (z|W,θ)) =

∫ ∞

−∞
qν(z|ν) log

(
qν(z|ν)

p (z|W,θ)

)
dz

= Eqν [log qν(z|ν)]− Eqν [p (z,W|θ)] + log p (w|θ) .
(8)

By noting that the divergence is always positive (or using Jensen’s inequality), it can be shown

that minimizing Eq. (8) is equivalent to maximizing a lower bound of the marginal log likelihood,

also referred to as ELBO and denoted by

log p (w|θ) ≥ Eqν [p (z,W|θ)]− Eqν [log qν(z|ν)] . (9)

By appropriately choosing the family of variational distributions for each latent variable, it is

possible to make the computation of the ELBO tractable. In the approach proposed by Blei and

Jordan (2006) considered here, the factorized variational distribution is cast as

qν(v,η, z|ν) =
T−1∏

t=1

qγt
(vt)

T∏

t=1

qτt (ηt)
N∏

k=1

qΦk
(ck) , (10)

where qγt
(vt) are Beta distributions, qτt (ηt) are exponential family distributions and qΦk

(ck)

are multinomial distributions. In this equation, the infinite samples is truncated to T terms by

setting q(vT = 1) = 1, which implies that πt (v) = 0 for t ≥ T . The solution to this problem

is eventually obtained using a coordinate ascent algorithm for which the incremental updates

can be computed analytically (Ghahramani and Beal, 2000). The reader is referred to Blei and

Jordan (2006) for further details.

3.2 Classification using support vector machines

3.2.1 Binary classification

Support vector machines are a popular supervised learning algorithm developed by Vapnik

(1995). They were developed for binary classification and were later extended to account for

multiple classes. Let us first consider the binary case (i.e., assuming only two clusters were

identified) and denote the dataset by
{(

x(i), ℓ(i)
)
, i = 1, . . . , N

}
where ℓ(i) = {−1, 1} are the

labels of the training points.
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Given this training set, the support vector classifier (SVC) prediction for any yet-to-be ob-

served sample reads (Smola and Schölkopf, 2004)

MSVC (x) =

N∑

i=1

αi ℓ
(i) k

(
x(i),x;θ

)
+ b, (11)

where {α, b} are parameters to calibrate. The coefficients αi, some of which are the so-called

support vectors, and the offset parameter b are obtained by solving a quadratic optimization

problem

min
α

1

2
αT
(
K̃Y Y T

)
α+ hTα

subject to: αTY = 0, αi ≥ 0, i = {1, . . . , N} ,
(12)

where h = {−1, . . . ,−1} is a column vector of size N and K̃ = K+1/CIN with C > 0 being a

penalty term. The matrix K is the so-called Gram matrix built by evaluating the parameterized

kernel function on pairs of points of the training data set, such that Kij = k
(
x(i),x(j);θ

)
, i, j ∈

{1, . . . , N}. Multiple kernels have been used in SVM. In this work, we consider the Gaussian

kernel defined by

k
(
x(i),x(j);θ

)
=

M∏

l=1

exp


−1

2

(
x
(i)
l − x

(j)
l

θ2l

)2

 . (13)

The hyperparameters of this model are the penalty term C which controls the penalty in-

curred for misclassifying a training point and the kernel parameter θ which controls, among

others, the smoothness of the separating hyperplane. They are both estimated in this work by

minimizing the span estimate of the leave-one-out error (Vapnik and Chapelle, 2000; Chapelle

et al., 2002) using the covariance-matrix adaptation evolution scheme (CMA-ES) (See Arnold

and Hansen (2012); Moustapha et al. (2018, 2021) for details).

3.2.2 Extension to multi-class classification

Let us now consider the case when the classification task aims at categorizing data with a set

of K > 2 labels, where each label is defined as ℓ(i) = ℓk if the original training pair
{
x(i), y(i)

}

belongs to the cluster Ck.
The most popular approach to tackle this multi-class problem is to reduce it to a series of

binary classification problems that can be solved using a standard SVM algorithm. The two most

popular approaches are the one-against-all and the one-vs-one decomposition schemes (Hastie

and Tibshirami, 1997; Moreira and Mayoraz, 1998). In the former, one binary problem is derived

for each class k by assigning one label, say the positive one, to all samples such that ℓ(i) = ℓk

and the negative label to all the other samples. In the one-vs-one approach, binary classifiers

considering all pairs of labels and ignoring all other samples are built. This leads to a total

of K(K − 1)/2 classifiers, which is larger than the K classifiers required by the one-against-all
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approach. However, such classifiers are trained on a noticeably smaller subset of the training

samples making the overall procedure computationally efficient despite the larger number of

classifiers to build.

Both approaches can be generalized, or somehow combined, using concepts of the error

correcting output codes (ECOC) (Dieterich and Bakiri, 1995). The recombination of the binary

classifiers into a final one can be achieved either by a simple voting system or by considering

the posterior probabilities derived from each classifier. In this work, we consider the one-vs-one

approach with a final voting system thanks to its simplicity and efficiency. We note that in case

of equal voting between two classes, we heuristically choose the class that was predicted with

the classifier that considered the two classes of interest.

3.2.3 Posterior probabilities

As mentioned in Section 2, the soft recombination of the final predictor requires some weights

which are proportional to the probability that the sample belongs to a given class. In case

of SVM, such weights can be derived by computing posterior probabilities derived from the

classifier. In practice, this can be achieved by post-processing the output of the classifier using

a sigmoid function as proposed by Platt (2000):

P
(
ℓ (x) = 1|MSVC (x)

)
=

1

1 + exp (AMSVC (x) +B)
, (14)

where the coefficients A and B are calibrated by solving a regularized maximum likelihood

problem. In this work, we use an efficient numerical implementation proposed by Lin et al.

(2007).

There have been many attempts to extend these probabilities to multi-class problems (Hastie

and Tibshirami, 1997; Moreira and Mayoraz, 1998; Wu et al., 2004; Wang, 2008). Let us denote

by

pij = P (x ∈ Ci|x ∈ Ci ∪ Cj) (15)

the posterior probability provided by the classifier that discriminates between the classes Ci
(positive) and Cj (negative). Note however that we are interested in the overall probability of

belonging to a class given all possible classes, i.e. pi = P (x ∈ Ci). Moreira and Mayoraz (1998)

proposed estimating this probability by combining the partial ones, i.e.,

p̂i =
2

k(k − 1)

K∑

j ̸=i,j=1

pij (16)

This value is however flawed, as it accounts for spurious probabilities defined by classifiers dis-

criminating two classes, none of which being the true one.

Using Bayes theorem, it can however be noted that

pi = P (x ∈ Ci) = P (x ∈ Ci|x ∈ Ci ∪ Cj)P (x ∈ Ci ∪ Cj) , (17)
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which, by averaging over all combinations of i and j, leads to the following system of equations:

pi =
1

k − 1

K∑

j ̸=i,j=1

pij (pi + pj) , (18)

since P (x ∈ Ci ∪ Cj) = (pi + pj). Wu et al. (2004) noted that this system of equations can be

written in a matrix form

p = Tp, (19)

where p = {p1, . . . , pK}T and T is a K ×K matrix whose elements read

Tij =





1
k−1 pij if i ̸= j,

1
k−1

∑K
j ̸=i,j=1 pij if i = j.

(20)

Wu et al. (2004) then noted that there exists a finite Markov chain whose transition matrix is

T , since
∑K

j=1 Tij = 1 and 0 ≤ Tij ≤ 1. Further assuming that pij > 0 for any i, j ∈ {1, . . . ,K}
implies that Tij > 0, which ensures that the Markov chain is irreducible and aperiodic. In fine,

these conditions guarantee that Eq. (19) defines a Markov chain whose stationary distribution

exists and is unique.

Taking advantage of the fact that T is a transition kernel and p is the stationary distribution

of the corresponding Markov chain, we cast Eq. (18) in an iterative scheme

p
(t+1)
i =

1

k − 1

K∑

j ̸=i,j=1

pij

(
p
(t)
i + p

(t)
j

)
, (21)

where the initial values p
(0)
i , i = {1, . . .K} using the estimate in Eq. (16) and pij are the

partial probabilities obtained by the binary one-vs-one classifiers using Eq. (14) . This chain

eventually converges after a few iterations, generally with t < 100 in our examples, to the

posterior probabilities estimates.

3.3 Regression using Kriging

3.3.1 Basics of Kriging

The final ingredient considered in the proposed framework is Kriging a.k.a. Gaussian process

model. It is used here to build local surrogates in the different regions identified by the clustering

step.

A Kriging model assumes that the model to approximate is of the form (Santner et al., 2003;

Rasmussen and Williams, 2006)

M (x) =

p∑

j=1

βjfj (x) + Z (x) , (22)

where the first summand represents the trend written here in a polynomial form using p regressors

fj with corresponding coefficients βj . The second summand is a zero-mean stationary covariance
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process defined by an auto-covariance function Cov [Z (x) , Z (x′)] = σ2R (x,x′;θ) where σ2 is

the process variance and R is an auto-correlation function parameterized by the vector θ. In

this work, we consider an anisotropic Matérn 5/2 auto-correlation function defined by

R
(
x(i),x(j);θ

)
=

M∏

l=1





1 +

√
5

∣∣∣x(i)
l − x

(j)
l

∣∣∣
θl

+
5

3




∣∣∣x(i)
l − x

(j)
l

∣∣∣
θl




2

 exp


−

√
5

∣∣∣x(i)
l − x

(j)
l

∣∣∣
θl





 .

(23)

The calibration of the model is performed by estimating the regression coefficients of the trend

and the hyperparameters of the selected kernel that minimize a generalization error, herein using

a maximum likelihood approach (Santner et al., 2003; Bachoc, 2013; Lataniotis et al., 2018).

Following this step, Kriging assumes that any unknown sample actually follows a normal

distribution N
(
µM̂, σ2

M̂

)
where the mean is the actual prediction, while the standard deviation

informs about the local accuracy of the prediction. The two quantities respectively read

µM̂ (x) = fT (x) β̂ + r (x)R−1
(
Y − F β̂

)
,

σ2
M̂ (x) = σ̂2

(
1− r (x)

T
R−1r (x) + u (x)

T
(
F TR−1F

)−1

u (x)

)
,

(24)

where

� u (x) = F TR−1r (x)− f (x) has been introduced for convenience,

� β̂ =
(
F TR−1F

)−1

F TR−1Y is the generalized least-square estimate of the regression

coefficients β,

� σ̂2 = 1
N

(
Y − F β̂

)T
R−1

(
Y − F β̂

)
is the estimate of the process variance,

� F =
{
fj
(
x(i)

)
, j = 1, . . . , p, i = 1, . . . , n0

}
is the Vandermonde matrix,

� R is the correlation matrix with Rij = R
(
x(i),x(j);θ

)
,

� r (x) is a vector gathering the correlation between the unknown sample x and the experi-

mental design points and

� Y =
{
Y(i) = M

(
x(i)

)
, i = 1, . . . , n0

}
is the vector of available model responses.

To account for the categorical variable, the compound symmetry kernel defined by Pelematti

et al. (2020)

R
(
ℓ(i), ℓ(j)

)
=





1 if ℓ(i) = ℓ(j),

r if ℓ(i) ̸= ℓ(j),
(25)

is considered. The parameter r is computed here by embedding this kernel within a usual

auto-correlation function for continuous variables with a tunable parameter θcat that can be

calibrated in the same setting than the continuous parameters. More precisely, we consider a

Gaussian kernel which then reads:

R
(
ℓ(i), ℓ(j); θcat

)
= exp

(
−1

2

(
Sℓ(i),ℓ(j)

θcat

)2
)
, (26)
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where Sℓ(i),ℓ(j) = 0 if ℓ(i) = ℓ(j) and 1 otherwise. The final auto-correlation function is obtained

by multiplying the M + 1 one-dimensional auto-correlation functions i.e.,

R
(
x̃(i), x̃j , θ̃

)
= exp

(
−1

2

M∑

k=1

(
x(i) − x(j)

θk

)2

− 1

2

(
Sℓ(i),ℓ(j)

θcat

)2
)
, (27)

where θ̃ = {θ, θcat} and x̃(i) =
{
x(i), ℓ(i)

}
.

4 Examples

The proposed algorithm is illustrated in this section with two analytical toy functions and an

engineering problem related to a tensile membrane structure design. To assess its accuracy, we

estimate the following two generalization errors using a validation set of size Nval = 104:

� Normalized mean-square error:

NMSE =

∑Nval

i=1

(
Yi − Ŷi

)2

∑Nval

i=1

(
Yi − Ȳ

)2 , (28)

� Mean absolute error:

MAE =
1

Nval

Nval∑

i=1

∣∣∣Yi − Ŷi

∣∣∣ . (29)

Furthermore, each analysis is repeated 20 times in order to assess the robustness of the proposed

algorithm with respect to the statistical uncertainty associated with the experimental designs.

4.1 Manhattan function

For this first validation example, we consider a two-dimensional function proposed by Rai (2015).

The function consists of three global regions, one of which is a checkerboard, and reads

M (x) =





Checker board if x1 ≥ 0,

sin (7x1) · sin (4x2) ; if x1 ≤ 0 and x2 ≤ 0,

1 + 2
7 (2x1 + 1)2 + (2x2 + 1)2; if x1 ≤ 0 and x2 ≥ 0

The checkerboard is made of smaller rectangular regions alternating the values of 0 and 1 as

illustrated in Figure 3.

In this section, we will illustrate each of the three steps of the proposed algorithm. We first

start by showing how the clustering algorithm splits the data. Figure 4 shows the clusters iden-

tified using three experimental designs of different sizes. The original model is built assuming

10 regions where each of the squares in the checkerboard is considered as one region on its own.

However, regardless of the experimental design, the clustering algorithm reduces the checker-

board into two regions, one with y = 1 and the other with y = 0. This results in disconnected
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Figure 3: Example 1 - Three-dimensional representation of the Manhattan function.

subdomains but as we will see in the next paragraph, this does not affect the overall prediction

capability of the algorithm. Another important observation from the partitions in Figure 4 is

that the more data points, the more clusters are identified. For small datasets, the partition is

quite sensitive to the data. However, the partition becomes more stable and robust as the data

size is increased.

Once the clusters are identified (4 different ones in the case of medium-size experimental

design, and in the sequel), the inputs are labelled accordingly and binary classification is per-

formed on each pair of classes. Figure 5 shows the resulting classifiers for one realization of the

experimental design. The blue and orange points correspond to the positive and negative labels

respectively, while the support vectors are highlighted in green. The thick line is the classi-

fier, whereas the dashed ones delimit the margin. Finally, the gray triangles represent the data

points that were ignored by the illustrated classifier. As expected, support vector machines are

appropriately calibrated for the problem at hand. However, the choice of the Gaussian kernel

may not be appropriate for the classification of C3 against C4 (Figure 5f) as it produces smooth

boundaries whereas the original boundary results from a checkerboard with sharp edges. This

does not substantially affect the results. However, better prediction could have been obtained

by including the choice of the kernel in the model selection.

The next step is then to recombine those predictions into a final one. In the hard recon-

struction, a vote is carried out and the class that wins is the final prediction. The resulting

partition of the input space is shown in Figure 6. Figure 7 shows the soft reconstruction ap-

proach where each tile represents the probabilities of a given point to belong to a given class.

The resulting classification is in accordance with the regions defined by the original model except

for the boundaries of the checkerboard which present some slight deviations. Also, the boundary

between the two regions where M is smooth (i.e. , polynomial or sines) is not exactly the line
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Figure 4: Example 1 - Clustering of the data by DPMM considering two repetitions of three

experimental designs of increasing sizes.

{x1 ≤ 0, x2 = 0}.
This partition of the input space is eventually used to build local Kriging surrogates to provide

the final prediction. For this example, we repeat the analysis 20 times where each repetition starts

with a randomly sampled Sobol’ sequence. Figure 8 shows boxplots of the resulting errors for

increasing sizes of the experimental design. For any ED size, both recombination techniques yield

improved NMSE and MAE. In general, the soft reconstruction also yields better prediction

than the hard one. This is even more clear when considering the MAE error. For this example,

the prediction with categorical Kriging is not included, since it does not lead to good results.

This is due to the fact that each region is fundamentally different from the other, hence using a

single Kriging model, even with categorical variables, is not appropriate.
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(a) C1 vs. C2 (b) C1 vs. C3 (c) C1 vs. C4

(d) C2 vs. C3 (e) C2 vs. C4 (f) C3 vs. C4

Figure 5: Example 1 - Pairwise classification of the data (with 4 clusters identified in Step 1 for the

medium-size experimental design).
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Figure 6: Example 1 - Partition of the space in the 4 regions using hard reconstruction.
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(d) Prob [Y ∈ C4]

Figure 7: Example 1 - Partition of the space in the 4 regions using soft reconstruction.
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(a) NMSE (b) MAE

Figure 8: Example 1: Boxplots of the computed errors for various methods and experimental design

sizes.
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4.2 Snap-through instability problem

This example is a mechanical problem related to the snap-through instability of a two-bar truss

structure. The structure is loaded at its tip and responds linearly with small displacements

until a critical point is reached. Past that point, the structure suddenly snaps through a new

equilibrium point and resumes its small displacements. In this example, we consider as quantity

of interest the displacement w of the tip of the structure as illustrated in Figure 9 .

Figure 9: Illustration of the two-bar truss structure subject to snap-through.

The load at the deformed position can be expressed as a function of the inclination angles at

the initial position and deformed one, respectively denoted by α0 and α, the bars cross-sectional

areas A and their constitutive material Youngs’s modulus E

P = −2EA tan (α) (cos (α0)− cos (α)) . (30)

The corresponding displacement of the tip of the truss can then be computed as follows:

w = l0 cos (α0) (tan (α0)− tan (α)) . (31)

In this example, we assume that the length of the bar l0 = 5 m and the initial inclination angle

α0 = 10◦ are deterministic. In contrast, the load, the Young’s modulus and the cross section

areas are assumed random and characterized by the distributions shown in Table 1.

Parameter Distribution Mean C.o.V.

Load (P in N) Gumbel 430 0.20

Young’s modulus (E in GPa) Lognormal 210 0.10

Cross sectional area (A in cm2) Gaussian 10 0.05

Table 1: Truss snap-through problem: probabilistic input model.
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We run the analysis using the proposed method and considering three different experimental

design sizes and 20 repetitions. The resulting errors are summarized as boxplots shown in

Figure 10. The first observation is that the difference between the results obtained by the

proposed method and a direct Kriging model (i.e. a single Kriging model built using the entire

data set) is much more important than in the previous case, often by orders of magnitude. This is

due to the fact that the two regimes of non-linear structure behaviours are prominently different

as shown in Figure 11. Furthermore in this example, categorical Kriging performs quite well. It

is not clear however which recombination approach is the best. When looking at the normalized

mean square error, the hard recombination is slightly better. This is the opposite when looking

at the mean absolute error, i.e., the soft and categorical recombination are slightly better.

(a) NMSE (b) MAE

Figure 10: Example 2: Boxplots of the computed errors for various methods and experimental

design sizes.

Figure 11 shows the original vs. predicted vertical displacement for the four approximations

using a random subset of the validation set of size 200. The left panel of this figure shows how

a single model (called ”direct”) spans the entire range between the two regimes of the truss and

leads to huge errors. In contrast, the multi-stage approaches properly detect the discontinuities.

It is also clear from this figure how the recombination scheme affects the final prediction when

there are classification errors. The soft recombination reduces the error for those cases when

there is uncertainty in the classification. Note that the same outlier points are observed in

Figures 11a and 11b when hard reconstruction and categorical Kriging are used: these outliers

only stem from classification error.
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(a) Direct Kriging and hard reconstruction (b) Soft reconstruction and categorical Kriging

Figure 11: Example 2: Original vs. predicted vertical displacement for different approximation

techniques.

4.3 Tensile fabric structure

In this final example, we investigate a model that simulates the behaviour of a tensile membrane

structure (TMS) under extreme loading (Valdés-Vázquez et al., 2020, 2021). TMS are flexible

lightweight structures made of composite fabric spanning long distances. They have many ad-

vantages in terms of architectural sophistication but are yet challenging to design. By their very

nature, they are unable to carry out-of-plane moments and shear forces that may result from the

extreme wind loads they are expected to withstand. They further require careful pre-stressing

to keep a stable form.

Special codes are designed to simulate the response of complex tensile membrane structures.

Comet is one such in-house finite element code developed at the University of Gua (Valdés-

Vázquez et al., 2021). In this work, we consider a hypar (hyperbol-paraboloid), which is one of

the most common shapes for TMS, designed using Comet and illustrated in Figure 12. The

probabilistic model is described using the random variables presented in Table 2. There are

various quantities of interest for such a design model. We consider here the maximum reaction

forces on the supports of the system (cables or mast). It turns out that according to the boundary

conditions, the maximum reaction force occurs in two different locations with entirely different

magnitudes. This is shown by the bi-modality of the kernel density estimate of the model

response in Figure 13.

The underlying mechanisms leading to each of two model response modes are different and
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Parameter Distribution Mean C.o.V.

Wind load (Vw - m/s) Gumbel 36.11 0.132

Cable pre-stress (Sxx - N/m2) Gaussian 5.09 · 108 0.06

Young’s modulus (Ewf - N/m) Lognormal 8 · 105 0.07

Poisson modulus (ν - ) Gaussian 0.4 0.05

Fabric prestress warp (Fw - N/m2) Gaussian 4 · 106 0.05

Fabric prestress fill (Ff - N/m2) Gaussian 4 · 106 0.05

Mast Young’s modulus (Em - N/m2) Lognormal 2.1 · 1011 0.03

Cables Young’s modulus (Ec - N/m2) Lognormal 2.1 · 1011 0.03

Mast cross-sectional area (Am - m2) Gaussian 1.7 · 10−3 0.032

Cable cross-sectional area (Ac - m
2) Gaussian 7.854 · 10−5 0.032

Table 2: Hypar structure: probabilistic input model.

(a) Top view (b) Side view

Figure 12: Hypar structure considered in this study.

building a single surrogate model to account for both leads to inaccurate results. We consider

then the three-stage approach proposed in this paper, with an experimental design of size 500

and a validation set of size 1, 000. The experimental design is split into five different subsets of

sizes 100, 200, 300, 400 and 500. In each of these, the DPMM clustering rightly identifies that

there are two sets of responses.

Figure 14 shows the resulting NMSE and MAE for each experimental design size. As ex-
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Figure 13: Example 3: Kernel smoothing density of the maximum reaction force of the hypar.

pected, the error decreases with increasing ED size and our proposed workflow yields more

accurate approximations than a global single Kriging model, except for NMSE when N = 100

due to the large weight of misclassification errors. The soft recombination is slightly better than

hard recombination and categorical Kriging which have very similar predictions.

(a) NMSE (b) MAE

Figure 14: Example 3: Computed errors for the hypar structure for increasing experimental design

sizes.

Finally, Figure 15 shows PDFs of the responses for different models with ED sizes of 100

and 300. We can see that even for 100 samples, the densities with the hard recombinations are

extremely similar to those obtained from the original model. This shows that the reconstructed

surrogate models are extremely accurate except for a few outliers which are due to misclassifi-

cation in the second step of the workflow. The soft recombination puts more mass in the middle

of the density support, due to the weighted recombination. This mass reduces as the ED size
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increases.

(a) N = 100 - Direct and soft recombination (b) N = 100 - Hard recombination and categorical

Kriging

(c) N = 300 - Direct and soft recombination (d) N = 300 - Hard recombination and categorical

Kriging

Figure 15: Example 3: Computed errors for the hypar structure for increasing experimental design

sizes.

5 Conclusion

Surrogate modelling is now a well-established method that allows one to reduce the compu-

tational burden of simulation intensive methods that require multiple evaluations of a costly

computational model. Building an accurate surrogate model with limited data generally re-

quires that the functions to approximate are smooth and regular. This is however not always

the case in many applications, e.g. crash simulation or computational fluid dynamics.
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In this paper, we propose a three-stage approach for the approximation of non-smooth func-

tions for systems exhibiting multiple behaviours and/or discontinuities. The problem is tackled

by dividing the task into three complementary parts: i. a joint input-output clustering stage

that identifies the different patterns exhibited by the system using a non-parametric Bayesian

approach, namely a Dirichlet process mixture model, ii. a partition of the input space according

to the identified clusters using support vector machines, and eventually iii. the construction of

local surrogates, herein Kriging models, using data from each of the partitions. For any new

point, the prediction is made by appropriately recombining the predictions made by each of the

Kriging models, according to the assigned class of the new point.

The proposed approach is validated on two analytical examples and an engineering application

(FE-based tensile membrane structure). It is shown to be both accurate and efficient compared

to a traditional surrogate modelling approach ignoring the non-smoothness.

The three methods selected for each stage all provide probabilistic predictions. While the

posterior probabilities of the support vector machines classifiers have been used within the soft

reconstruction scheme, the ones provided by the Dirichlet process mixture models have not been

exploited yet. However, as seen in the examples, mislabelling the initial data leads to large

errors. These could be reduced by accounting for the uncertainties in the clustering stage. In a

future work, we intend to account for the latter so as to provide a fully probabilistic prediction

scheme that propagates the epistemic uncertainties from one step to the next.
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