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ABSTRACT: On one hand, finite element analyses have nowadays become a standard in order to design 

complex soil-structure interaction works, especially when dealing with sensitive structures in the vicinity 

of the project. On the other hand, reliability design and full probabilistic analysis are more and more used 

in practice. In this contribution we aim to show that day-to-day 3D finite element probabilistic analyses 

can now be performed in a reasonable amount of time, using adequate meta-models like Polynomial 

Chaos Expansions (PCE) or Polynomial Chaos Kriging (PCK). We illustrate this on a study for a tunnel 

which will be constructed in Lausanne, Switzerland, for a new underground line, still under development. 

A 3D finite element mesh is constructed, including real stratigraphy, excavation steps, support and 

bolting. Probability density functions are defined for soil parameters, loads... A sensitivity analysis is 

conducted first in order to select the relevant input parameters, and then a reliability analysis is 

performed, the quantity of interest being the settlement of a sensitive building due to the tunnel 

excavation. Special attention is put in this paper on the selection of the most adequate meta-model, on 

the error measurement (generalization of the leave-one out error) and on the size of the experimental 

design needed to construct a reliable surrogate model. 

1. INTRODUCTION 

In mechanics, the displacement of a structure 

depends, among other variables, on the material 

parameters. The finite element method is quite 

accurate, but in practice, especially in 

geotechnics, the material properties are not known 

exactly. Indeed, even with a perfectly accurate 

model, the observed displacement in a project will 

hardly match the predicted one, because of the 

uncertainty on soil properties and on other factors. 

A probabilistic analysis allows to obtain a 

probabilistic distribution for the prediction of the 

model, in order to take this 

uncertainty into account.  

With complex 3D finite element models, 

each calculation is time expensive, but gives 

accurate results. Thus, intuitive methods for 

uncertainty quantification like crude Monte Carlo 

cannot be used directly, because of the 

computation time of the finite element model. 

State-of-the-art algorithm can be used to 

approximate the relationship between the input 

variables and the quantity of interest, trained on a 

reasonable number of finite element simulations. 

With this surrogate model, with which new 
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realizations can be computed instantly, it is 

possible to do accurate reliability and sensitivity 

analyses, if the approximation method is accurate. 

2. UNCERTAINTY QUANTIFICATION 

COUPLED WITH A FINITE ELEMENT 

SOFTWARE  

2.1. Uncertainty in geotechnics 

Uncertainty has always been a part of 

geotechnical calculations. Since information 

comes from boreholes, in-situ and laboratory 

testing and experience, some level of uncertainty 

will always remain when defining soil properties. 

That explains the semi probabilistic methods used 

nowadays. If the uncertainty of the soil properties 

can be quantified, with experience or statistical 

methods, it is interesting to propagate this 

uncertainty on the results (displacement, internal 

forces, safety factors…). Most of the time it shows 

that some variables contribute more to the 

uncertainty on the results than others, and that 

even with uncertainty in the properties of the soils, 

e.g., displacements can be estimated. It means that 

one can gain real understanding in the modelling. 

The range of variation depends on the 

parameters, see ISSMGE-TC304 (2021) and it is 

often characterized by the mean parameter μ, the 

standard deviation σ, or the mean parameter μ and 

coefficients of variation CoV = μ / σ, and finally 

the type of distribution. Some typical values for 

the coefficient of variation are given in Table 1, 

according to Phoon and Kulhawy (2008). 

 
Table 1: Typical range of CoV of soil parameters 

 Variability CoV (%) 

Undrained shear 

strength cu 

Low 10-30 

Medium 30-50 

High 50-70 

Friction angle φ 

Low 5-10 

Medium 10-15 

High 15-20 

 

Without on-site information, the 

distributions are often supposed to be Gaussians 

(for small CoV) or Lognormal.  

Once a probabilistic distribution is assigned 

to input parameters, the output value of a model is 

also probabilistic. It means the results of the finite 

element model will be random variables.  

2.2. Metamodeling 

2.2.1. Description 

Let us consider a geotechnical finite element 

model, with 𝑚 random input parameters (as the 

friction angle, the cohesion etc…). The FE model 

can be seen as a function 𝑀 which associates a 

quantity 𝑌  (the displacement of a node, the 

moment in a beam element etc… : a key quantity 

for the engineers) to the inputs parameters 𝑋 =
{𝑥1, … , 𝑥𝑚}, as described in Eq. (1) (see Marelli et 

al. (2022)) 

 𝑋 ∈ 𝐷𝑋 ⊂ ℝ𝑚 → 𝑌 = 𝑀(𝑋) ∈ ℝ (1) 

This function is only known pointwise: one 

can get samples from X, run the FE model with 

the corresponding inputs, and get the quantity Y. 

As each run of the model is time expensive, one 

has to gain the maximum of information on the 

random variable Y with the minimum of samples, 

in order to later perform a sensitivity and 

reliability analysis.  

The metamodels aim to approximate the 

equation Eq. (1), based on a small number of 

samples that have already been computed. Say 

that one has got N samples of X, {𝑋1, … 𝑋𝑁},  and 

computed { 𝑌1 ,…, 𝑌𝑁 } = {M( 𝑋1 ), …,M( 𝑋𝑁 )}. 

Then the metamodel is a function which 

surrogates M based on this experimental design, 

and which can be evaluated in no time.  

2.2.2. Polynomial Chaos Expansion (PCE) 

The polynomial chaos expansion of the 

random variable Y, assuming that it has a finite 

variance, is defined as Eq. (2) (Ghanem and 

Spanos (2003), Blatman (2009)) 

 𝑌 = 𝑀(𝑋) =  ∑ 𝑦𝛼𝜓𝛼(𝑋)𝑎∈ℕ𝑚  (2) 

where the 𝜓𝛼 (X) are multivariate polynomials 

orthonormal, 𝑎 ∈ ℕ𝑚
 is a multi-index that 

identifies the components of the multivariate 
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polynomials 𝜓𝛼  and the 𝑦𝛼  ∈ ℝ  are the 

coordinates of the polynomials. 

This expansion is then truncated to 𝒜 ⊂ ℕ𝑚 

a set of selected multi-indices and the 

approximation is given in Eq. (3) 

 𝑀(𝑋) ≈  ∑ 𝑦𝛼𝜓𝛼(𝑋)𝑎∈𝒜  (3) 

The complete mathematical description is 

available in Marelli and Lüthen (2022).  

2.2.3. Polynomial Chaos Kriging 

Polynomial-Chaos-Kriging (PC-Kriging) is a 

state-of-the-art metamodeling algorithm, which 

combines PCE and Kriging process (Schöbi et al 

(2022)). More precisely, the PCK is a Kriging 

process (an efficient tool to surrogate local 

variation), and the trend is represented with the 

orthonormal polynomials (PCE, to catch the 

global behavior). The expansion is given in Eq. 

(4) 

 𝑀𝑃𝐶𝐾(𝑥) = ∑ 𝑦𝛼𝜓𝛼(𝑋)𝑎∈𝒜 + 𝜎2𝑍(𝑥, 𝜔) (4) 

where ∑ 𝑦𝛼𝜓𝛼(𝑋)𝑎∈ℕ𝑚  is a weighted sum of 

orthonormal polynomials, 𝜎2 and 𝑍(𝑥, 𝜔) are the 

variance and the zero mean, unit variance, 

stationary Gaussian process, respectively.  

2.2.4. Accuracy of a metamodel 

A common tool to assess the accuracy of the 

surrogate model is the leave-one-out cross-

validation error εLOO, see Marelli and Lüthen 

(2022). It is computed by creating several 

metamodels on reduced sets of the experimental 

design, as in Eq. (5) 

 ε𝐿𝑂𝑂 =

∑ (𝑀(𝑥(𝑖))−𝑀𝑃𝐶\𝑖(𝑥(𝑖)))
2

𝑁

𝑖=1

∑ (𝑀(𝑥(𝑖))−𝜇𝑌)
2𝑁

𝑖=1

 (5) 

where 𝑀𝑃𝐶\𝑖(𝑥(𝑖)) is the metamodel created on 

the experimental design, without the ith sample, 

and 𝑀(𝑥(𝑖)) the FE model result.  

This cross-validation error can be extended 

to the leave-k-out cross-validation error, which 

consists in creating metamodels based on several 

subset of the experimental design, of size k, in 

Allen (1974). A graphical comparison can then be 

made on the rest of the samples in the 

experimental design.  

2.3. Probabilistic analysis based on 

metamodeling 

2.3.1. Uncertainty propagation  

Once an accurate metamodel is created, it is 

possible to draw many samples for the inputs, and 

to compute an approximation of the results that 

the FE model would give. This allows to draw 

histograms of the quantity of interest, and to 

compute relevant information about the output 

distribution, like moments and percentiles.  

2.3.2. Reliability analysis 

The reliability analysis aims to calculate the 

probability of failure, i.e., the probability that the 

output gets higher or lower than a fixed value, the 

threshold. As described in Marelli and Schöbi 

(2022), one can define two domains in the input 

space: the safe region 𝐷𝑠, and the failure one 𝐷𝑓. 

The limit state function 𝑔 is then a function which 

has positive values in the safe domain and 

negative values in the failure domain (Eq. (6)) 

 𝑥 ∈ 𝐷𝑠 ⇔ 𝑔(𝑥) > 0 (6) 

 𝑥 ∈ 𝐷f ⇔ 𝑔(𝑥) ≤ 0  

The probability of failure Pf quantifies then 

the probability that the random variable X belongs 

to 𝐷𝑓, i.e., Eq. (7) 

 𝑃f = P(𝑔(X ≤ 0)) = ∫ 𝑓x(𝑥) ⅆ𝑥
Df

 (7) 

The integral in Eq. (7) can then be computed 

with the Monte Carlo method, by drawing 

samples and computing the ratio between the 

number of samples which belong to the failure 

domain, over the total number of samples (Eq. (8)) 

 𝑃f,MC =  
#𝑁𝑓𝑎𝑖𝑙 

#𝑁𝑠𝑎𝑚𝑝𝑙𝑒
 (8) 

The probability of failure calculated with 

Monte Carlo converges to the exact probability of 

failure, independently from the system’s 

dimension: it is the main advantage of this 

algorithm. The drawback is the convergence rate, 

in 1/√𝑁, where N is the sample size. Moreover, 
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the accuracy depends on the probability of failure: 

a larger sample is necessary to obtain convergence 

when the probability of failure is smaller. 

2.3.3. Sensitivity analysis 

The sensitivity analysis aims to estimate the 

influence of each input variable, on the variability 

of the quantity of interest. The variance of Y can 

be decomposed in terms attributable to each of the 

m inputs and interactions between inputs (Marelli 

et al., 2022). The partial variances 𝐷𝑖1, . . . , 𝐷𝑖𝑠 are 

computed with the following formula (Eq. (9)) 

 𝐷𝑖1,...,𝑖𝑠
=

∫ . . . ∫ 𝑓𝑖1,...,𝑖𝑠

2
𝐷𝑖𝑠𝐷𝑖1

(𝑥𝑖1
, . . , 𝑥𝑖𝑠

)𝑑𝑥𝑖1
. . 𝑑𝑥𝑖𝑠

 (9) 

where 1 <  i1 < . . <  is ≤  m, s =  1, . . , m 

and the total variance is defined as (Eq. (10)) 

 𝐷 = ∫ 𝑓2(𝑥) ⅆ𝑥
𝐷

− 𝑓0
2 (10) 

Finally, the Sobol Total indices can then be 

defined (Eq. (11)) 

 𝑆𝑖
𝑇 = ∑

Di1,...,is

Di⊂{𝑖1,...,𝑖s}
 (11) 

3. REAL CASE APPLICATION 

This paragraph presents an application of this 

method on a 3D complex finite element model.  

3.1. Context 

A new underground metro line is to be constructed 

in Lausanne in Switzerland. The project has to be 

carefully designed, because of the dense urban 

area, and it is currently under development. The 

official description of the project is available on 

the canton of Vaud website (www.vd.ch/métros). 

Around one of the future stations, pipe umbrellas 

are used (Figure 1), particularly because sensitive 

buildings are close to the top of the tunnel.  

 

 
Figure 1 : The metro line (red) with pipe umbrella, 

under a building (black) 

 

A 3D finite element model was created 

(Figure 2 and Figure 3) with the finite element 

software ZSOIL to assess the effect of the 

excavation process. This software is dedicated to 

static and dynamic analyses of soil, roc, structures 

and soil-structure interaction (ZSOIL.PC (2023)).  

The model contains 400 000 8-nodes Brick 

elements.  

 

 
Figure 2 : Complete 3D FE model, with 400 000 B8 

elements, of size 135m * 50m *20m, and 105 time steps  

 

The elements taken into account in the 3D model 

are:  

- 7 pipe umbrellas, each 14m long, with 

ROR 159/10 in order to control the 

displacements  

- A supporting system (steel profiles and 

shotcrete) modelled with shells, interface 

elements between soil and support are also 

taken into account.  

- Excavation process: the supporting system 

appears when 1m is excavated in front  

- Stratigraphy, composed of 2 layers of 

sandstone marl, and one layer of clayey 
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marl. They are modelized with elastic 

perfectly plastic materials. The parameters 

of each layer are given in Table 2.  

- The building’s foundation is modelled 

with a 2D shell element, loaded by 

170kPa.  

 

 

 
Figure 3 : The complex 3D model takes into account 

the excavation process and the pipe umbrella (view of 

the structural elements) 

 

The FE model runs in 4 hours, and the 

settlement of the building (Figure 4) is 1.15cm 

with the mean parameters.  

3.2. Uncertainty in the geotechnical parameters  

Once the model is created and optimized, it is 

possible to define the uncertainty of the 

parameters. The whole probabilistic 

implementation and algorithm is done with 

UQLab, a Matlab based probabilistic toolbox 

(Marelli and Sudret (2014)).  

The elastic modulus of the two soils, and the 

cohesion and friction angles are chosen to be 

probabilistic, in discussion with the geotechnical 

engineers. The distributions are Gaussians, except 

for the cohesion (Lognormal), and every variable 

is considered independent.  

Concerning the structure, the load of the 

building is also set to be probabilistic. The aim is 

to assess its influence over the settlement, the 

chosen coefficient of variation is 10%: 

It means 7 input variables are considered for 

the probabilistic analysis (Table 2). In this method 

every uncertain parameter of the model can be set 

to probabilistic, with a realistic distribution.  

 
Table 2 : Description of the inputs considered in the 

probabilistic analysis. The type “N” means a 

Gaussian distribution, and “Ln” is Lognormal  

Parameter Type Mean CoV % 

Clayey 

marl 

E1 N 50 MPa 30 

c1 Ln 150 kPa 20 

φ1 N 22° 10 

Sandstone 

marl 

E2 N 900 MPa 30 

c2 Ln 1300 kPa 20 

φ2 N 35° 10 

load (building) N 170 kPa 10 

 

Once the inputs are carefully chosen, the 

experimental design can be created. 100 samples 

of the 7 inputs are drawn, with the Latin 

Hypercube Sampling (LHS) method, named 𝑋𝑒𝑑. 

For each sample, the finite element model is run, 

with parallel computations, to speed up the 

calculation time. It takes between 4 and 5 days of 

computation for the 100 samples. For practical 

cases, it is recommended to get at least 50 

samples, and then to get new samples until the 

convergence in the εLOO is reached.  

Then, the quantity of interest, i.e., the 

settlement of the building 𝑌𝑒𝑑  is extracted from 

the results files (see Figure 4). 

 
Figure 4 : Vertical displacement computed with 

ZSOIL. The nodes of interest are in red. A blue color 

corresponds to a 1.15cm settlement, and the red to 0cm  
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3.3. Metamodeling with PCE and PCK  

When the experimental design (𝑋𝑒𝑑, 𝑌𝑒𝑑 =
𝑀(𝑋𝑒𝑑))  is computed, the metamodels are 

created to surrogate the FE model.  

With the whole experimental design, i.e., 100 

samples, the leave-one-out error is 0.65% for the 

PCE, and 0.39% for the PCK.  

A key subject is to assess how many 

calculations of the FE model are needed to get an 

accurate metamodel. The Figure 5 shows that a 

convergence in the leave-one-out error is reached 

when the metamodel is computed on at least 50 

(PCK) or 60 (PCE) samples. From this first result, 

a first guess would be that 50 samples can be 

enough with a PCK, and 60 with a PCE.  

 

 
Figure 5 : Visualization of the εLOO for PCE and PCK 

in function of the size N of the experimental design 

 

To ensure the accuracy of the metamodels, it 

is possible to compare the predictions with the 

true response of ZSOIL, on a validation set. The 

experimental design is then split into two set: the 

first 60 samples are used to create the 

metamodels, and the last 40 samples plays the role 

of validation. The results are shown in Figure 6: 

the mean difference is 0.2 mm (PCE) and 0.14 

mm (PCK) on those 40 settlements.  

 
Figure 6 : Comparison of the settlement predicted by 

metamodels, and the FE settlement 

 

Finally, the leave-k-out graphical validation 

is done, with 30, 60, and 80 samples (Figure 7) 

 

 
Figure 7 : leave-k-out validation for the PCE is a way 

to increase the validation set  

 

Those three visualizations confirm that the 

experimental design is large enough to create an 

accurate PCE or PCK. Thanks to those 

metamodels, the uncertainty propagation can be 

done with many samples, because it does not 

require a lot of computational resources.  

3.4. Reliability and sensitivity analyses 

The steps of the probabilistic analysis are the 

following:  

- Draw a large sample of the inputs  

- Compute the metamodel response 

- Visualize the histogram of the simulated 

settlement  
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- Do the sensitivity analysis 

- Compute the probability of failure 

 

For the Monte Carlo analysis, 106 samples of 

the inputs are generated with the LHS method. To 

compute the response of the metamodels to this 

set of input, it takes a few seconds.  

Then it is possible to visualize the histogram 

of the predicted settlement (Figure 8). The results 

are given in Table 3. 

 

 
Figure 8 : PDF of the settlement, generated with 

Monte Carlo. The PCE and PCK give nearly the same 

smooth histogram. The means of the histograms are 

the vertical lines 

 

The failure criterion is given by the 

geotechnical engineer: the vertical displacement 

of the building should not be bigger than 2 cm. It 

is computed with the Monte Carlo simulation, on 

106 samples with the metamodels (Table 3).  

 
Table 3 : Summary of the Monte Carlo simulation, 

and statistical quantities of the random variable Y 

(settlement) 

Model 
N 

sample 

Mean 

[m] 
Std [m] Pf,MCS 

PCE 106 0.0126 2.9e-3 2.53 % 

PCK 106 0.0126 2.9e-3 2.67 % 

 

The Sobol indices given in Figure 9 show 

that the modulus of the clayey marl is the most 

influent input by far. This layer in ZSOIL is thus 

a key parameter in the model to predict accurately 

the settlement.  

Also, the load of the building plays nearly no 

role in the variation of the settlement. This means 

that it is not necessary to spend too much time 

modelling the exact load of the building.  

 

 
Figure 9 : Sobol total indices, which quantifies the 

influence of each input over the settlement 

4. CONCLUSION 

The method and the tools described in this article 

show that with efficient metamodels like 

Polynomial Chaos Expansion, it is possible to do 

a probabilistic analysis, including uncertainty 

propagation, reliability analysis, and sensitivity 

analysis, on a complex 3D finite element model. 

Probabilistic analyses needed around 1 week to be 

set up and computed, it can therefore be used in 

day-to-day practice (in the whole project, the 

main part remains the construction of the FE 

model). It helps the geotechnical engineers to 

understand the situation, by completing the 

deterministic calculations.  

5. ACKNOWLEDGEMENTS 

The authors would like to thanks the contractor 

the State of Vaud, in collaboration with the 

Transports publics de la region lausannoise (tl) 

and the city of Lausanne, and also the group MAG 

(Monod-Piguet+Associés - Architram – GVH).  

6. REFERENCES 
Allen, D.M., 1974. The Relationship Between 

Variable Selection and Data Argumentation and 

a Method for Prediction. Technometrics 16, 

125–127 

doi:10.1080/00401706.1974.10489157. 

Blatman, G. (2009). Adaptive sparse polynomial 

chaos expansion for uncertainty propagation 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 8 

and sensitivity analysis. Ph. D. thesis, Blaise 

Pascal University - Clermont II. 

ISSMGE-TC304 (2021). State-of-the-art review of 

inherent variability and uncertainty in 

geotechnical properties and models. 

International Society of Soil Mechanics and 

Geotechnical Engineering (ISSMGE) - 

Technical Committee TC304 ‘Engineering 

Practice of Risk Assessment and Management’, 

March 2nd., 2021. DOI: 10.53243/R0001 

Ghanem, R., Spanos, P.D., 2003. Stochastic finite 

elements: a spectral approach. Rev. ed ed., 

Dover Publications, Minneola, N.Y 

Marelli S., Lamas C., Konakli K., Mylonas C., 

Wiederkehr P., Sudret B, UQLab user manual – 

Sensitivity analysis, Report UQLab-V2.0-106, 

Chair of Risk, Safety and Uncertainty 

Quantification, ETH Zurich, Switzerland, 2022 

Marelli S., Lüthen N., Sudret B., UQLab user manual 

– Polynomial chaos expansions, Report 

UQLab-V2.0-104, Chair of Risk, Safety and 

Uncertainty Quantification, ETH Zurich, 

Switzerland, 2022  

Marelli S., Schöbi R., Sudret B, UQLab user manual – 

Structural reliability (Rare event estimation), 

Report UQLab-V2.0-107, Chair of Risk, Safety 

and Uncertainty Quantification, ETH Zurich, 

Switzerland, 2022 

Marelli S., and Sudret B, UQLab: A framework for 

uncertainty quantification in Matlab, Proc. 2nd 

Int. Conf. on Vulnerability, Risk Analysis and 

Management (ICVRAM2014), Liverpool, 

United Kingdom, 2014, 2554-2563. 

Schöbi R., Marelli S., Sudret B, UQLab user manual – 

Polynomial chaos Kriging, Report UQLab-

V2.0-109, Chair of Risk, Safety and Uncertainty 

Quantification, ETH Zurich, Switzerland, 2022 

Phoon KK and Kulhawy FH. Risk and reliability in 

geotechnical engineering, chapter 1. Tay- 

lor&Francis, 2008 

ZSOIL.PC A Windows-Based Tool offering a unified 

approach to numerical simulation of soil and 

rock mechanics, above & underground 

structures, excavations, soil-structure 

interaction and underground flow, including 

dynamics, thermal and moisture migration 

analysis. URL :  "https://zsoil.com" . version 

v23.01. 

 


