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ABSTRACT: Structural reliability analysis provides practitioners with tools to estimate the probability
of failure of various engineering systems. Failure is characterized by a so-called limit-state function that
takes as input a set of uncertain variables describing the system. Due to the complexity of engineering
systems, multiple limit-state functions are generally needed. The problem is known as system reliability,
as opposed to component reliability, for which only a single limit-state is considered. Surrogate-based
solution schemes have shown to be the most efficient methods when used in an active learning scheme.
Research efforts have mainly been devoted to component reliability analysis. Extensions or adaptations
to system reliability have been proposed but they lack of efficiency. In this work, we propose an active
learning scheme for solving system reliability problems in an arbitrary configuration while accounting
for the difference in evaluation costs of the various limit-states. We use Sobol’ sensitivity analysis and
clustering to identify the relevant limit-state functions to update at each iteration. We then formulate a
discrete optimization problem that allows us to account for the computational budget constraints and
each limit-state evaluation cost. The proposed method is validated on an analytical example.

System reliability analysis aims at computing the
failure probability of a structure given the various
uncertainties it is subject to. In particular, it as-
sumes that the structure safety or failure state is
jointly described by a set of m so-called limit-state
functions

{
g j, j = 1, . . . ,m

}
. Each of them takes as

inputs a random vector X∼ fX and returns a scalar.
By convention, negative values of each limit-state
correspond to component failure. However, sys-

tem failure is obtained by the joint contribution of
each component through a composition function h.
More precisely, the failure domain is denoted by
D f =

{
x ∈ RM : h(g1 (x) , . . . ,gm (x))≤ 0

}
. The

failure probability then reads:

Pf =
∫

D f

fX (x)dx. (1)

While we consider arbitrary system config-
urations, common configurations such as
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series or paralell systems can be obtained
by setting h as the minimum and maxi-
mum operator respectively, i.e., D series

f ={
x ∈ RM : min(g1 (x) , . . . ,gm (x))≤ 0

}
and

Dparallel
f =

{
x ∈ RM : max(g1 (x) , . . . ,gm (x))≤ 0

}
.

Solving Eq. (1) is not trivial and one generally
resorts to approximation-, simulation- or surrogate-
based methods (Melchers and Beck, 2018). Simu-
lation methods such as crude Monte Carlo, impor-
tance sampling or subset simulation generally yield
accurate results but are computationally intensive.
They are in fact not affordable when expensive-
to-evaluate computational models are used in the
limit-state functions. Surrogate-based methods
have proven to be an effective alternative. In such
approaches, an inexpensive proxy of the limit-state
function is built and used instead together with tra-
ditional simulation methods. The surrogate is built
by evaluating the original limit-state on carefully
selected samples known as the experimental design.
Efficiency may be enhanced by building the sur-
rogate in an active learning scheme, that is by se-
quentially enriching the experimental design so as
to improve the accuracy of the limit-state surface in
areas of high probability density. This eventually
allows one to accurately estimate the probability of
failure within a relatively small computational bud-
get. Such methods have recently been reviewed in
Teixeira et al. (2021); Moustapha et al. (2022).

These contributions are generally designed for
component reliability problems and are inefficient
when it comes to system reliability. This is due
to some particular aspects of the latter, such as the
presence of multiple and disjoint failure domains
or their uneven contribution of the components to
system failure. However, a few active learning
schemes have been proposed to address some of
the specific issues related to system problems. Ex-
amples include AK-SYS (Active Kriging - Monte
Carlo simulation for system reliability) by Fauriat
and Gayton (2014) or ALK-TCR (active learning
Kriging with truncated candidate regions) by Yang
et al. (2018).

In this work, we propose a generic methodol-
ogy aiming at addressing the peculiarities of sys-
tem reliability. Furthermore, we consider an addi-

tional constraint, more precisely budget constraints.
We consider the case when a pre-defined computa-
tional budget is allocated for solving the reliabil-
ity problem and when the different limit-state func-
tions have different computational costs. We then
aim to find the most effective enrichment scheme to
accurately estimate the probability of failure given
the available computational budget. To this end, we
propose an active learning scheme that relies on a
constrained optimization problem to find the opti-
mal distribution of samples at each enrichment iter-
ation.

The paper is organized as follows. In Section 1,
we set up the problem and introduce various no-
tations. We then present the proposed methodology
in details in Section 2. Finally, we illustrate and val-
idate the algorithm using an analytical benchmark
function in Section 3.

1. PROBLEM SET-UP
Let us consider a set of m limit-state functions
{g1 (x) , . . . ,gm (x)} and assume that each of them
has a computational cost c j,{ j = 1, . . . ,m}. The
difference in cost is generally due to different types
of models and may often range orders of magni-
tudes when different physics are considered.

In engineering practice, the resources allocated
to a design stage are generally limited in time.
When active learning reliability analysis is carried
out, this may translate into a given allowed budget.
Let us denote such a total budget by BT . The goal is
then to optimally use this budget within an enrich-
ment strategy that allows one to find an accurate es-
timate of the probability of failure. For simplicity,
let us assume that the initial experimental design is
not included in this budget. Further assuming that
the enrichment converges after K iterations, the fol-
lowing inequality must hold:

m

∑
j=1

c j

(∣∣∣D (K)
j

∣∣∣−
∣∣∣D (0)

j

∣∣∣
)
≤ BT , (2)

where D
(K)
j is the experimental design correspond-

ing to the j-th component limit-state at the K-th en-
richment iteration and |•| denotes the cardinality of
a set •.
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To accurately estimate the failure probability
while satisfying Eq. (2), it is necessary to optimally
allocate the computational resources to areas of the
input space that contribute to failure as well as only
evaluating the relevant limit-states. To this end, we
devise an enrichment strategy that combines con-
strained optimization, sensitivity analysis and clus-
tering.

2. METHODOLOGY
2.1. General workflow

The proposed methodology follows the tradi-
tional workflow of active learning reliability with
specific steps taken within the enrichment step.
This can be summarized as follows:

1. Build an initial experimental design D
(0)
j for

each limit-state function.

2. Using the current experimental design, build
m surrogate models, one for each limit-state
function, say

{
ĝ j, j = 1, . . . ,m

}
.

3. Using the surrogate models, estimate the fail-
ure probability with the approximate system
limit-state h(ĝ1 (x) , . . . , ĝm (x)).

4. Check for convergence: convergence is as-
sumed if the relative variation of the reliability
index within 3 consecutive iterations is below
a given threshold

∣∣∣β̂ (k)− β̂ (k−1)
∣∣∣/β̂ (k−1) < ε ,

where β̂ (k) = Φ−1
(

P̂(k)
f

)
denotes the gen-

eralized reliability index computed from the
probability of failure P̂(k)

f . If convergence is
achieved proceed to Step 6.

5. Enrich the experimental design by selecting
one or more samples and go to Step 2.

6. Compute a final probability of failure using a
reliability estimation algorithm setting that al-
lows for a more precise estimate.

2.2. Kriging surrogates
In this work, we consider Kriging (Santner et al.,

2003) as surrogate model. Kriging a.k.a. Gaussian
process modelling is an interpolation method based

on Gaussian processes, which casts the function to
approximate as

M̂ (x) = f (x)T C+σ2Z(x,ω), (3)

where the first summand, known as the trend, is cast
here as a polynomial with unknown coefficients C.
The deviation from the trend is captured by the
zero-mean unit variance Gaussian process Z(x,ω)
fully characterized by the auto-correlation function
R(x,x′;θ) and the process variance σ2.

The main interest of Kriging is that it provides
a measure of its own accuracy on top of the
prediction. Given an experimental design, D j ={(

X
(i)
j ,G

(i)
j

)
: G

(i)
j = g j

(
X (i)

)
∈ R,X (i) ∈ RM,

i = 1, . . . ,N j
}

, Kriging assumes, for any unknown
sample x, that Ĝ(x) follows a Gaussian distribution
N

(
µĜ(x),σ

2
Ĝ(x)

)
with

µĜ(x) =fT (x)Ĉ+ rT (x)R−1(G −Fβ̂
)
,

σ2
Ĝ(x) =σ̂2

(
1− rT (x)R−1r(x)+uT (x)(FT R−1F)−1u(x)

)
,

(4)

where F is the observation matrix with Fi, j =

f j(x(i)); i= 1, . . . ,N; j = 1, . . . ,P, r(x) is the vector
of the cross-correlations with ri = R(x,x(i);θ), i =
1, . . . ,N and R is the correlation matrix with el-
ements Ri, j = R(x(i),x( j);θ), i, j = 1, . . . ,N, Ĉ =
(FT R−1F)−1FT R−1G is the weighted least-square
estimate of the regression coefficients and u(x) =
FT R−1r(x)− f(x) is introduced for convenience.

The Kriging prediction is eventually given by
µĜ(x) while the variance σ2

Ĝ(x)
gives indications on

the local error associated to the prediction.
Once the surrogates are built, they can be used

to replace the original limit-state function in the re-
liability analysis. We consider in this work subset
simulation (Au and Beck, 2001) as a reliability esti-
mation algorithm. The samples generated by subset
simulation are considered as candidate points for
enrichment in the next iteration. The enrichment
step, which is the core of the proposed method, is
now described in details.

2.3. Enrichment scheme
Let us assume that we are at the k-th enrichment

iteration and denote by X
(k)

SP the search space for
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enrichment, which corresponds to the samples gen-
erated by subset simulation in the previous itera-
tion. To find the points that are most likely to im-
prove the system limit-state surface and henceforth
the estimate of the failure probability, we solve the
following constrained optimization problem:

arg max
X ∈P(XC)

I (X )

s.t. C (X )≤ B(k),

XC = E (X
(k)

SP ),

(5)

where:

• I (X ) is an improvement function that quan-
tifies the improvement on the knowledge of
the limit-state surface that can be attained by
adding the set X to the experimental design;

• C (X ) is the cost of evaluating the samples in
X using the appropriate limit-state functions;

• E (X
(k)

SP ) is the enrichment candidate function
that selects from the search space the candi-
dates XC that will actually be considered for
optimization;

• P(XC) is the power set of XC, that is the set
of all subsets of XC ranging from the empty
set to XC itself. It forms the search space for
the optimization problem.

Let us now go through each of the ingredients of
this optimization problem.

2.3.1. Improvement function
The improvement function is built using a so-

called learning function whose goal is to provide
the best next point to add to the experimental de-
sign. We consider here an adaptation of the popular
deviation number U used in AK-MCS (active Krig-
ing - Monte Carlo Simulation, Echard et al. (2011)).
In this set-up, the next point to add to the experi-
mental design is defined as:

xnext = argmin
x

U (x) =
|µĜ (x) |
σĜ (x)

, (6)

where µĜ (x) and σ2
Ĝ
(x) are respectively the mean

and variance of the Kriging model at the point x.

This simple yet powerful algorithm adds to the ex-
perimental design the points that are closest to the
limit-state surface (µĜ (x)→ 0) and/or whose pre-
diction is uncertain (σ2

Ĝ
(x) is large).

In system reliability, there are multiple limit-
states and choosing one such point for each limit-
state is not efficient as they do not necessarily con-
tribute to system failure. We therefore use a system
adapted learning function that allows us to integrate
the effect of the composition function h and hence-
forth to find the points that are likely to improve the
knowledge of the system limit-state surface. This
modified learning function simply reads:

Usys =

∣∣µsys (x)
∣∣

σsys (x)
, (7)

where µsys (x) and σsys (x) are respectively
the mean and standard deviation of the sys-
tem limit-state approximation obtained through
the composition function and the surrogates
h(ĝ1 (x) , . . . , ĝm (x)). More precisely, they are
computed empirically, i.e.,

µ̂sys (x) =
1
Ns

Ns

∑
i=1

h
(

z(i)
)
,

σ̂2
sys (x) =

1
Ns−1

Ns

∑
i=1

(
h
(

z(i)
)
− µ̂sys (x)

)2
,

(8)

where z(i) are independent and identically dis-
tributed samples drawn from a multivariate Gaus-
sian derived from the Kriging predictor:

Z(x)∼ fZ (Z) =
m

∏
j=1

N
(

µĜ j
(x) ,σ2

Ĝ j
(x)

)
. (9)

Points that minimize Usys are likely to be located
near the current system limit-state surface or carry
large prediction uncertainty. This information is
embedded in the actual improvement function we
propose, which reads:

I (X ) =
|X |
∑
i=1

( 1
Usys(x(i))+ν

)α
, α ∈ [0,1].

(10)
In this equation, we introduce the cost sensitivity
coefficient α that controls the effect of the learning
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function on the enrichment: when α → 0, all can-
didates give the same contribution, and the domi-
nant criterion in enrichment is actually the evalua-
tion cost imposed through the constraint in Eq. (5).
In contrast, when α → 1 more weight is given to
the actual learning function Usys. The term ν is a
regularizer that allows us to avoid numerical insta-
bilities when Usys(x)→ 0.

2.3.2. Enrichment candidate function
Before evaluating the improvement function, we

reduce the samples produced by subset simulation.
The idea is to keep a small number of relevant sam-
ples so as to maintain a reasonable optimization
cost. To this end, we first filter the initial search
space by keeping only a small percentage corre-
sponding to those points that have the smallest Usys
values, i.e.,

X̃SP =
{

x ∈XSP : Usys (x)< uq
}
, (11)

where uq is a lower q-quantile of Usys as computed
on XSP. In this work, we set q = 0.05.

In the next step, we split the candidates into
m subsets where each subset contains the samples
that are relevant for each of the limit-state func-
tions. The relevance is obtained through Sobol’
sensitivity indices. More precisely, we consider for
each sample x the Sobol’ indices of the function
x 7→ h(ĝ1 (x) , . . . , ĝm (x)) = h(Z(x)). This can be
obtained by a simple Monte carlo simulation given
that Z(x) are multivariate Gaussian whose parame-
ters are given in Eq. (9) and h is a simple analytical
function.

In practice, for each sample x the total Sobol’ in-
dices

{
ST

1 (x) , . . . ,ST
p (x)

}
are computed. The sam-

ple is then added to the set XST
j∗

where j∗ corre-
sponds to the index of the largest Sobol’ index, i.e.,

j∗ = arg max
j={1,...,m}

ST
j (x) . (12)

At the end of this process, the filtered candidate
set for enrichment X̃SP is divided into m subsets
XST

1
, . . . ,XST

m
, each of them corresponding to the

most relevant limit-state to system failure. To ob-
tain the final search space for optimization, each
of these subsets are clustered using a density-based

clustering method (DBSCAN, (Ester et al., 1996)).
The choice of this technique is explained by the
fact that it does not require to know the number
of clusters a priori. Instead, the latter is naturally
derived from the data distribution and often corre-
sponds to a specific failure modes. The points with
lowest Usys values in each cluster are eventually
added to the set XC, which ultimately corresponds
to the search space for the optimization problem in
Eq. (5).

The entire process leading to the selection of a
few samples for the optimization problem is sum-
marized in the pseudo-algorithm described in Al-
gorithm 1.

Algorithm 1 Enrichment candidate selection.

1: Input: Filtered search space X̃
(k)

SP
2: XC← /0
3: for i=1,. . . ,m do
4: XST

i
← /0

5: for all samples x ∈ X̃
(k)

SP do
6: Compute component Sobol’ indices

ST
1 (x) , . . . ,ST

m (x)
7: Add x to the set XST

i
of the largest Sobol’

index ST
i

8: for i=1,. . . ,m do
9: Apply clustering to XST

i
10: for each cluster do
11: Add x̃, the point of the cluster with min-

imum Usys, to XC

2.3.3. Enrichment cost function

The optimization problem in Eq. (5) is a com-
binatorial one that attempts to find the solution in
P (XC), the power set of XC. Let us denote by
X an arbitrary set in P (XC). X can be mapped
to a unique total cost according to the limit-states
the samples it contains are associated to. More pre-
cisely, each sample x∈X is uniquely associated to
the set XST

i
which corresponds to its largest Sobol’

index as previously computed. The cost associated
to the set of samples is therefore that of their corre-
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sponding limit-state functions, i.e.,

C (X ) =
|X |
∑
i=1

m

∑
j=1

c jI{
x(i)∈XST

j

}, (13)

where I is the indicator function, i.e., it is equal to
1 if x(i) ∈XST

j
and to 0 otherwise.

2.4. Summary of the proposed cost-aware active
learning scheme

Once samples are selected through the process
described in the previous section, they are added
to the appropriate experimental design. The surro-
gates are then updated and the probability of fail-
ure estimated again. The process is repeated until
convergence. This is summarized in the following
workflow.

1. Initialization:

(a) Build initial experimental designs
D

(0)
1 , . . . ,D

(0)
m .

(b) Construct surrogate models
ĝ1(x), . . . , ĝm(x) using D

(0)
1 , . . . ,D

(0)
m

2. Calculate the Usys learning function

(a) Estimate P̂(k)
f with subset simulation on

h(ĝ1(x), . . . , ĝm(x)).

(b) If convergence is reached go to step 5.

(c) Obtain X
(k)

SP from samples of subset sim-
ulation.

(d) Estimate Usys for all samples of X
(k)

SP us-
ing Eqs. (7) to (9).

3. Select the enrichment samples

(a) Filter the samples X
(k)

SP into X̃
(k)

SP using
Eq. (11).

(b) Compute the total Sobol’ indices
ST

1 , . . . ,S
T
m for all samples of X̃

(k)
SP .

(c) Split X̃
(k)

SP into m subsets XST
j

where
each subset contains points whose largest
Sobol’ index is ST

j .

(d) Apply DBSCAN clustering to each set
XST

j

(e) For each cluster, add the point x̃ with
minimum Usys to the candidate set XC.

(f) Solve the optimization problem of Eq.
(5) to determine the enrichment set
X

(k)
En .

4. Enrich the surrogates:

(a) Add each sample of X
(k)

En with highest
sensitivity index ST

j to the experimental

design D
(k)
j of the surrogate model ĝ j(x).

(b) Construct the surrogate models
ĝ1(x), . . . , ĝm(x) with the updated
experimental designs D

(k)
1 , . . . ,D

(k)
m .

(c) Go to step 2.

5. Final estimate: Estimate P̂f using subset sim-
ulation on h(ĝ1(x), . . . , ĝm(x)) with a larger
number of samples.

3. EXAMPLE: FOUR-BRANCH FUNC-
TION

To illustrate the proposed methodology, we con-
sider a popular reliability problem using the so-
called four-branch function, which is defined as se-
ries system with:

h(g1 (X) , g2 (X) , g3 (X) , g4 (X)) =

min(g1 (X) , g2 (X) , g3 (X) , g4 (X)) ,
(14)

where




g1(X) = 3+0.1(X1−X2)
2− 1√

2
(X1 +X2),

g2(X) = 3+0.1(X1−X2)
2 + 1√

2
(X1 +X2),

g3(X) = (X1−X2)+
7√
2
,

g4(X) = (X2−X1)+
7√
2
,

(15)
and X1, X2 ∼N (0, 1). The reference failure prob-
ability is Pf ,ref = 2.22 ·10−3, which corresponds to
a reliability index βref = 2.84.

To illustrate the algorithm, let us first consider
the case when the component costs are defined as
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c1 = 2, c2 = 1, c3 = 0.1 and c4 = 0.1. Figure 1 il-
lustrates the first two enrichment iterations for a
budget set to B(k) = 2, where the initial experimen-
tal design is N(0) = 5. The colored clouds of lines
(green and orange) correspond to the filter and clus-
tered sample sets XST

j
. In this example the two lin-

ear limit-states g3 and g4, are already well defined
and all samples associated to them are removed dur-
ing the filtering step as their corresponding Usys val-
ues are large (see Eq. (11)). The final candidate set
XC after clustering only consists of four and three
points in iteration 1 and 2 respectively. They are
shown by the large colored circles. The green ones
correspond to the ones that will eventually form the
enrichment set XEn, that is the solution of the opti-
mization problem. It can be seen by the information
given in the figures that their improvement function
are the largest, while their combined cost is equal
to the iteration budget.

(a) Iteration 1

(b) Iteration 2

Figure 1: Illustration of the enrichment for two itera-
tions in the four-branch function example.

Generally, the enrichment scheme is greatly in-

fluenced by the difference in the computational
costs between the limit-states c1, . . . ,cm (with re-
gard to the computational budget B(k)) and by the
coefficient α . To study their effect on the conver-
gence of the algorithm, we consider three different
cases corresponding to different limit-state costs as
illustrated in Table 1. On top of that, we consider
three different values for the coefficient α , namely
{0, 0.5, 1}. This gives a total of 9 problems that
are solved using the proposed methodology. For
these case studies, we consider an iteration budget
B(k) = 3 and a total budget BT = 60. The initial ex-
perimental design size is still N(0) = 5 for all limit-
states.

Table 1: Different cases for the four-branch function.

Case c1 c2 c3 c4
A 3 1 0.1 0.1
B 2 1 0.1 0.1
C 1 1 0.1 0.1

Figure 2 shows the boxplots of the resulting er-
rors considering 15 repetitions of the analysis for
each of the 9 cases. The relative error ε(i)Pf

of the
i-th repetition is obtained with respect to the refer-
ence solution Pf ,ref, i.e., ε(i)Pf

= |P̂(i)
f −Pf ,ref|/Pf ,ref.

It can first be noted that the error in the estima-
tion decreases from cases A to C. This is due to
the fact that the cost of g1 decreases, thus offering
more computational budget. We can also observe
that as the value of α increases, the probability of
failure estimate is getting more accurate. This is
because larger values of α put more emphasis on
the contribution of the learning function Usys in the
improvement function, hence leading to more accu-
rate estimates.

These observations can be confirmed by the me-
dian values given in Table 2. Looking at the num-
ber of model evaluations for each case, we can note
that the number of evaluations of g1 increases when
moving from case A to case C. This is consistent
with the fact that the cost of evaluating g1 decreases
from A to C. Finally, for the same cost configura-
tions we can note that the difference in number of
evaluations between g1 and g2 decreases as α in-
creases. This is due to the fact that g1 and g2 have
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Figure 2: Relative error for the different cases consid-
ered for the four-branch function.

the same contribution to system failure, while small
values of α , especially when α = 0, puts more em-
phasis on the effect of the evaluation cost rather
than the actual value of the learning function.

Table 2: Four-branch function median results for cost-
aware simulations.

Case α εPf [%] # Eval. g1 # Eval. g2
A 0 14.7 7.5 48
A 0.5 1.33 13.5 33.5
A 1 0.720 14 37.5
B 0 3.18 12 50
B 0.5 0.662 23 29
B 1 0.423 23 29
C 0 0.382 25 40
C 0.5 0.373 37 33
C 1 0.474 34 36

4. CONCLUSIONS
In this work, we have proposed an active learning

reliability method for the solution of system relia-
bility problems with budget constraints. The pro-
posed method relies on an optimization problem
that aims at finding a combination of points that
yield the largest improvement in the system limit-
state surface while having an evaluation cost that is
below the computational budget allowed at each it-
eration. The search space for the optimization prob-
lem is obtained by combining a learning function,
clustering and sensitivity analysis. The latter allows
us to select for each enrichment candidate the limit-
state function that actually contributes to system
failure. The proposed method is flexible enough as

it allows to control the explorative behavior of the
enrichment scheme through a cost sensitivity coef-
ficient. We have used a toy problem to investigate
how the enrichment is affected by various evalua-
tion costs as well. The results have shown that the
algorithm is efficient and effectively aware of the
computational cost, yet it prefers in general enrich-
ing the cheaper models whenever possible.
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