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Risk, Safety &
Uncertainty Quantification



Data Sheet

Journal: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
Part A: Civil Engineering

Report Ref.: RSUQ-2024-001B

Arxiv Ref.: https://arxiv.org/abs/2401.06447 [stat.ME] [stat.ML] [stat.CO]

DOI: -

Date submitted: January 12, 2024

Date accepted: -



Uncertainty-aware multi-fidelity surrogate modeling with noisy
data

Katerina Giannoukou ∗1, Stefano Marelli†1, and Bruno Sudret‡1

1Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Switzerland

October 29, 2024

Abstract

Emulating high-accuracy computationally expensive models is crucial for tasks requiring
numerous model evaluations, such as uncertainty quantification and optimization. When
lower-fidelity models are available, they can be used to improve the predictions of high-
fidelity models. Multi-fidelity surrogate models combine information from sources of varying
fidelities to construct an efficient surrogate model. However, in real-world applications,
uncertainty is present in both high- and low-fidelity models due to measurement or numerical
noise, as well as lack of knowledge due to the limited experimental design budget. This
paper introduces a comprehensive framework for multi-fidelity surrogate modeling that
handles noise-contaminated data and is able to estimate the underlying noise-free high-fidelity
model. Our methodology quantitatively incorporates the different types of uncertainty
affecting the problem and emphasizes on delivering precise estimates of the uncertainty in
its predictions both with respect to the underlying high-fidelity model and unseen noise-
contaminated high-fidelity observations, presented through confidence and prediction intervals,
respectively. Additionally, the proposed framework offers a natural approach to combining
physical experiments and computational models by treating noisy experimental data as
high-fidelity sources and white-box computational models as their low-fidelity counterparts.
The effectiveness of our methodology is showcased through synthetic examples and a wind
turbine application.

1 Introduction

Predicting the behavior of complex systems and quantifying the corresponding uncertainty is a
ubiquitous challenge in engineering and applied sciences. To address this challenge, a variety of
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predictive models are employed. White-box computational models, typically implemented as
computer simulations, use pre-existing knowledge on the underlying physics of a system to predict
its behaviour. Conversely, black-box data-driven models act as global approximators of the
response of a system, based on an available set of input-output observations (Rogers et al., 2017).
In applications such as uncertainty quantification and optimization, which require numerous model
evaluations, a specific subset of black-box models, known as surrogate models (SMs)—also known
as metamodels or emulators—is often used to replace computationally expensive computational
models. A SM acts as an inexpensive-to-evaluate approximator of an original model, and is
constructed using a limited set of model evaluations, called the experimental design (ED), also
known as training set in machine learning. Among the most widely used SMs for deterministic
simulators are polynomial chaos expansions (PCE) (Xiu and Karniadakis, 2002; Blatman and
Sudret, 2011), Gaussian processes (GPs) (Rasmussen and Williams, 2006), and support vector
regression (Drucker et al., 1996).

A specific class of surrogate models that is particularly useful in scenarios where data or compu-
tational models of varying fidelities are accessible is multi-fidelity surrogate models (MFSMs).
With model fidelity, we refer to the extent to which a model faithfully reflects the characteristics
and behavior of the target system it intends to simulate. Generally, high-fidelity (HF) models
produce accurate predictions, but are associated with high computational or financial costs.
Low-fidelity models (LF) are instead less accurate, but also less expensive to run. Models of
different fidelities can occur by, e.g., changing the mathematical or numerical model, or changing
accuracy of the numerical solver using different levels of discretization (Fernández-Godino, 2023).
Multi-fidelity (MF) surrogate modeling approaches combine multiple sources of different fidelity
into a single surrogate model, usually augmenting a limited and expensive-to-obtain HF data
set with more extensive and less expensive lower-fidelity ones (Kennedy and O’Hagan, 2000;
Le Gratiet and Garnier, 2014).

The choice of surrogate model is an integral part of the design and construction of a MFSM.
Numerous MFSM techniques are based on Gaussian process modeling, following the autoregressive
fusing scheme proposed by Kennedy and O’Hagan (2000). Such works include Forrester et al.
(2007) and Le Gratiet and Garnier (2014), among others, with the latter reformulating the
approach from Kennedy and O’Hagan (2000) to have a recursive form, allowing for a reduced
computational complexity. Polynomial chaos expansion is another SM that has gained popularity
in the past two decades for the purpose of MF surrogate modeling (Ng and Eldred, 2012; Palar
et al., 2016). The approaches mentioned so far use linear information fusion, which entail assuming
that a higher-fidelity response can be expressed as a linear combination of a lower-fidelity model
and a discrepancy function. Recently, multi-fidelity modeling approaches have been proposed in
the machine learning community, for example, the deep GP-based framework of Cutajar et al.
(2018); Hebbal et al. (2021), the Bayesian neural network approaches from Meng et al. (2021);
Kerleguer et al. (2024), and the generative adversarial network-based methodology proposed by
Zhang et al. (2022). These approaches can capture the nonlinear relations between the different
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levels of fidelity. According to a comparison among different linear and nonlinear GP-based
MF techniques performed by Brevault et al. (2020), when the high- and low-fidelity models are
weakly correlated, nonlinear techniques can outperform linear and less complex techniques, with
the caveat of requiring a larger quantity of HF data.

However, multi-fidelity methods do not necessarily involve the construction of a MFSM. Pe-
herstorfer et al. (2018) classify MF methods into three categories: adaptation, where the LF
model is enhanced with information from the HF model; fusion, which combines information from
all fidelity levels simultaneously; and filtering, where the HF model is invoked only when the LF
model is inaccurate or some criterion is met. Typically, multi-fidelity surrogate modeling methods
fall under the adaptation (Kennedy and O’Hagan, 2000; Ng and Eldred, 2012; Chakraborty,
2021) or fusion (Bryson and Rumpfkeil, 2017; Yang et al., 2019) categories. In the context
of uncertainty quantification, non-surrogate-based MF approaches include the control variate
framework (Lavenberg and Welch, 1981; Gorodetsky et al., 2020; Pham and Gorodetsky, 2022),
which falls under the fusion category, as well as importance sampling (Peherstorfer et al., 2016)
and multistage Markov Chain Monte Carlo methods (Christen and Fox, 2005), both classified
under filtering. Moreover, in some MF settings, a strict hierarchy of fidelity levels is not present.
The MFNets framework proposed by Gorodetsky et al. (2020, 2021) provides a general approach
to incorporate multiple fidelities with diverse relations.

Most of the existing literature on MF surrogate modeling focuses on deterministic and noise-free
high- and low-fidelity models. However, all real-world measurement devices have limited precision
and resolution, and therefore, data resulting from measurements are generally contaminated by
irreducible noise. In our context, this noise is considered as a source of aleatory uncertainty, as
we assume that no more precise measurement device is available once a specific experimental
data set has been provided. Moreover, the available training data for the construction of all the
elements of a MFSM is in principle relatively small due to computational budget constraints.
Thus, we consider all MFSM predictions as affected by epistemic uncertainty. Recent studies that
consider the presence of noise in a MF setting include the work of Raissi et al. (2017), who use
GP regression to infer the solutions of differential equations when noisy data of different fidelities
are available. Furthermore, Zhang et al. (2018) demonstrate that their linear regression-based
MF surrogate modeling technique is robust to noise in the HF data, and is also able to estimate
the noise level when enough HF data is available. Also, Ficini et al. (2021) assess the robustness
of a GP regression MFSM on problems affected by noisy objective function evaluations. Finally,
few regression-based approaches have combined physical experiments and computer simulations
using MFSMs (Kuya et al., 2011; Pandita et al., 2021).

To the authors’ best knowledge, however, no work has yet introduced a comprehensive approach
to multi-fidelity surrogate modeling that considers the presence of both noise and/or epistemic
uncertainty in the high- and/or low-fidelity data. This approach should also provide a way to
quantify the accuracy of the MF model predictions with respect to a) the underlying noise-free
HF model and b) the noisy HF observations. The uncertainty about the mean prediction of
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a regression model is typically expressed via confidence intervals (CIs). The CIs express the
epistemic uncertainty in the MFSM predictions. On the other hand, the uncertainty on the
prediction of an unseen noise-contaminated observation is shown via prediction intervals (PIs)
(Kutner et al., 2005). PIs consider the total of epistemic and aleatory uncertainty in the MFSM
predictions, and thus, generally, they are wider than the corresponding CIs.

Many of the existing MF surrogate modeling methods do not provide uncertainty estimations
about the MFSM predictions. When CIs are provided, their construction is usually linked to
the particular methodology employed in constructing the MFSM, e.g., GP-based CIs (Raissi
et al., 2017; Perdikaris et al., 2017). This can potentially make the frameworks less flexible when
different MFSM architectures or SMs need to be explored. Additionally, GP-based confidence
intervals often assume that the response distribution at each point is Gaussian, leading to
symmetrical CIs around the MFSM response. However, this assumption does not always reflect
reality. We propose a bootstrap-based approach for constructing CIs that does not assume
any specific shape for the response distribution, making it more general and applicable to a
wider range of scenarios. Moreover, no work has considered the distinction between confidence
and prediction intervals in a multi-fidelity setting. Typically, prediction intervals are either
disregarded or, mistakenly, confidence intervals are presented as prediction intervals.

The goal of the present paper is to introduce a novel general framework for multi-fidelity
surrogate modeling that is able to deal with noisy data and epistemic uncertainty due to
limited training information. We assume that the noisy HF data originate from deterministic
models contaminated by unbiased stochastic noise. Therefore, our MF framework aims at
effectively emulating the underlying deterministic models, or in other words at denoising the
noise-contaminated observations. An essential and original feature of our methodology is its
ability to provide estimates of the different kinds of uncertainty in its predictions in the form of
both confidence and prediction intervals.

Often, the response of a system can be predicted by one or more white-box computational
models, while additional data can be obtained through physical experiments. The proposed
multi-fidelity framework provides a direct approach for integrating both computational models
and experimental data into a single surrogate model. Traditionally, physical experiments have
been used to improve computational models through model calibration, where parameters of
a model are inferred by fitting the model predictions to available experimental data (Kennedy
and O'Hagan, 2001; Higdon et al., 2004; Pavlak et al., 2014). However, computational models
may not fully capture the system’s complexity, making it important to incorporate data-driven
elements. In this paper, we achieve this integration using multi-fidelity surrogate models. The
computational models are assumed to capture the general physical behavior of the system, while
the experiments can capture its entirety, but only on a very limited set of conditions, due to
their associated costs. In particular, we consider the experimental data as noise-contaminated
realizations of unknown HF models, whereas the available white-box computational models are
considered as their LF counterparts. We approach white-box models within a non-intrusive
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context, eliminating the requirement for prior knowledge of the underlying equations. Other
methods that have been explored in the literature to combine physical experiments and simulations
include hybrid simulation, which combines physical and numerical substructures to create a
hybrid model (Schellenberg et al., 2009; Abbiati et al., 2021), as well as scientific machine learning
approaches, such as physics-informed neural networks (Raissi et al., 2019; Jagtap et al., 2022)
and physics-informed PCE (Novák et al., 2024), which incorporate physical laws and constraints
directly into the surrogate models.

This paper is organized as follows: First, we recall the relevant theory for MFSMs and present
our framework for MF surrogate modeling, including the special case of combining physical
experiments and simulations. We then present the related confidence and prediction intervals,
as well as the implementation details for each component of the framework. Subsequently, we
assess the proposed method by applying it to two synthetic examples of increasing complexity,
as well as a real-world application. Finally, we discuss concluding remarks and present prospects
for future research.

2 Methods

In this section, we first formally state the multi-fidelity surrogate modeling problem, while
establishing the notation we are adopting throughout the paper. Then, we describe our proposed
methodology to combine experimental data and computational models in a multi-fidelity surrogate
model. Subsequently, we propose to express the uncertainty related to the MFSM predictions
using confidence and prediction intervals, and we discuss the interpretation of these intervals in
the MF setting. Lastly, we outline our proposed implementation for constructing a MFSM, as
well as for estimating its confidence and prediction intervals.

2.1 Multi-fidelity surrogate modeling

We assume that we have s information sources which produce data of different fidelity levels.
Without loss of generality, we initially focus on the case when two levels of fidelity are present. Let
us consider a HF data set (X H,YH) of size NH, obtained, e.g., from an expensive experimental
campaign or computational model. The input space is X ∈ RM , while the output space is Y ∈ R.
We assume that observations from this HF information source are contaminated by additive
noise, which can correspond to measurement noise in the case of experimental data, to numerical
noise in the case of computer simulations, or in general, to unobserved sources of variability.
Then, any observation yH at an input point x can be expressed in the general form:

yH(x, εH) = ψH(x) + εH, (1)

where x is a realization of X, ψH(x) is an unknown deterministic function, and εH is considered
to be an additive noise term, independent of x and modeled as a random variable, following
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some prescribed zero-mean distribution:

εH ∼ fεH(εH), E [εH] = 0. (2)

Thus, each noise-contaminated observation in the available HF data set (X H,YH) can be expressed
as:

yH(x(i)
H , ε

(i)
H ) = ψH(x(i)

H ) + ε
(i)
H , i = 1, ... , NH, (3)

where ε(i)
H is a realization of the noise εH . In the rest of this paper, for the sake of notation

conciseness we denote each observation yH(x(i)
H , ε

(i)
H ) in the HF data set simply as y(i)

H .

Moreover, let us consider that for the same system there is another information source of lower
fidelity, which provides us with the data set (X L,YL), where

yL(x(i)
L , ε

(i)
L ) = ψL(x(i)

L ) + ε
(i)
L , i = 1, ... , NL, (4)

with εL ∼ fεL(εL) and E [εL] = 0. The size NL of this lower-fidelity data set is generally larger
than that of the corresponding HF data set.

A MFSM aims to directly estimate the underlying deterministic HF function ψH(x) with a
function ψ̂H(x) by combining all the available variable-fidelity information. To this end, the
LF response can be represented by a classical surrogate model ψ̂L(x) ≈ ψL(x), since the cost
of obtaining data from the associated source cannot in general be assumed negligible. Then,
assuming that the LF model captures the general trend of the underlying HF function ψH(x), we
can express the MFSM as a linear combination of the LF surrogate and a discrepancy function
δ(x):

ψ̂H(x) = ρ(x) · ψ̂L(x) + δ(x), (5)

where ρ(x) is a scaling function. We can simplify Equation (5) by assuming the scaling function
to be a constant ρ:

ψ̂H(x) = ρ · ψ̂L(x) + δ(x). (6)

As implied in Equation (6), we assume a strict hierarchy of fidelities in our context, meaning
that across the entire domain of definition, the higher-fidelity model is more accurate and/or
more computationally expensive to evaluate than the lower-fidelity model. In addition, for the
multi-fidelity surrogate model as in Equation (6) to outperform a surrogate model built solely
from high-fidelity data, it is implicitly assumed that the discrepancy δ(x) between the HF model
and the scaled LF model is less complex, and thus simpler to model, than the HF model itself.

Our MFSM approach to estimate the noise-free HF function ψH(x) is based on regression;
therefore, for the rest of this paper, the terms “multi-fidelity surrogate model" and “multi-fidelity
regression model" are used interchangeably. The class of surrogates for the LF model and the
discrepancy function δ(x) can be chosen among a wide range of regression models, including,
among others, PCE, GP regression, or neural networks. However, the framework described in
this section is independent of the particular choice of surrogate modeling methods, and hence,
we will refrain from specifying the choice of SM for now.
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Zhang et al. (2018) and Ficini et al. (2021) demonstrated that a number of multi-fidelity regression
techniques are robust to noise, provided the number of available high-fidelity observations is
large enough. In other words,

lim
NH→∞

ψ̂H = ψH. (7)

When information from more than two levels of fidelity is available, Equation (6) can be generalized
in a recursive way (Kennedy and O’Hagan, 2000):

ψ̂s(x) = ρs · ψ̂s−1(x) + δs(x), (8)

where the predictor of a model at a particular fidelity can be used to construct the predictor for
the immediately higher-fidelity model.

2.2 Combining physical experiments and computer simulations

Let us consider a set of observations (X H,YH) obtained through an experimental campaign, each
observation of which can be expressed as in Equation (3). Moreover, let us assume that the
system response can also be predicted by a white-box computational model, such as a system of
equations or a complex finite element simulator, denoted as ML(x).

Then, we can assume that experiments can accurately capture the behavior of the system under
investigation, but the information they provide is incomplete due to their scarcity. On the other
hand, the available computational model can complement this information by providing a larger
amount of data, but at the cost of lower accuracy, due either to inherent model simplifications
(e.g. ignoring some physics), or to numerical limitations (e.g. discretization). To combine the
two, we apply multi-fidelity surrogate modeling, wherein the experimental data is regarded as
noise-affected realizations of a high-fidelity model, and the white-box computational model is
treated as its low-fidelity equivalent. Following the rationale described in the previous section,
the computational model is replaced by a surrogate model M̂L(x), constructed with a set of
model evaluations (X L,ML(X L)).

Adopting the MF surrogate modeling information fusion scheme introduced previously, a multi-
fidelity model predictor aiming to emulate the underlying noise-free HF function output ψH(x)
can be expressed as:

ψ̂H(x) = ρ · M̂L(x) + δ(x). (9)

2.3 Confidence and prediction intervals

Confidence and prediction intervals are powerful means of conveying the uncertainty present
in the predictions of a model, thus significantly increasing the informative value of single-point
estimates.
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If we denote the unobservable error in the MFSM at a given input x0 with respect to the
underlying HF model by em(x0), then this reads:

em(x0) = ψH(x0) − ψ̂H(x0). (10)

Confidence intervals (CIs) express the uncertainty about this model error or, in other words,
about where the underlying HF function lies. More precisely, the (1 − 2α) confidence interval for
the underlying HF function at x0 is an interval [ψlo,α(x0), ψup,α(x0)], such that:

P [ψlo,α(x0) < ψH(x0) < ψup,α(x0)] = 1 − 2α, (11)

where α is typically set equal to 0.05 for a 90% CI.

This uncertainty is due to the incomplete information provided by the finite-size HF and LF
experimental designs, and can be reduced when more data is available. Therefore, it can be
interpreted as epistemic uncertainty. Assuming that our multi-fidelity regression model is able
to accurately represent the underlying HF function in the presence of unlimited data, we have
limNH→∞(ψup,α(x0) − ψlo,α(x0)) = 0, meaning that as NH → ∞, the confidence interval for the
multi-fidelity regression model predictor collapses to a single value at each point.

Moreover, according to Equation (1), a HF output yH at an input x0 is expressed as the sum of
the underlying HF function ψH(x0) and a realization of the noise random variable εH. Hence,
from Equations (1) and (10), the error in the MF model with respect to a noise-contaminated
HF observation can be expressed as follows:

yH(x0, εH) − ψ̂H(x0) = ψH(x0) + εH − ψ̂H(x0)

= (ψH(x0) − ψ̂H(x0)) + εH

= em(x0) + εH. (12)

Thus, we can notice that this error is the sum of two independent components: the reducible
model error em(x0) and the irreducible error εH due to the noise in the HF observations. This
uncertainty regarding the value of an unseen HF observation is quantified by prediction intervals
(PIs). Similarly to CIs, we can write that the (1 − 2α) prediction interval for a HF observation
at x0 is an interval [ylo,α(x0, εH), yup,α(x0, εH)], such that:

P [ylo,α(x0, εH) < yH(x0, εH) < yup,α(x0, εH)] = 1 − 2α. (13)

From Equations (10) and (12), it is evident that the PI encloses the corresponding CI, and
consequently, the former is wider than the latter. The difference in their width indicates how
much we can improve predictions by increasing the amount of training data.

Figure 1 illustrates the difference between the CIs and PIs in a single-fidelity linear regression
problem with noise-contaminated data. The area between the blue dashed lines is the 90% CI,
and shows the uncertainty about where the regression line (blue line) should lie; alternative
regression lines trained on different realizations of the same process that generated the current
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data are represented with thin blue lines. Moreover, the area between the gray dashed lines is the
90% PI, and expresses the uncertainty about where an unseen noise- contaminated observation
is likely to fall.

Figure 1: 90% confidence and prediction intervals for the linear regression trained on the
illustrated noise-contaminated observations. The thin blue lines represent regression lines for
alternative realizations of these observations.

2.4 Implementation

2.4.1 Construction of a multi-fidelity model

Starting from a set of high-fidelity experimental data (X H,YH) and a lower-fidelity computational
model ML(x), we provide here the methodology to combine the two in a MFSM.

Our approach uses polynomial chaos expansion as a surrogate model in the hybrid correction
scheme introduced in Equation (9), extending the works of Ng and Eldred (2012); Palar et al.
(2016); Berchier (2016). The main motivations behind our choice of PCE as a surrogate in our
MFSM methodology include its robustness to noise, its efficiency in terms of training, and its
applicability in uncertainty quantification problems.

PCE is a surrogate modeling technique which provides an approximation of a model with
finite variance through its spectral representation on a polynomial basis (Xiu and Karniadakis,
2002; Ghanem and Spanos, 2003; Lüthen et al., 2021). Let X ∈ RM be a random vector with
independent components and joint probability density function (PDF) fX(x) = ∏M

i=1 fXi(xi),
where fXi is the marginal PDF of the random variable Xi. In practice, the polynomial basis
needs to be finite, and the truncated PCE of a computational model M(x) is defined as

M̃ (x) =
∑

α∈A
cαΨα (x) , (14)

9



where cα ∈ R are the coefficients of the multivariate polynomials {Ψα, α ∈ A}. Each polynomial
Ψα is the product of univariate polynomials orthogonal with respect to the PDF fXi of the input
variable Xi, and characterized by the multi-index α. A ⊂ NM is the finite set of multi-indices of
the polynomials, and it can be obtained from different truncation schemes, such as total-degree,
low-rank or hyperbolic truncation (Marelli et al., 2022). The mean and variance of M(X) can
be approximated by:

µ̂PC = c0 (15)

σ̂2
PC =

∑

α∈A
α̸=0

c2
α. (16)

For the calculation of the PCE coefficients cα, we adopt a regression-based strategy, as exhaustively
reviewed in Lüthen et al. (2021, 2022), because of its applicability to data-driven problems and
robustness to noise (Torre et al., 2019). Specifically, we opt for a sparse regression solver, least
angle regression (LARS) (Blatman and Sudret, 2011). Moreover, for the choice of the PCE
basis we use degree adaptivity, as well as a total-degree truncation scheme for low-dimensional
applications and hyperbolic truncation for higher-dimensional applications.

The first step in constructing our multi-fidelity surrogate model as in Equation (9) entails creating
a surrogate of the low-fidelity model using PCE. For this purpose, we first sample NL realizations
X L = {x

(1)
L , ...,x

(NL)
L } of the input random variables (e.g. through Latin hypercube sampling;

McKay et al. (1979)) and obtain the corresponding model responses YL = {y(1)
L , ..., y

(NL)
L }. We

then construct a PCE model
M̂L(x) =

∑

α∈AL

cα,LΨα (x) (17)

as discussed above. By using M̂L(x) in place of the original LF model ML(x), we eliminate
the need for the HF training set to be a subset of the LF one, as from now on we are able
to obtain evaluations of M̂L at a negligible cost. Moreover, we are able to remove any noise
that may be present in the LF data in a general MFSM scenario. However, inaccuracies in the
PCE surrogate of the LF model can impact the overall performance of the MFSM. Accurately
approximating the LF model using PCE requires that the LF model response is sufficiently
smooth. Moreover, highly non-linear LF models may require higher-order polynomials in the
PCE to achieve accurate approximations. The use of degree-adaptive PCE allows for selecting
the most appropriate degree, while sparse regression keeps the number of coefficients to be
computed manageable and minimizes the risk of over-fitting. Nevertheless, in cases where the
cost of evaluating the LF model is negligible, such as when the LF model is given by an analytical
function, the LF model ML(x) can be used directly in the MFSM. This eliminates the need to
train M̂L(x), thus avoiding any potential loss of accuracy.

Since our HF experimental data set is given, we can now evaluate M̂L at the available correspond-
ing input samples X H = {x

(1)
H , ...,x

(NH)
H } to obtain {M̂L(x(1)

H ), ...,M̂L(x(NH)
H )}. An estimator ρ̂
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of ρ in Equation (9) can be directly obtained as:

ρ̂ = Ex

[
yH(x, εH)
M̂L(x)

]
≈ 1
NH

NH∑

i=1

y
(i)
H

M̂L(x(i)
H )

. (18)

Moreover, the discrepancy term δ(x) in Equation (9) is given by

δ(x) = ψ̂H(x) − ρ · M̂L(x). (19)

Now, using as training data (X δ,Yδ) = (X H, {y(i)
H − ρ̂M̂L(x(i)

H ), i = 1, ..., NH}), we train a PCE
model δ̂(x) for the discrepancy δ(x),

δ̂(x) =
∑

α∈Aδ

cα,δΨα (x) . (20)

Lastly, the LF and the discrepancy expansions can be merged into a single expansion, which can
be expressed as follows:

ψ̂H(x) =
∑

α∈AL∩Aδ

(ρ̂cα,L + cα,δ)Ψα (x) +
∑

α∈AL\Aδ

ρ̂cα,LΨα (x) +
∑

α∈Aδ\AL

cα,δΨα (x) , (21)

where AL ∩ Aδ is the set of multi-indices present in both the LF and the discrepancy expansions,
AL\Aδ is the set of multi-indices present only in the LF expansion, and Aδ\AL the set of
multi-indices present only in the discrepancy expansion. This last step is optional, and it is only
possible when both M̂L(x) and δ̂(x) are PCEs. In general, different SMs could be used for either
of these two models, in which case the combined expression in Equation (21) is not available.
Thus, the corresponding step is omitted, and the multi-fidelity predictor is instead expressed as:

ψ̂H(x) = ρ̂ · M̂L(x) + δ̂(x). (22)

According to the categorization by Peherstorfer et al. (2018), as discussed in the introduction of
this paper, this multi-fidelity surrogate modeling method falls under the adaptation category,
since the LF data is initially used to construct the LF surrogate model ψ̂L, which is then corrected
through a discrepancy function and a scaling factor using HF model evaluations to predict the
HF model.

In summary, the construction of the multi-fidelity surrogate model from a HF experimental data
set (X H,YH) and a LF computational model ML(x) according to Equation (9) involves the
following main steps:

1. Use sampling to obtain an ED (X L,YL) = (X L,ML(X L)) for the LF model;

2. Train a PCE model M̂L(x) on (X L,YL);

3. Evaluate M̂L(x) at the available HF parameter sets X H to obtain
{M̂L(x(i)

H ), i = 1, ..., NH};
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4. Estimate ρ̂ = E
[

yH(x,εH))
M̂L(x)

]
≈ 1

NH

NH∑
i=1

y
(i)
H

M̂L(x(i)
H )

;

5. Construct a PCE estimator δ̂(x) for the discrepancy function, using the ED
(X H, {y(i)

H − ρ̂M̂L(x(i)
H ), i = 1, ..., NH});

6. Use the computed M̂L(x), ρ̂, δ̂(x) for the MF predictor as in Equation (22). Optionally,
merge the LF and discrepancy expansions into one PCE.

In a broader multi-fidelity setting, a low-fidelity data set, or even a pre-trained surrogate of the
LF model (not necessarily a PCE model) can be available instead of a LF computational model.
In this situation, one can follow the same procedure to construct the MFSM, by simply omitting
Step 1, and in the second case also Step 2. Furthermore, when a high-fidelity computational
model is available instead of a HF data set, an additional step precedes Step 1. This consists in
using sampling to obtain a HF experimental design (X H,YH). These adaptations accommodate
the general multi-fidelity case, which need not strictly adhere to the framework of combining
physical experiments and computer simulations.

Please note that, in the methodology described above, ρ and δ(x) are estimated successively in
two separate steps. However, in principle, estimating them jointly is also possible. One approach
is to first determine the basis functions for the PCE δ̂(x), defined by the truncation set Aδ, by
following Steps 1-5. Then, considering M̂L(x) as another basis function in the expression

ψ̂H(x) = ρ · M̂L(x) +
∑

α∈Aδ

cα,δ,newΨα (x) , (23)

one can jointly estimate ρ and the coefficients cα,δ,new using OLS. Another approach is based
on alternating least squares (Chevreuil et al., 2015), where the estimates for ρ and δ(x) are
iteratively refined. The starting value for ρ̂ in this joint optimization can be obtained from the
4th step of the algorithm described above.

If the LF model response is close to zero, the current estimator of ρ given in Step 4 can be
problematic. In these cases, one can employ an alternative estimator, computed as the ratio
of the standard deviations of the HF and the LF models. These standard deviations can be
computed, for example, according to Eq. (16) from PCEs trained on the available HF and LF
data sets. Then,

ρ̂alt = σ̂H
σ̂L
. (24)

While this estimator of ρ provides the additional benefit of being invariant to linear transforms
between the HF and LF model responses, it can be sensitive to noise in the data. Therefore, one
needs to use it with caution, and only in cases where minor noise is expected.

Finally, an alternative method that avoids these risks is similar to the first variation for joint
estimation of ρ and the coefficients cα,δ of the expansion of δ(x), but instead of performing a
two-step joint estimation of ρ and cα,δ, it combines both estimations in a single step. Specifically,
M̂L(x) in Equation (22) is treated as a basis function alongside the basis functions Ψα (x) of ˆδ(x).
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Then, a sparse regression technique, such as LARS or subspace pursuit (Dai and Milenkovic,
2009; Diaz et al., 2018) is employed to jointly estimate ρ and cα,δ, eliminating the need to fit
each of them separately in an initial step.

In the applications discussed below, we opt for the method outlined in Steps 1-6 due to its
simplicity. Notably, its performance closely paralleled that of the variations discussed above.

2.4.2 Construction of confidence and prediction intervals

Our methodology for constructing confidence and prediction intervals is based on bootstrapping.
The bootstrap estimator is used to determine measures of accuracy for statistical estimates, e.g.,
standard errors, biases, and confidence intervals, by creating multiple data sets from an original
one using random re-sampling with replacement (Efron and Tibshirani, 1994). It is based on
the notion that a bootstrap sample is drawn from the observed data in a way similar to how
the observed data set is drawn from an unknown population probability distribution. Therefore,
inference about a population from an observed data set can be performed by making inference
about the latter from the resampled bootstrap data sets.

One of the applications of the bootstrap estimator lies in constructing confidence intervals for
regression models (Freedman, 1981). Bootstrap methods have been used to construct confidence
and prediction intervals for regression model predictions in a number of single-fidelity studies
(Heskes, 1996; Kumar and Srivistava, 2012). Moreover, while the application of bootstrap to
provide local error estimates to PCE model predictions within a single-fidelity context has been
previously studied (see Marelli and Sudret (2018)), its usage in the context of MFSM has not yet
been explored.

Our methodology for constructing CIs about the underlying HF function for a MFSM involves
two main steps. The first step for a CI at an arbitrary given input x0 aims at obtaining NB MF
bootstrap model evaluations ψ̂∗

H,j(x0), j = 1, ..., NB. For this purpose, we need to construct NB

MFSMs from NB MF bootstrap data sets, which we obtain by independently resampling pairs
from the HF and the LF experimental designs. The second step consists in constructing the CI
based on the available bootstrap model evaluations. To this end, we can apply one of several
bootstrap variations, thoroughly described in Efron and Tibshirani (1994); Davison and Hinkley
(1997); Carpenter and Bithell (2000). We choose the percentile method, due to its simplicity, its
range-preserving property (i.e. by construction, the produced intervals always remain within the
valid bounds of a system’s response, as opposed to other bootstrap methods, e.g., the standard
normal method), as well as the satisfactory performance it demonstrates in our setting.

The (1 − 2α)-quantile CI is obtained from the α- and (1 − α)-quantile of the empirical quantile
function of ψ̂∗

H(x0):

[ψlo,α(x0), ψup,α(x0)] =
[
ψ̂

∗[α]
H (x0), ψ̂∗[1−α]

H (x0)
]
. (25)

More formally, the procedure for constructing a CI at x0 entails the following steps:
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1. Obtain NB MF bootstrap model evaluations ψ̂∗
H,j(x0), j = 1, ..., NB:

(a) From the HF ED (X H,YH), create NB HF bootstrap data sets (X ∗
H,j ,Y∗

H,j). Each
such data set contains NH pairs (x∗(b)

H,j , y
∗(b)
H,j ), b = 1, ..., NH, where

(x∗(b)
H,j , y

∗(b)
H,j ) is a random sample from (X H,YH), such that

P
[
(x∗(b)

H,j , y
∗(b)
H,j ) = (x(i)

H , y
(i)
H )

]
= 1
NH

, for i = 1, ..., NH ; (26)

(b) Similarly, from the LF ED (X L,YL), create NB LF bootstrap data sets
(X ∗

L,j ,Y∗
L,j), each one containing NL elements. If (x∗(b)

L,j , y
∗(b)
L,j ) is an element of the

j-th LF bootstrap data set, then

P
[
(x∗(b)

L,j , y
∗(b)
L,j ) = (x(i)

L , y
(i)
L )

]
= 1
NL

, for i = 1, ..., NL ; (27)

(c) Match one-to-one the HF and LF bootstrap data sets to construct NB bootstrap
MFSMs ψ̂∗

H,j(x), j = 1, ..., NB ;

(d) Evaluate the bootstrap MFSMs ψ̂∗
H,j at x0 to obtain ψ̂∗

H,j(x0), j = 1, ..., NB ;

2. Construct the (1 − 2α)-percentile CI based on ψ̂∗
H(x0):

Estimate [ψlo,α(x0), ψup,α(x0)] as
[
ψ̂

∗[α]
H (x0), ψ̂∗[1−α]

H (x0)
]
, where ψ̂∗[α]

H (x0) and
ψ̂

∗[1−α]
H (x0) are the α- and (1 − α)-empirical quantile of ψ̂∗

H(x0).

Moving now to the construction of prediction intervals about an unseen noise-contaminated
observation, we can follow the same procedure used for the confidence intervals about the
underlying HF function, with the additional step of accounting for the noise inherent in the
observations, as follows from Equation (12). More precisely, accounting for the noise comprises
a two-step process. First, we need to infer the distribution of εH that characterizes the noise
present in the HF data (see Equation (1)). We do this by obtaining realizations of this noise and
then use classical inference to fit and select among a family of possible parametric univariate
distributions.

In practice, we can expect that our MF predictor will exhibit some bias, which we denote as β.
Then, we can obtain a realization of εH by computing the residual for each HF observation:

r(i) = y
(i)
H − ψ̂H(x(i)

H ) − β(i). (28)

Moreover, an estimate for the bias β(i) is obtained from bootstrap as follows (Efron and Tibshirani,
1994):

β̂(i) = E
[
ψ̂∗

H(x(i)
H )

]
− ψ̂H(x(i)

H ), (29)

where E
[
ψ̂∗

H(x(i)
H )

]
is the bootstrap expectation, which can be approximated by the sample

average

µ∗(x(i)
H ) = 1

NB

NB∑

b=1
ψ̂∗

H,b(x
(i)
H ). (30)
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Please note that the bootstrap estimate of bias does not consider biases arising from potential
inaccuracies in our regression model, such as those introduced by the truncation of the PCE
basis. However, it is capable of detecting other biases resulting from, e.g., the estimation of
coefficients through sparse regression techniques.

Substituting µ∗(x(i)
H ) for E

[
ψ̂∗

H(x(i)
H )

]
and β̂(i) for β(i) in Equation (28), the residual computed

at x
(i)
H can be written as:

r(i) = y
(i)
H − ψ̂H(x(i)

H ) − β̂(i)

= y
(i)
H − ψ̂H(x(i)

H ) − (µ∗(x(i)
H ) − ψ̂H(x(i)

H ))

= y
(i)
H − µ∗(x(i)

H ). (31)

This means that a realization of εH can be estimated as the difference between a HF observation
and the bootstrap mean. Having NH noise samples r(i), we use maximum likelihood estimation
(MLE) to infer the parameters of a zero-mean distribution. Within the scope of this work, we
consider zero-mean variants of the classical Gaussian, Laplace, and Uniform distributions, but in
the general case any zero-mean symmetrical or non-symmetrical distribution could be considered.
Finally, we use the Bayesian information criterion (BIC; Schwartz (1978)) to select the most
appropriate distribution among those considered.

The second step for the PI construction at x0 consists in adding a new noise realization ε̂H,j from
the estimated noise to each of the bootstrap model evaluations ψ̂∗

H,j(x0) obtained in Step 1.d of
the CI construction process to obtain a new noisy HF realization:

ŷ∗
H,j(x0, ε̂H) = ψ̂∗

H,j(x0) + ε̂H,j , for j = 1, ..., NB. (32)

Finally, similarly to the CI, the (1 − 2α)-quantile PI is obtained from the α- and (1 −α)-quantile
of the empirical quantile function of ŷ∗

H(x0, ε̂H):

[ylo,α(x0, εH), yup,α(x0, εH)] =
[
ŷ

∗[α]
H (x0, ε̂H), ŷ∗[1−α]

H (x0, ε̂H)
]
. (33)

The process for the construction of a PI at x0 is summarized as follows:

1. Obtain NB MF bootstrap model evaluations ψ̂∗
H,j(x0), j = 1, ..., NB:

Steps a - d are the same as for the CI construction;

2. Estimate the irreducible noise εH present on the HF data:

(a) Obtain NH noise realizations from the residuals: r(i) = y
(i)
H − µ∗(x(i)

H ),
i = 1, ..., NH, where µ∗(x(i)

H ) is the bootstrap mean at x
(i)
H ;

(b) Infer the noise distribution:

i. Use MLE to fit a zero-mean Gaussian, Laplace, and Uniform distribution to the
samples r(i);

ii. Use BIC to choose the most suitable distribution ε̂H;
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3. Add a new realization of ε̂H to each of the bootstrap model evaluations ψ̂∗
H,j(x0) to obtain

new noisy HF realizations:
ŷ∗

H,j(x0, ε̂H) = ψ̂∗
H,j(x0) + ε̂H,j , j = 1, ..., NB ;

4. Construct the (1 − 2α)-percentile PI based on ŷ∗
H(x0, ε̂H):

Estimate [ylo,α(x0, εH), yup,α(x0, εH)] as
[
ŷ

∗[α]
H (x0, ε̂H), ŷ∗[1−α]

H (x0, ε̂H)
]
, where

ŷ
∗[α]
H (x0, ε̂H) and ŷ

∗[1−α]
H (x0, ε̂H) are the α- and (1 − α)-quantile of ŷ∗

H(x0, ε̂H).

3 Validation and results

In this section, the performance of the proposed framework for multi-fidelity surrogate modeling
is illustrated on three examples of increasing complexity: an analytical example with one-
dimensional input, a case study with a ten-dimensional finite-element model of a truss and its
simply supported beam approximation, and a real-world application involving wind turbine
simulations. In each application, the HF data contain noise, which is either naturally present
(wind turbine application) or artificially introduced by us to replicate the real-world noise-
contaminated setting (analytical 1-D example and truss model). The validation of the proposed
framework comprises two parts: assessing the performance of our MFSM and appraising the
confidence and prediction intervals, whose construction is described in the previous section.

For the implementation of the PCE models involved in the validation process, we use UQLab
(Marelli and Sudret, 2014), a general-purpose uncertainty quantification software implemented in
Matlab.

3.1 MFSM performance and convergence evaluation

We assess the predictive performance and convergence behaviour of our MFSM using the
normalized validation error, computed on a test set consisting of Ntest data points that were not
used for training, as follows:

ϵval =
∑Ntest

i=1 (y(i)
t − ψ̂H(x(i)

t ))2
∑Ntest

i=1 (y(i)
t − µy)2

, (34)

where y(i)
t equals the noise-free HF model response ψH(x(i)

t ) at the test point x
(i)
t , when this

response is available (analytical 1-D example and truss model), or the noisy HF response yH(x(i)
t )

when the noise-free response is not known (wind turbine application), and µy is the mean value
of the HF response.

The convergence of our MFSM with respect to the HF experimental design size can be investigated
by performing simulations with increasing HF ED size, while keeping the LF ED fixed. Due to
the statistical uncertainty associated with each HF random design, 50 replications are carried
out, considering each time a different independent realization of this experimental design. Box
plots are used to provide an aggregated view of the results obtained in all scenarios.
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In the subsequent applications, our objective is to assess the added value of the MFSM in
comparison to single-fidelity models, and specifically, we aim to determine whether the MFSM
exhibits a faster convergence rate. For this purpose, for each HF experimental design and each
replication, alongside the MFSM, we construct a PCE surrogate model trained solely the HF
data. The same test data is used to compute ϵval, for both the MFSM and the HF PCE model.

3.2 Performance measures for confidence and prediction intervals

Regarding the evaluation of confidence and prediction intervals, two well-established key indicators
are given by the confidence interval coverage probability (CICP) and prediction interval coverage
probability (PICP) respectively, as well as the average coverage error (ACE) (Wan et al., 2014).

If the nominal coverage of a CI is 1 − 2α and the corresponding CI is [ψlo,α(x), ψup,α(x)], one
can estimate the CICP associated with this nominal coverage using Ĉα, defined as

Ĉα = 1
Nt

Nt∑

i=1
1(ψ(i)

H,t ∈ [ψlo,α(x(i)
H, t), ψup,α(x(i)

H,t)]), (35)

where (X H,t,ΨH,t) is a test set of size Nt of HF inputs and the corresponding noise-free responses,
and 1(·) is the indicator function, which returns 1 if the condition between parentheses is true,
and 0 otherwise.

To account for the statistical uncertainty associated with the HF and LF random designs, as
well as the bootstrap sampling, we perform Nrep = 10 replications with varying random seed,
and compute the mean CICP (MCICP) over these replications:

C̄α = 1
Nrep

Nrep∑

j=1
Ĉ(j)

α , (36)

When the computed confidence intervals are reliable, the MCICP should be close to its nominal
value, i.e., C̄α ≈ 1 − 2α.

The CICP and MCICP can only be estimated when the underlying noise-free HF function is
known, thus their computation is generally unfeasible in real-world applications when data
contain noise.

Similarly, for a prediction interval with nominal coverage 1 − 2α, the mean prediction interval
coverage probability (MPICP) can be estimated as follows:

P̄α = 1
Nrep

Nrep∑

j=1
P̂ (j)

α , (37)

where

P̂α = 1
Nt

Nt∑

i=1
1(y(i)

H,t ∈ [ylo,α(x(i)
H,t), yup,α(x(i)

H,t)]) (38)
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is the estimated PICP for each replication. Here (X H,t,YH,t) is a test set of size Nt of HF inputs
and the corresponding noise-contaminated responses. Reliable PIs have P̄α ≈ 1 − 2α.

The ACE metric aims instead to quantify the difference between the actual coverage of an interval
and its designated nominal coverage. The ACE for a CI evaluation is defined as

ACECI,α = CICP − (1 − 2α). (39)

Here, we use the MCICP instead of the CICP, and thus, for a CI of nominal coverage 1 − 2α the
ACE can be estimated by

ÊCI,α = C̄α − (1 − 2α). (40)

Likewise, the ACE for a PI can be estimated by

ÊPI,α = P̄α − (1 − 2α). (41)

An ACE value that is close to zero indicates reliable intervals. Moreover, a positive ACE denotes
over-coverage, i.e., the interval actual coverage exceeds its nominal value, whereas a negative
ACE indicates under-coverage, i.e., the interval actual coverage is lower than its nominal value.

3.3 Analytical 1-D example

Our first application is an analytical one-dimensional problem which serves well the purpose of
visualisation of both the denoising performance and the confidence/prediction interval estimation.
In this application, originally introduced in Brevault et al. (2020), the noise-free high- and
low-fidelity models are given by:

fH =
(
x

4 −
√

2
)

sin(2πx+ π) (42)

fL = sin(2πx), (43)

where x ∼ U [0, 2]. The HF and LF functions are depicted in Figure 2. For a data set of 1, 000
HF and LF samples, the Pearson correlation coefficient between the HF and LF data is 0.99,
while the normalized root mean square error (NRMSE), normalized by the standard deviation of
the HF model, is 0.18.

We artificially contaminate the HF data with additive noise that follows a Gaussian distribution
εH ∼ N (0, σεH).

3.3.1 MFSM performance and convergence

We first assess the performance of the MFSM under varying levels of noise in the HF data. To this
end, we compute the validation error ϵval for the cases where σεH is set to 1%, 5%, 10%, and 20%
of the standard deviation σ̂H of the noise-free HF model, obtained from a PCE trained on 1, 000
noise-free HF data points, as described in, e.g., Blatman and Sudret (2011). As σ̂H = 0.828, the
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Figure 2: Analytical 1-D example – Noise-free high- and low-fidelity functions.

numerical values for σεH read: (a) σεH = 0.008, (b) σεH = 0.041, (c) σεH = 0.083, (d) σεH = 0.166,
respectively.

Here, for each noise level, the HF ED varies from 10 to 50 data points, while the LF ED is
fixed in all experiments to 100 data points. For the choice of basis in all PCEs involved in this
example, we use degree adaptivity from degree 1 up to degree 15. For the computation of the
validation errors shown in Figure 3, we use Ntest = 105 noise-free HF data points generated using
LHS in the input space.

The box plots in Figure 3 show the comparison between our MFSM and the PCE surrogate
model trained solely on the corresponding HF data available in each case. In addition, the error
of the PCE model trained solely on the available LF data is represented by dashed lines and
serves as a baseline for comparison. Both single-fidelity PCE models have the same specifications
as the PCE employed for the MFSM.

We observe that from as few as 10 HF training data points, our MFSM approach outperforms
surrogate models trained solely on either HF or LF data. This distinction becomes particularly
evident for lower noise levels within the HF data. Hence, when HF data is scarce and data of
different fidelities is present, the value of employing MFSMs as opposed to single-fidelity SMs
becomes apparent. We notice that when sufficient HF data is available, e.g., here, approximately
30 data points for εH ∼ N (0, 0.01σ̂H), the MFSM and HF surrogate model performance is similar.
In some instances, when a large amount of HF data is available, the MFSM performance can
even be worse than that of the HF surrogate due to the bias introduced by the LF model. As
discussed by Fernández-Godino et al. (2019), it is not guaranteed that MFSMs always outperform
their single-fidelity counterparts. In addition, as the level of noise in the HF data increases, the
difference in performance of the MFSM and the HF SM diminishes. Indeed, Figure 3(d) shows
a comparable performance between the two models, regardless of the size of the experimental
design.

Moreover, we notice that for all noise levels, the multi-fidelity surrogate model error continuously
decreases for increasing NH, which indicates the convergence of the MFSM to the underlying
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(a) σεH = 0.01 σ̂H (b) σεH = 0.05 σ̂H

(c) σεH = 0.1 σ̂H (d) σεH = 0.2 σ̂H

Figure 3: Analytical 1-D example – Convergence of the validation error ϵval for increasing amount
of HF training data under varying levels of noise in the HF data, εH ∼ N (0, σεH). Comparison
of our MFSM (blue boxes) with a PCE model trained on HF data only (red). The dashed lines
are the corresponding errors of a PCE model trained on LF data only.

noise-free HF model. However, the convergence rate is strongly influenced by the level of noise
present in the HF data. As expected, the slowest convergence is observed for the strongest noise
(Figure 3(d)).

Finally, the scattering of ϵval of the MFSM, indicated by the box length, is generally smaller
for larger HF experimental design sizes. This suggests more stable MFSM models that are less
sensitive to the specific choice of the HF experimental design.

3.3.2 Confidence and prediction intervals

We now investigate the behaviour and performance of the confidence and prediction intervals for
different HF experimental design sizes and different levels of noise in the HF observations. In
the following, we use NB = 1, 000 bootstrap replications to construct the CIs and PIs (Dubreuil
et al., 2014).

Figure 4 shows the 90% CIs (blue area) and 90% PIs (yellow area) for the MFSM prediction (blue
line) in four different cases occurring from all combinations among a realization of higher/lower
noise in the HF observations and a realization of a larger/smaller HF ED. Here, again the LF
ED is fixed to 100 samples. The HF and LF training data in each case is visualised by the

20



black error bars and the gray circles, respectively. The error bars depict the 0.9-quantile of the
estimated HF observation noise distribution. The plots appearing in the same row show that,
for increasing noise and same EDs, both the CIs and the PIs become wider. This indicates
that both the uncertainty about the underlying HF model and an unseen noise-contaminated
HF observation increase. Moreover, the plots in the same columns reveal that, when the noise
remains the same but the HF training data increases, the width of the CIs decreases. This means
that our MFSM becomes more confident about where the noise-free HF model lies. Also, the
uncertainty about an unseen noise-contaminated HF observation, as shown by the PIs, decreases
marginally. In this case, the PIs and CIs become more distinct, meaning that the uncertainty
about a noise-contaminated HF observation is not anymore dominated by the regression model
uncertainty.

(a) σεH = 0.1 σ̂H, NH = 25 (b) σεH = 0.2 σ̂H, NH = 25

(c) σεH = 0.1 σ̂H, NH = 50 (d) σεH = 0.2 σ̂H, NH = 50

Figure 4: Analytical 1-D example – 90% confidence and prediction intervals for the MFSMs
trained on the illustrated HF and LF data sets. Plots in the same column exhibit the same noise
level on the HF data, while the HF ED size increases. Plots in the same row use the same HF
ED size and increasing level of noise on the HF data.

Let us now proceed to the evaluation of the confidence and prediction intervals that our framework
produces. Table 1 shows the detailed evaluation results including the MCICP and ACECI for the
CI evaluation, as well as the MPICP and ACEPI, used for the PI evaluation. The MCICP and
the ACECI are estimated as in Equation (36) and Equation (40) respectively, where Nrep = 10
replications with different seeds are performed. In each replication, the Ĉ(j)

α is computed as in
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Equation (35), using a test set consisting of Nt = 10, 000 data points ψ(i)
H,t from the noise-free HF

function, given by Equation (42). Similarly, to estimate the MPICP and the ACEPI, in each of
the Nrep replications, P̂ (j)

α is computed as in Equation (38), using a test set with Nt = 10, 000
data points y(i)

H,t, where
y

(i)
H,t = ψ

(i)
H,t + ε

(i)
H . (44)

Here ε(i)
H is a realization of the prescribed noise distribution, εH ∼ N (0, σεH) with σεH displayed

in the second column of the table.

Table 1: Analytical 1-D example – Confidence and prediction intervals evaluation

1 − 2α σεH NH MCICP ACECI MPICP ACEPI

0.1

0.1 σ̂H 25 0.118 0.018 0.099 −0.001
0.1 σ̂H 50 0.096 −0.004 0.110 0.010
0.2 σ̂H 25 0.125 0.025 0.104 0.004
0.2 σ̂H 50 0.132 0.032 0.104 0.004

0.5

0.1 σ̂H 25 0.548 0.048 0.494 −0.006
0.1 σ̂H 50 0.544 0.044 0.530 0.030
0.2 σ̂H 25 0.569 0.069 0.509 0.009
0.2 σ̂H 50 0.561 0.061 0.526 0.026

0.9

0.1 σ̂H 25 0.929 0.029 0.888 −0.012
0.1 σ̂H 50 0.992 0.092 0.905 0.005
0.2 σ̂H 25 0.960 0.060 0.906 0.006
0.2 σ̂H 50 0.991 0.091 0.919 0.019

0.95

0.1 σ̂H 25 0.988 0.038 0.941 −0.009
0.1 σ̂H 50 1 0.050 0.950 0
0.2 σ̂H 25 1 0.050 0.952 0.002
0.2 σ̂H 50 1 0.050 0.962 0.012

We can notice that, for all nominal coverage levels and every combination of σεH and NH, the
coverage of the PIs that our method provides is in excellent agreement with the corresponding
nominal coverage. Specifically, the absolute value of the PI coverage error ACEPI rarely exceeds
1%. Moreover,the coverage of the constructed CIs is satisfactory, with the absolute value of
ACECI being most of the times below 6%. The observed error in the CI coverage is almost
exclusively due to over-coverage, indicated by a positive ACECI. We can attribute this to the
presence of noise in the HF data. Indeed, we can notice that when the noise level is high
(σεH = 0.2 σ̂H), the CI coverage error increases consistently compared to instances where the
noise is lower. Overall, the PIs achieve coverage much closer to the nominal level rather than the
corresponding CIs.

Finally, we investigate the behaviour of the CIs and PIs asymptotically with respect to the HF
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experimental design size. Figure 5 shows the 90% CIs and PIs for four realizations of HF EDs of
increasing size, from 20 up to 2500 data points. The level of noise is fixed, with σεH = 0.2 σ̂H,
and also fixed is the LF ED to 100 data points. Let us note that despite the LF ED typically
being larger than the HF ED in practical applications, the last three out of the four cases do not
align with this common scenario. In this study, we intentionally maintain this particular fixed
LF ED across all cases to facilitate a focused investigation into the convergence behavior of the
CIs and PIs of the MFSM with respect to the HF ED.

(a) NH = 20 (b) NH = 100

(c) NH = 500 (d) NH = 2500

Figure 5: Analytical 1-D example – Convergence of the confidence and prediction intervals for
increasing HF ED size. In each plot, the blue area corresponds to the 90% CI, the yellow area
to the 90% PI, while the red and blue lines depict the true noise-free HF response and the MF
prediction respectively. To reduce the visual density of the plot, we did not include the HF and
LF training data.

We observe that, as the HF ED increases, the CIs tend to converge to the multi-fidelity regression
model. This behavior aligns with our expectations, and reflects the fact that as more data
becomes available, the epistemic uncertainty due to the lack of knowledge decreases and therefore,
our MFSM exhibits increased confidence in its predictions. As regards the PIs, we notice
that they tend to converge to a non-zero width, indicative of the amount of noise in the HF
observations. This behavior is also expected, as the noise in the HF observations arises from
aleatory uncertainty, and is thus irreducible regardless of the amount of the available training
data. Consequently, predictions for unseen observations will inherently carry this uncertainty.
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3.4 Truss model

In our second application, we aim to investigate the scalability of our method when applied to
higher-dimensional problems. For this purpose, we consider a problem of engineering interest,
and precisely, an ideal truss model with 23 bars and 6 upper cord nodes, as shown in Figure 6(a)
(see Blatman and Sudret (2008)). This ten-dimensional model serves as the high fidelity.

The HF truss structure has height H and length L, here considered constant, with H = 2m and
L = 24m. The truss consists of two types of bars: horizontal bars with cross-sectional area A1

and Young’s modulus E1, and oblique bars with cross-sectional area A2 and Young’s modulus E2.
The truss is loaded with six vertical loads Pi applied on the upper cord nodes. The quantity of
interest is the mid-span displacement of the truss, denoted as wt. Here, wt is calculated using an
in-house finite element model programmed in Matlab. The geometrical and material properties of
the truss members, as well as the loads, are modeled as random variables, with the distributions
provided in Table 2.

Table 2: Truss model – Input variables and their distributions

Variable Distribution Mean Standard deviation

E1, E2 [Pa] Lognormal 2.1 · 1011 2.1 · 1010

A1 [m2] Lognormal 2 · 10−3 2 · 10−4

A2 [m2] Lognormal 1 · 10−3 1 · 10−4

P1-P6 [N] Gumbel 5 · 104 7.5 · 103

In real engineering applications, the truss displacement wt is commonly measured by laser
measuring tools, and typically, such devices report a margin of error of 0.0015 m (1.5 mm).
Therefore, in this example, we add artificial noise εH ∼ N (0, 0.0015) on the displacement wt. To
give a perspective on the level of the noise εH with respect to wt, the standard deviation of wt,
as computed from a reference PCE trained on 1, 000 data points (see, e.g., Blatman and Sudret
(2011)), is σ̂wt ≈ 0.0128 m. This means that σεH ≈ 0.12 σ̂wt .

t

P1 P2 P3 P4 P5 P6

L

H

E1,A1 

E2,A2 E2,A2 

E1,A1 

(a) HF model: Ideal truss structure.

b

h



q

(b) LF model: Simply supported beam.

Figure 6: A truss structure with 23 bars and 6 upper cord nodes, used as the high fidelity (a),
and its simply supported beam low-fidelity equivalent (b).
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We now consider as the LF counterpart of the described HF truss model a homogeneous simply
supported beam with length L and height h subjected to a uniform loading q, as shown in
Figure 6(b). The mid-span deflection of the beam wb can be computed as the sum of deflections
due to bending and shear. For slender beams with h ≪ L, we can neglect the shear contribution
and approximate wb as the deflection solely due to bending. Then,

wb = 5 q L4

384E I . (45)

Here, we consider q =
∑6

i=1 Pi

ℓ . Moreover, the bending stiffness EI of the beam is determined by
the Young’s modulus E (material property) and the moment of inertia I (geometrical property).
We consider E = E1, and assuming that only the cords contribute to I, we can approximate it
as I = 2A1(H

2 )2. Thus, the mid-span deflection of the LF beam model can be computed as:

wb = 5L3 ∑6
i=1 Pi

384E1 2A1
(

H
2

)2 , (46)

where H is the height of the corresponding HF truss.

For a data set of 1, 000 HF and LF samples, the Pearson correlation coefficient between the HF
and LF data is 0.82, while the NRMSE is 1.40.

3.4.1 MFSM performance and convergence

Similarly to the previous analytical example, we now investigate the performance of our MFSM
and its convergence with respect to the noise-free underlying HF truss model by computing
the validation error ϵval for increasing HF experimental design size. More precisely, the HF
ED size varies from 5 to 160 data points contaminated with the noise following the prescribed
distribution, while the LF ED is fixed in all experiments to 300 data points. The larger amount
of LF training data used compared to the previous application is due to the higher dimensionality
and complexity of this application. Again, for the computation of ϵval, we use Ntest = 105

noise-free HF data points generated using Latin Hypercube Sampling in the input space. For the
choice of basis in all PCEs involved in this example, we use degree adaptivity from degree 1 up
to degree 8.

From Figure 7, we observe that our MFSM outperforms both the PCE model trained on HF
data only, and the PCE model trained solely on LF data, across all the considered HF ED sizes.
The performance difference between the MFSM and the HF PCE model is more pronounced
when the available HF data comprises fewer than 20 data points.

3.4.2 Confidence and prediction intervals

We now proceed to the construction and evaluation of CIs and PIs for our MF truss model. We set
the HF ED size equal to 80 samples, as the previous study demonstrated satisfactory performance
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Figure 7: Truss model – Convergence of the validation error ϵval for increasing number of HF
training data. Comparison of our MFSM with a PCE model trained on HF data only. The
dashed lines are the corresponding errors of a PCE model trained on LF data only.

at this sample size (ϵval ≈ 1%), with only marginal improvement observed when doubling the
sample amount. The HF data is contaminated with noise εH ∼ N (0, 0.0015). Furthermore, the
LF ED consists of 300 samples. Similarly to the previous application, NB = 1, 000 bootstrap
replications are performed for the construction of the CIs and PIs. Also, for the computation of
the evaluation metrics reported in Table 3, Nrep = 10 replications are performed, and the test
sets for the CI and PI evaluation consist of Nt = 10, 000 data points each, obtained as described
in the previous example.

From Table 3, we observe that for all the nominal coverage levels examined, our method provides
reliable CIs and PIs. More precisely, the PI average coverage error ranges from less than 1% to
approximately 4%, while the corresponding error for the CIs varies from 2% to 9%. The observed
error is always due to over-coverage, and though not ideal, is preferable to under-coverage and
considered acceptable. Moreover, the PIs exhibit again closer coverage to the nominal levels
compared to the CIs.

Table 3: Truss model – Confidence and prediction intervals evaluation, where εH ∼ N (0, 0.0015),
NH = 80, and NL = 300

1 − 2α MCICP ACECI MPICP ACEPI

0.1 0.124 0.024 0.109 0.009
0.5 0.593 0.093 0.542 0.042
0.9 0.959 0.059 0.935 0.035
0.95 0.986 0.036 0.973 0.023

To illustrate the constructed CIs and PIs in this application, we select the random variables E1

and A1 as the most important ones, according to a sensitivity analysis on the HF truss model
performed by Blatman and Sudret (2011). Figure 8 illustrates the 90% CIs (blue area) and PIs
(yellow area) along slices in the two selected dimensions (with all the other parameters kept
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at their mean values), as well as the true HF model response and our MFSM response (red
and blue line respectively) for the selected HF and LF experimental designs. Figure 8(a) shows
these quantities as a function of E1 for two different values of A1 that correspond to its 0.25-
and 0.75-quantiles, while the rest input random variables are fixed at their mean. Similarly,
Figure 8(b) shows the same quantities as a function of A1 for two different values of E1.

(a) Selected dimension: Young’s modulus E1 (b) Selected dimension: cross-sectional area A1

Figure 8: Truss model – 90% confidence and prediction intervals along slices in the two selected
dimensions for the MFSM trained on 80 HF and 300 LF data points. In each subplot, the blue
area corresponds to the 90% CI, the yellow area to the 90% PI, while the red and blue lines
depict the true noise-free HF response and the MFSM prediction respectively.

3.5 Real-world application: aero-servo-elastic simulation of a wind turbine

In our last application, we aim to explore the applicability and performance of our framework in
a real-world application involving real wind turbine simulations, performed by Abdallah et al.
(2019). For this study, an onshore wind turbine standing on a 90 m tower is considered, with
a rotor diameter of 110 m and a rated power of 2 MW. The goal is to investigate the impact
of the wind speed, turbulence intensity, and shear profile on the variation of the extreme loads,
and specifically the maximum flapwise bending moment at the wind turbine blade root. The
wind speed, turbulence intensity, and shear exponent are modeled as random variables, whose
distributions are described in Table 4.

Table 4: Wind turbine simulations – Input variables and their distributions

Variable Distribution Parameters

Wind speed (U) [m/s] Uniform [4, 25]
Turbulence intensity (σU) [m/s] Uniform [0.1, 6]
Wind shear exponent (α) [-] Uniform [−1, 1.5]

Abdallah et al. (2019) used two different numerical aeroservo-elastic simulators, namely Bladed
and FAST. Simulation data from Bladed are considered as the high-fidelity data, while the
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FAST simulation data are considered to be the low-fidelity data. Details on the technical
characteristics of the Bladed and FAST simulators can be found in Abdallah et al. (2019);
Bossanyi (2003); Jonkman and Buhl (2005). A 10-minute time series simulation in FAST takes
about 5 minutes to run in real time, whereas the same simulation in Bladed takes approximately
30 minutes. Consequently, there are fewer Bladed simulations compared to FAST simulations.
The experimental designs for the Bladed and FAST simulations can be found in Table 5.

Table 5: Experimental design for Bladed and FAST simulations

Simulator Wind speed (U) Turbulence intensity (σU) Wind shear exponent (α)

Bladed 4, 8, 10, 12, 15, 20, 25 0.1, 1, 2, 3, 4, 5, 6 ±1,±0.6,±0.2,±0.1, 0, 1.5
FAST 4, 5, 6, ..., 25 0.1, 1, 2, 3, 4, 5, 6 ±1,±0.6,±0.2,±0.1, 0, 1.5

Each combination of wind speed, turbulence intensity, and shear exponent was used to generate
wind fields. A wind field was used as input to the wind turbine simulators to produce a time
series realization of the structural response. Due to the stochasticity in the wind field generation,
12 different stochastic seeds were used for Bladed and 24 different seeds for FAST. Excluding
certain combinations of input parameters that are not realistic resulted in 4, 344 and 33, 480
simulations for Bladed and FAST respectively. Our HF data set is the mean of the output
maximum flapwise bending moment at the wind turbine blade root over the 12 time series from
Bladed, thus 362 data points. Moreover, our LF data set is the mean system response over the
24 time series from FAST, resulting in a total of 1, 395 data points. There are 261 common input
samples between the HF and LF data sets. For these samples, the Pearson correlation coefficient
between the HF and LF data is 0.95, with a NRMSE of 0.38.

Both FAST and Bladed are deterministic simulators, meaning that repeated runs with the same
initial conditions and same input wind field produce the same output time series. However, since
the wind fields are stochastic with respect to the three input random variables, both the HF
and the LF data coming from the wind turbine simulators contain stochasticity. We treat this
stochasticity as additive homoscedastic noise, and our MF framework remains applicable as is.

3.5.1 MFSM performance and convergence

In this application, we explore the performance of our MFSM for increasing HF experimental
design size, equal to 10%, 20%, ..., 70% of the total HF data available, while keeping the LF ED
fixed to all the available LF data. We compute the validation error ϵval of the MFSM on a test
set consisting of the 30% of the HF data which was not used for training any of the MFSMs at
each given replication: Ntest = 0.3 × 362 = 109 data points. For the choice of basis in all PCEs
involved in this application, we use degree adaptivity from degree 1 up to degree 10.

As shown in Figure 9, our MFSM outperforms the PCE model trained on HF data only, the
difference being more evident especially for small HF EDs. We can notice that we achieve
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satisfactory performance (ϵval < 1%) already for NH = 144, which corresponds to 40% of the
available HF data.

Let us note that in this application, ϵval is not expected to approach zero as the HF ED size
increases, because ϵval is now computed with respect to noisy HF data. Instead, ϵval is expected
to converge to a value representative of the noise present in the HF data.

Figure 9: Wind turbine application – Convergence of the validation error ϵval for increasing
number of HF training data. Comparison of our MFSM with a PCE model trained on HF data
only. The dashed lines are the corresponding errors of a PCE model trained on LF data only.

3.5.2 Confidence and prediction intervals

In this section, we provide the CIs and PIs for our MFSM prediction. In this real-world application,
the true noise-free HF function is unknown, limiting our ability to assess the reliability of the
constructed CIs. Thus, we are able to only appraise the constructed PIs on a test set from
the HF data. We use 70% of the available HF data for training and the rest 30% for the
PI evaluation, and we perform Nrep = 10 replications using different seeds to account for the
statistical uncertainty in the HF random design and the bootstrap sampling.

From Table 6, we observe that the coverage of our PIs is close to the nominal, albeit generally
overestimated. Once again in this application, the errors are due to over-coverage, which is more
evident for nominal coverage 50% and 90%.

Table 6: Wind turbine application – Prediction intervals evaluation

1 − 2α MPICP ACEPI

0.1 0.119 0.019
0.5 0.583 0.083
0.9 0.950 0.050
0.95 0.981 0.031

The predicted extreme flapwise bending moment as well as the 90% CIs and PIs in the wind speed
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and turbulence intensity dimensions are illustrated in Figure 10. More precisely, Figure 10(a)
shows the MFSM prediction and the corresponding intervals as a function of the wind speed U for
two different values of the turbulence intensity σU that correspond to its 0.25- and 0.75-quantiles,
while the wind shear exponent α is fixed at its mean. Similarly, Figure 10(b) depicts the MFSM
prediction and the corresponding intervals as a function of σU for two different values of U .

(a) Selected dimension: wind speed U (b) Selected dimension: turbulence intensity σU

Figure 10: Wind turbine application – 90% confidence and prediction intervals along slices in
the two selected dimensions for the MFSM trained on 253 HF and 1, 395 LF data points. In
each subplot, the blue area corresponds to the 90% CI, the yellow area to the 90% PI, while the
blue line depicts the MFSM prediction respectively.

4 Conclusions

In this paper, we presented a novel and comprehensive framework for multi-fidelity surrogate
modeling that effectively handles noisy data and incorporates epistemic uncertainty arising
from limited training information. Our regression-based approach aims to emulate the assumed
underlying noise-free HF model, and provides accurate predictions and denoising capabilities. It
also offers uncertainty estimations with respect to not only the underlying HF model, but also to
unseen noise-contaminated HF observations in the form of confidence and prediction intervals
respectively, constructed using the bootstrap methodology. The proposed framework is applied
to combine experimental data and computer simulations, where noisy measurements, considered
as the high fidelity, are combined with white-box computer simulations, treated as the low fidelity.
However, our framework is not limited solely to this particular scenario. Its versatility extends
to situations where both the HF and the LF components are experiments or simulations.

Our framework proves its efficacy in various scenarios, including a one-dimensional analytical
example and a ten-dimensional application that incorporates a high-fidelity finite element model
alongside a low-fidelity analytical approximation. In both scenarios, noise was artificially added
to the HF data. In these synthetic examples, our multi-fidelity surrogate modeling method clearly
outperforms both surrogate models trained on the available high- and low-fidelity data separately,
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and it shows convergence to the noise-free HF model with increasing number of HF training
data. Moreover, the constructed confidence and prediction intervals exhibit remarkably high
reliability, achieving coverage close to the nominal levels. Finally, our framework demonstrates
its versatility and potential by being applied on a real-world example involving wind turbine
simulations of different fidelity levels. In this application, our method provides again accurate
predictions and reliable prediction intervals.

It should be noted that the reliability of the confidence and prediction intervals comes at the cost
of computational time for their construction. For low-dimensional problems, this time can be
considered negligible, but in higher dimensions (≥ 10) this is not the case anymore. Nonetheless,
this time overhead is incurred only during the training phase and can subsequently be mitigated
as the bootstrap results can be stored. Thus, any subsequent inference including predictions
at unobserved points along with their associated confidence and prediction intervals, can be
instantaneously accessed.

In our future work, we plan to extend our methodology in various directions. Firstly, different
types of surrogate models and data fusing methodologies can be explored for our multi-fidelity
surrogate model construction. Additionally, to improve the performance of confidence and
prediction intervals, different techniques can be investigated, such as more advanced bootstrap
methods (Efron and Tibshirani, 1994). Finally, the provided uncertainty estimations for the
multi-fidelity model predictions can be employed for different purposes, one being the adaptive
design of sampling strategies to obtain new samples from the high- and the low-fidelity models.
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