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Abstract

Multi-fidelity surrogate models (MFSMs) are a well-established tool to combine information from sources
with diverse computational fidelities into a single surrogate model. The sources of higher or lower fidelity
can be, for example, computer simulations or physical experiments. MFSMs can exhibit enhanced predictive
accuracy and reduced costs in emulating the response of complex systems, outperforming their single-fidelity
surrogate model counterparts at comparable training costs. In real-world applications, uncertainty is present
in the data, regardless of their fidelity. This uncertainty can be due to measurement noise, numerical noise, or
unobserved/latent variables, and adds a layer of complexity by introducing non-deterministic behavior in the
system response. In this work, we provide a framework to address the uncertainty in MFSM scenarios. The
effectiveness of our approach is demonstrated through a transfer learning application in crashworthiness and
a real-world wind turbine application, showcasing the applicability and versatility of our proposed methods.

1 Introduction

Engineering systems and models are often highly complex and costly to evaluate, while applications requir-
ing numerous model evaluations, such as uncertainty quantification and optimization, are becoming increas-
ingly popular. Consequently, being able to predict the response of complex systems in a cost-effective way
is more crucial than ever.

In many cases, multiple computational models or experiments with varying levels of fidelity are available for
making these predictions. High-fidelity (HF) models provide accurate results, but tend to be computationally
and/or financially costly. Conversely, low-fidelity (LF) models are less costly to run, but they are also less
accurate. In such scenarios, multi-fidelity surrogate models (MFSMs) can be employed to integrate these
varying fidelity models into a single surrogate model (SM). MFSMs typically augment a small HF dataset
with one or more larger lower-fidelity ones. In general, the HF and LF data to construct a MFSM can be
obtained from experiments or computer simulations. When both kinds of data co-exist, experiments are
usually considered as the HF, while computer simulations are treated as the LF [1, 2].

In the real world, both high- and low-fidelity models are commonly affected by various types of uncer-
tainty. Depending on the nature of the uncertainty, we can distinguish two cases of models affected by
latent variability, which can be treated differently. The first case is deterministic models contaminated by
external noise, such as measurement noise in experimental data or numerical noise in computer simulators.
In this case, the noise can be considered homoscedastic over the deterministic model response, and the ob-
jective of a SM is typically to predict the noise-free model response, effectively eliminating the external
noise. Regression-based approaches are commonly employed for this purpose, thanks to their well-known
denoising capabilities.

The second class of models are inherently stochastic models, also known as stochastic simulators. The
response of these models at each input is a random variable. Recent methods for emulating stochastic



simulators in a single-fidelity setting aim to predict the entire response distribution at each point [3, 4].

In this work, we focus on the first case and consider it in a multi-fidelity (MF) setting. This means that both
the HF and LF models are deterministic, and data from these models are possibly contaminated by additive
homoscedastic noise. We consider this noise irreducible, assuming that once the corresponding datasets are
provided for training surrogate models, there is no opportunity to repeat the experiments with more precise
measuring instruments or repeat computations with increased precision. Moreover, due to the limited train-
ing data for both the low- and the high-fidelity models, MFSM predictions entail epistemic uncertainty. In
this context, we are interested in assessing the underlying noise-free deterministic HF response, by com-
bining information from all the different fidelity sources in a MFSM. Additionally, our goal is to provide
estimates of the different kinds of uncertainty in our MFSM predictions, expressed through confidence and
prediction intervals. Confidence intervals (CIs) reflect the uncertainty about where the underlying noise-free
HF model lies, while prediction intervals (PIs) represent the uncertainty about unseen noise-contaminated
HF observations [5].

The adoption of MFSMs has been consistently increasing across many fields of applied science over the
past three decades. Most works consider an ideal noise-free setting where both the HF and LF models
are computer simulations. Several studies are based on Gaussian process (GP) modeling [6, 7, 8, 9], and
more recently deep Gaussian processes [10, 11]. Other approaches include, among others, polynomial chaos
expansion-based based MFSMs [12, 13] and neural network-based approaches [14, 15, 16, 17]. A com-
paratively smaller body of works has addressed noisy models in a multi-fidelity setting, including the GP
regression MFSMs in [18, 19], as well as the linear regression-based framework of [20]. Recently, multi-
fidelity surrogate modeling has found applications in the gray-box modeling paradigm. [2] utilized MFSMs
to construct gray-box surrogate models, by combining experimental data and computer simulations, with the
former considered as high-fidelity and the latter as low-fidelity.

Our work is based on the comprehensive framework introduced in [2]. In addition to constructing MFSMs
with noise contaminated HF and LF data, and providing the corresponding confidence and prediction in-
tervals, we explore here the applicability of MF surrogate modeling in a transfer learning scenario. This
scenario involves crashworthiness simulations, where knowledge from an earlier crash box design needs to
be transferred to a newer design, reducing the need for a large number of simulations. Moreover, we demon-
strate the applicability of the examined MF surrogate modeling framework through a real-world application
involving wind turbine simulations of different fidelities.

2 Multi-fidelity surrogate modeling

2.1 Theory and methodology

Let us consider two information sources producing data at different fidelity levels. With the input space being
X € RM, and the output space Y € R, let (X'y, V) be a HF dataset of size Ny with noise-contaminated
observations. The HF model response yy at input point & is expressed as:

yu(x,en) = Yu(x) + en, (1)

where z is a realization of X, ¢y(x) is the unknown HF deterministic function, and ey is an additive noise
term, independent of « and modeled as a random variable following a zero-mean distribution:

en ~ fey(em),  Elen] = 0. (2)

Each observation yH(mg), 61(_?) in (X'y, Vu) is denoted as yﬁf)-

In addition, consider another information source of lower fidelity providing the dataset (X1, JL):

yL(x,eL) = YL(x) + €L, 3)



with e, ~ f;, (er) and E [er] = 0. Each observation yH(a:S), 58)) in (Xr,)), wherei = 1,..., N, with
NL > Ny is denoted as 3",

A MFSM aims to estimate the underlying deterministic HF function ty(z) with ¢y (z) by leveraging all
available variable-fidelity data. The low-fidelity (LF) response can be approximated by a surrogate model
Yr(x) ~ YL(x). Then, the MFSM can be expressed as a linear combination between the LF surrogate and
a discrepancy function:

Yn(x) = p- (@) + 6(2), )

where p is a constant scaling factor and d () is a discrepancy function. The choice of SMs for the LF model
and the discrepancy function can vary, including polynomial chaos expansion, GP regression, or neural
networks.

2.2 Implementation

Starting from a high fidelity dataset (X'y, Yu) and a lower-fidelity one (X1,))), we use the approach
introduced in [2] to construct of a MFSM. This approach employs polynomial chaos expansion (PCE) as a
surrogate model for the MFSM, expressed as described in Eq. (4).

PCE approximates a model with finite variance using its spectral representation on a polynomial basis [21].
Consider a random vector X € RM with independent components and a joint probability density function
(PDF) fx (). Then, the truncated PCE of a model M(x) is given by:

MPCE ($) = Z caVa ($) > (5)

acA

where ¢, € R are the coefficients of the multivariate polynomials {¥,,, a € A}. All polynomials ¥, are
orthogonal with respect to the PDF fx . The set A C N™ consists of multi-indices of the polynomials and
can be determined using various truncation schemes [22].

For the construction of the PCEs involved in this methodology, the spectral coefficients are computed using
least angle regression. For the choice of the polynomial basis, degree adaptivity is used [22]. The construc-
tion of the multi-fidelity surrogate model involves the following steps:

1. Train a PCE model ¢y (x) the LF data (X1, )1);

2. Evaluate the LF PCE model at the HF input samples. These responses are denoted as &L(xl({i));

Ny (4)
3. Estimate the scaling factor p as p &~ 5~ > —2i
H i=1 Yr(zy’)

b}

4. Obtain a training set (X, {yl({l) — [’hﬁL(mg)), i =1, ..., Nu}) for the discrepancy function ¢ in Eq. (4),
and use it to train a PCE model §(x);

5. Keep the sparse PCE basis functions of the PCE ) (x), and using ordinary least squares (OLS), refit
the corresponding coefficients jointly with p, considering () as another basis function;

6. Plug (), p, and §(x) in Eq. (4) to obtain the MFSM predictor.

For a more detailed discussion and explanation of the aforementioned steps, the reader is referred to [2].

3 Confidence and prediction intervals

3.1 Theory and methodology

Confidence and prediction intervals are used to express different kinds of uncertainty in predictive models
trained using noise-contaminated data. Here, we examine both in a multi-fidelity setting.



Confidence intervals express the uncertainty about the true underlying HF model, or in other words, about
the error between the true noise-free HF function and the MFSM regression model output:

Yn(z) — Yu(x). (6)

This uncertainty stems from the incomplete information available due to the finite size of the HF and LF
experimental designs (EDs). The (1 — 2«) CI at x is an interval [¢ o (20), ¥u,o(20)], such that:

P [t1,0(x0) < Yu(T0) < Yua(®o)] =1 — 200 (7

On the other hand, prediction intervals express the uncertainty about an unseen noise-contaminated HF
observation, or in other words, about the error between a noise-contaminated HF observation and the MFSM
regression model output:

yu(x, en) — Uu(x) Feh Yu(x) — Pu(x) + en. (8)

This means that the PIs are influenced not only by the reducible model error ¢y (x) — 1y (), but also by
the noise affecting the data ey on the HF data. From Egs. (6), (8), we see that a PI is wider than the
corresponding CI, since the former includes the latter.

The (1 — 2a) PI at x is an interval [y; o (o), Yu,a(Z0)], such that:

P y1,a(o, en) < yu(To,en) < Yua(xo,en)] =1 — 2a. )

3.2 Implementation

For the construction of confidence and prediction intervals, we follow the approach based on bootstrap [23]
introduced in [2]. To construct a CI at a given input x, we first obtain Ng multi-fidelity experimental designs
by independently resampling with replacement Ng HF and Ny LF experimental designs and matching them
one-to-one. Then, we train the Ng MFSMS as described in Section 2.2, and evaluate them at . We denote
the bootstrap MFSM evaluations as ¢j; ,(xo), ¢ = 1, ..., Ng.

Then, we can obtain the (1 — 2a) CI about the underlying HF model as:

[Yra(@0), Yua(@o)] = [ (@0). v~ (@0) (10)

where Qﬁ;}[a] (xo) and 1,/3;[1_&] (xo) are the a- and (1 — «)-quantiles of the empirical quantile function of
V(o)
To construct a PI at a given input x(, we initially follow the same procedure used for the corresponding CI.

Then, we add an additional step to account for the irreducible noise g in the HF observations. To this end,

we first perform statistical inference for ey using the noise samples EI(_;) obtained as:

el =y — p*(@l?), fori=1,.., Ny, (11)
where yI({i) is a HF model response and ,u*(azg)) is the mean of the bootstrap models evaluations at mg).
Having these noise samples, the best-fitting distribution is selected among various zero-mean distributions
using the Bayesian information criterion [24]. Finally, we add a new noise sample £ ; to each bootstrap

model evaluation 1&?_‘“ (xo):
Ji1.4 (0, 1) = Uiy 4(0) + émi, fori =1,..., Ny, (12)

Then the (1 — 2«) PI about a new unseen noisy observation at & can be obtained as:

[Y1,0(T0, €H), Yu,a(To,€H)] = [@;[a}(fﬂo,éH)v?Jﬂ[l_a](wo,éH)} , (13)



where y;,[“] (xo,€n) and yA;[lfa](

of Qﬁ(wo, éH).

X0, én) are the a- and (1 — «)-quantiles of the empirical quantile function

4 Applications

In this section, we examine the performance of the framework proposed in [2] and described in Sections
2, 3 in two applications. The first is a transfer learning application in crashworthiness, where negligible to
minor numerical noise is expected. The second is a real-world application involving two aero-servo-elastic
simulators for a wind turbine, where residual stochasticity is present instead.

The validation process entails assessing the predictive performance of the MFSM compared to the PCE sur-
rogate model trained only on the corresponding HF data. We perform this comparison for increasing HF
experimental design sizes. To assess the performance of the examined surrogate models, we use the normal-
ized validation error €,,;, computed on a test set consisting of V; unseen data points a:t(z), not previously used
for training. This error is computed as follows:

S — du())?
N, ‘
Ei:l(yt(Z) — fiy)?
where yt(i) is the HF model response at the test point a:t(i), and fi,, is the mean value of the HF response.
Finally, we construct and interpret the confidence and prediction intervals for the MFSM predictions.

€val =

; (14)

In various stages of implementing the following applications, including the implementation of PCEs, sam-
pling experimental designs, and other tasks, we used UQLab [25], a general-purpose uncertainty quantifica-
tion software.

4.1 Transfer learning in crashworthiness simulations

Our first application of the multi-fidelity surrogate modeling framework is in the field of crashworthiness.
In recent years, the rise in vehicle usage has driven the automotive industry to enhance crashworthiness for
improved safety and environmental sustainability. A common design criterion for crashworthiness is the
usage ratio (UR) of the energy absorber [26], defined as follows:

d
UR = T (15)
where d is the total deformation measured after an impact and [ is the total length of the undeformed crash-
worthy structure, i.e., of the crash box. The UR indicates the extent to which the material of the crash box is
utilized to dissipate energy. A higher UR signifies better performance.

A common method for measuring the UR of a crash box is through a drop-tower test. In such test, the crash
box is crushed by a rigid mass, known as the impactor, which is accelerated to a predefined speed to impact
the crash box with a specific kinetic energy. The crash box is securely fixed to the test bed to prevent lateral
movements during the impact. While the test can be conducted physically, it is also standard practice to
evaluate a crash box virtually using explicit finite element simulations. Simulated testing is efficient and
allows for easy modification of design parameters.

In this application, we focus on two crash box designs: an early-stage simplified design and a later-stage
design that is closer to production, as shown in Figure 1. We have conducted numerous simulations for the
early-stage design, examining how the thickness of the front part of the crash box (blue part in Figure 1(a)),
the thickness of the rear part of the crash box (green part in Figure 1(a)), and the mass of the impactor affect
the variation in the usage ratio. These three inputs are modeled as random variables, following uniform
distributions, and their respective ranges are detailed in Table 1. The goal in this application is to examine
how these three variables affect the usage ratio for the later-stage design crash box, while keeping the number



of expensive new simulations to a minimum. This transfer learning scenario is not typical for multi-fidelity
modeling, as the simulation times for both designs are similar. By approaching it as a MF modeling problem,
we aim to save computational resources and time by reducing the number of simulations needed for the new
design. To this end, we consider the old design as the low fidelity and the new design as the high fidelity
model. In both simulations little to no numerical noise is expected. We first evaluate the performance of

(a) Early-stage crash box design (b) Later-stage crash box design

Figure 1: Illustration of the two crash box designs considered for transfer learning. The goal is to transfer
knowledge from the early-stage crash box to the later-stage crash box, focusing on the energy absorbed under
specified crash conditions.

Table 1: Crashworthiness application — Input variables and their distributions

Variable Distribution  Parameters
Thickness of the front part (¢1) [mm] Uniform [0.7,4]
Thickness of the front part (¢2) [mm] Uniform [0.7, 4]
Impactor mass (m) [kg] Uniform  [0.04,0.35]

our MFSM as we increase the size of the high-fidelity (HF) experimental design, ranging from 5 to 160 data
points. The total number of available low-fidelity (LF) simulations is 400, with the LF experimental design
fixed at these data points. The validation error is computed on an external validation set consisting of 225
unseen HF data points.

In Figure 2, we notice that for small HF experimental designs, the multi-fidelity surrogate model consistently
outperforms the corresponding single-fidelity PCE model trained only on the corresponding HF data. This
performance disparity becomes more pronounced as the HF experimental design size decreases. Once the
number of HF data points exceed approximately 40, the performance of the MFSM aligns closely with that
of the single-fidelity SM. For larger EDs, the single-fidelity SMs begin to outperform the MFSMs, likely due
to the bias introduced by the low-fidelity model. Moreover, unlike the single-fidelity surrogate trained only
on HF data, the MFSM always outperforms the single-fidelity PCE trained solely on LF data, as indicated
by the black dashed line used as a baseline.

In conclusion, employing an MFSM in this context offers a significant advantage over single high-fidelity
surrogate models when the number of available HF data points is limited, specifically when there are fewer
than 40 new design (i.e HF) model evaluations. Moreover, the MFSM always offers an advantage over using
a surrogate model trained solely on data for the old design (i.e LF).

We now showcase the Cls and PIs for our MFSM prediction. Following the results in the previous section,
we selected a HF training set size of 20 samples, because more HF data does not offer a significant advantage
over a single-fidelity approach for this specific example. The LF experimental design is kept to the original
400 samples. The number of bootstrap replications performed is Ng = 1, 000.

To illustrate the constructed Cls and PIs in this application, we select the thickness to of the rear part of the
crash box, and the mass m of the impactor as the most important input random variables. We selected them by
performing a PCE-based Sobol’ indices sensitivity analysis [27], where all the available HF data were used.
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Figure 2: Crashworthiness application — Convergence of the validation error ey, with increasing HF training
data. Comparison between our MFSM and a PCE model trained solely on HF data. The dashed line indicates
the error of a PCE model trained only on LF data.

Figure 3 illustrates the 90% ClIs (green area) and PIs (pink area) along slices in the two selected dimensions
with the other input parameter ¢; kept at its mean value. The green curve indicates the MFSM response. In
Figures 3(a), 3(b), the two slices correspond to the 0.25- and 0.75-quantiles of {5 and m respectively.

We observe that the prediction intervals indeed enclose the corresponding confidence intervals. However,
the former are only marginally wider than the latter. This indicates that our approach correctly identifies
the low-level of noise, demonstrating its applicability even in scenarios without noisy data. Moreover, the
epistemic uncertainty, as indicated by the confidence intervals, appears to be quite large almost everywhere,
likely due to the very small HF training set size used. With a larger HF training set, the confidence intervals
are expected to narrow down significantly.

o 20 m=0.2725
5

m = 0.1175
10 90% PI
90% CI
—MF prediction
0
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to

(a) Selected dimension: thickness of rear part 2 [mm]
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m

(b) Selected dimension: impactor mass m [kg]

Figure 3: Crashworthiness application — 90% confidence and prediction intervals for the MFSM along slices
in the two selected dimensions.

4.2 Aero-servo-elastic simulation of a wind turbine

In our second multi-fidelity surrogate modeling application, we examine a real-world scenario, involving
wind turbine simulations using two different simulators, as conducted by [28]. This study focuses on an
onshore wind turbine with a 90-meter tower, a rotor diameter of 110 meters, and a rated power of 2 MW.

The objective is to assess how variations in wind speed, turbulence intensity, and shear profile affect the fore-
aft extreme bending moment at the tower bottom. The quantity of interest is the maximum fore-aft bending
moment at the tower bottom. The wind speed, turbulence intensity, and shear exponent are treated as random
variables following uniform distributions, with their respective ranges presented in Table 2.



Table 2: Wind turbine application — Input variables and their distributions

Variable Distribution Parameters
Wind speed (U) [m/s] Uniform [4,25]
Turbulence intensity (oy) [m/s] Uniform [0.1, 6]
Wind shear exponent («) [-] Uniform [—1,1.5]

The data used in this study is generated by [28], and consists in 10-minute time series simulations using
two distinct numerical aeroservo-elastic simulators: Bladed [29] and FAST [30]. A 10-minute time series
simulation in FAST runs in about 5 minutes, whereas the same simulation in Bladed takes around 30 minutes
in real time. Data from Bladed are treated as high-fidelity, while data from FAST are considered low-fidelity.
Detailed technical characteristics of these simulators are available in [28, 29, 30].

The three specified input random variables were used to generate wind fields. Both wind turbine simulators
received a wind field as input and produced a 10-minute time series simulation of the structural response
as output. Since wind fields are stochastic with respect to the three inputs, multiple wind field realizations
were generated for each three-dimensional input sample using different random seeds. For each output time
series, the maximum fore-aft extreme bending moment at the tower bottom was computed and averaged over
the random seeds corresponding to each input. For each input, 12 different stochastic seeds were considered
for Bladed and 24 for FAST, resulting in a total of 4, 344 simulations for Bladed and 33, 480 for FAST. This
eventually produced 362 HF and 1, 395 LF data points.

Both wind turbine simulators are deterministic with respect to the input wind fields. However, the wind fields
themselves are stochastic with respect to the input random variables, resulting in wind turbine simulator
responses that contain significant residual stochasticity, which we treat here as additive homoscedastic noise.

Figure 4 shows the convergence of the validation error of the MFSM compared to the single-fidelity PCE
trained only on HF data, as the size of the HF training dataset increases from 10 to 320 data points. In each
case, for the training of the MFSM, all the available LF data is used each time. Also, the validation error of
a PCE model trained exclusively on the LF data is represented by the black dashed line. As the validation
data consists of unseen HF data containing noise, the validation error is not expected to reach zero but to
approach a value that reflects the irreducible noise in the HF data.

As expected following [28], we once again observe that the MFSM consistently outperforms the single-
fidelity HF surrogate model, with the performance difference being more pronounced for smaller HF training
set sizes. Additionally, the MFSM always performs better than the single-fidelity model trained solely on the
LF data.
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Figure 4: Wind turbine application — Convergence of the validation error €4 with increasing HF training
data. Comparison between our MFSM and a PCE model trained solely on HF data. The dashed line indicates
the error of a PCE model trained only on LF data.

To showcase the CIs and PIs in this application, the wind speed U and the turbulence intensity oy are selected



as the most important input random variables. We select the HF training set size to be 70% of the available
HF data, as the relative validation error for this training set size is already satisfactory, around 1%. The
remaining HF data can be reserved for the appraisal of the constructed intervals, which is however not shown
here. Furthermore, the LF experimental design consists of all the available 1,395 LF samples. The number
of bootstrap replications performed is Ng = 1, 000.

Figure 5 illustrates the 90% ClIs (green area) and PIs (pink area) along slices in the two selected dimensions
with the wind shear exponent set at its mean value. The green curve indicates the MFSM response. In
Figures 5(a), 5(b), the two slices correspond to the 0.25- and 0.75-quantiles of oy and U respectively.

We observe that the epistemic uncertainty, as indicated by the confidence intervals, is generally low in both
the U and oy dimensions, except occasionally near the bounds. In the U dimension, the total uncertainty
for an unseen HF observation appears to be dominated by epistemic uncertainty, as the prediction intervals
are only marginally wider than the corresponding CIs. Conversely, in the oy dimension, the epistemic
uncertainty is very small, allowing the irreducible noise in the HF data to be more clearly observed.
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(a) Selected dimension: wind speed U [m/s] (b) Selected dimension: turbulence intensity oy [m/s]

Figure 5: Wind turbine application — 90% confidence and prediction intervals for the MFSM along slices in
the two selected dimensions.

5 Conclusions and outlook

In this paper, we reviewed the multi-fidelity surrogate modeling framework introduced by [2] and examined
its performance in two applications from different engineering contexts.

The first involved a transfer learning scenario, where information about the usage ratio of the energy absorber
was transferred between simulations of an early-stage crash box prototype design and a later-stage crash
box design. In this context, the early-stage crash box simulations were considered low-fidelity, while the
later-stage crash box simulations were treated as high-fidelity. These simulations did not exhibit significant
stochasticity.

The second application was a real-world scenario involving wind turbine simulations using two different
simulators. Here, the stochasticity in the predictions of the fore-aft extreme bending moment at the tower
bottom was clearly affecting the system responses.

In both cases, we observed that the multi-fidelity surrogate model provided significant benefits over single-
fidelity surrogate models. The confidence intervals successfully conveyed information about the uncer-
tainty regarding the true noise-free high-fidelity response. Furthermore, the prediction intervals success-
fully showed the uncertainty in new predictions, accounting for the irreducible noise, where it was present.
Notably, the examined framework effectively handled the scenario with no noise.

In our future work, we plan to extend the methodology of [2] to accommodate inherently noisy models,
a.k.a., stochastic simulators. This involves removing the current assumption of additive homoscedastic noise.
Our goal is to combine information from multiple fidelity models into a multi-fidelity stochastic emulator,



capable of predicting the high-fidelity response distribution at each point. We also intend to apply this
enhanced framework to appropriate stochastic simulator applications.
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