
IDENTIFICATION OF CRASHWORTHY DESIGNS

COMBINING ACTIVE LEARNING AND THE SOLUTION

SPACE METHODOLOGY

P. Ascia, S. Marelli, B. Sudret and F. Duddeck

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH

Risk, Safety &
Uncertainty Quantification



Data Sheet

Journal: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
Part B: Mechanical Engineering

Report Ref.: RSUQ-2024-010A

Arxiv Ref.: –

DOI: 10.1115/1.4066621

Date submitted: July 15, 2024

Date accepted: October 23, 2024



Identification of crashworthy designs combining active learning and 
the solution space methodology

Paolo Ascia ∗1, Stefano Marelli†2, Bruno Sudret‡2, and Fabian Duddeck §1

1TUM School of Engineering and Design, TUM, Germany
2Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Switzerland

October 23, 2024

Abstract

This study introduces a novel methodology for vehicle development under crashworthiness
constraints. We propose coupling the Solution Space Method (SSM) with Active Learning
Reliability (ALR) to map global requirements, i.e., safety requirements on the whole vehicle,
to the design parameters associated with a component. To this purpose, we use a classifier to
distinguish between the design that fulfills the requirements, the safe domain, and those that
do not, the failure domain. This classifier is trained on finite element simulations, exploiting
the learning strategies used by ALR to efficiently and precisely identify the border between
the two domains and the information provided on these domains by the SSM. We then provide
an exemplary application where the efficiency of the method is shown: the safe domain is
identified with 270 samples and an average total error of 2.5 %.
The methodology we propose here is an efficient method to identify safe designs at a com-
paratively low computational budget. To the best of our knowledge, there is currently no
methodology available that can identify regions in the design space that result in designs sat-
isfying the local requirements set by the SSM due to the complexity and strong non-linearity
of crashworthiness simulations. The proposed coupling exploits the information of SSM and
the capabilities of ALR to provide a fast mapping between the global requirements and the
design parameters, which can, in turn, be made available to the designers to inexpensively
evaluate the crashworthiness of new shapes and component features.

1 Introduction

Designing a new vehicle is a challenging process. It requires the expert knowledge of designers
and engineers to find a balance between contrasting requirements, such as the need for lightweight

∗paolo.ascia@tum.de
†marelli@ibk.baug.ethz.ch
‡sudret@ethz.ch
§duddeck@tum.de

1



vehicles and the safety of the passengers. To help the developers navigate these contrasts, a
popular strategy is to use the tools developed in the field of systems engineering. These tools
generally help to better formulate the requirements. They, however, do not help identify possible
solutions, i.e., a physical design of the product, to fulfill all requirements. In this work, we
consider how the challenge of identifying possible requirements-worthy designs can be solved
when using the Solution Space Method (SSM) (Zimmermann and De Weck, 2021) as the support
tool from the field of systems engineering.

To handle the overall complexity of vehicle design, SSM cascades the requirements from a global
level to the local level of vehicle components. With requirement on a global level, or global
requirement, we refer to a condition the whole vehicle must fulfill. Whereas, by a local requirement,
we mean the requirement each single vehicle component must fulfill so that the final assembly
meets the overall global requirement. For example, in the field of passive safety, the global
requirements to mitigate the risks of injury of the passengers linked to a high-speed crash are
stated in the protocols released by safety rating agencies, like the National Highway Traffic Safety
Administration (National Highway Traffic Safety Administration, b). The local requirements for
passive safety are, for example, how much energy each component must dissipate and how much
each component is allowed to deform. If all local requirements are met by each component, then
the global requirements are met, and the passengers will not suffer major injuries in a high-speed
crash. In SSM, the requirements are cascaded down to a set of components deemed relevant
for the specific passive safety study. Therefore, SSM reformulates the risk mitigation strategies
of the whole vehicle on a local level. Thanks to SSM, each component can be developed to
fulfill the global requirements, thus being crashworthy, independently of the development of the
other components. This is achieved by defining how much each component must deform, di in
Fig. 1, and the force range each component must oppose during the impact, the white areas in
Fig. 1. Therefore, the local requirements are presented in the form of force ranges over a defined
deformation length, called corridors. An example of a typical set of corridors for a whole vehicle
is later presented in Section 5.1.

By cascading global requirements, the SSM delivers to the designers and engineers a condition
on the performance of the components under development (Zimmermann and Von Hoessle, 2013;
Zimmermann et al., 2017). However, it does not provide any information about the structure
or geometry of the design of the components. Hence, the SSM is limited by the unknown and
generally complex mapping between local requirements and actual designs. This gap, to our
knowledge, is nowadays filled by the expertise of the designers themselves, but no research has
proposed quantitative ways to estimate such a mapping. With the methodology we present in this
paper, we fill this gap by introducing a quantitative method to identify the regions of the design
space that map into the safety corridors defined by SSM. This is known in machine learning as
the pre-image problem (Kwok and Tsang, 2004). By identifying the pre-image of the corridors,
we cascade the global requirements once more on the physical design of components instead of
stopping on the performance level of the components. This step identifies specific structural

2



Figure 1: Example of corridors computed by the solution space method for crashworthiness. d1

and d2 are the expected deformation lengths for each component, while F l
1,2 and F u

1,2 are the
lower and upper bounds of the computed force ranges, i.e., corridors. The corridors, meaning the
crashworthy force ranges, are depicted by the white areas.

properties of a component, hereinafter called design parameters, that render the performance of
the component itself fulfill the corridors of SSM. By doing so, we provide a tool to the engineers
and developers to help them explore the potential of their new concepts and designs.

We provide a classifier that can be directly used to identify which set of design parameters yields
a solution that fulfills the local requirements of the corridors and which does not, following
the approach first introduced by Abbiati et al. (2022). We refer to the first type of sets as
feasible configuration or crashworthy and to the others as infeasible configuration. By identifying
the feasible design, we help developers and engineers design crashworthy components. This
information is useful to, for example, constrain an optimization problem for crashworthiness and
better exploit the design parameters available to the developers. To identify the crashworthy
designs efficiently, we adopt and adapt, for the first time for crashworthiness to our knowledge,
some of the core concepts from the field of active learning reliability (ALR) (Abbiati et al.,
2022; Teixeira et al., 2021; Moustapha et al., 2022a). In classical ALR, a surrogate-model-based
classifier is adaptively constructed from an expensive computational model, to efficiently identify
small areas of the parameter space that result in the failure of an engineering system. We use a
similar strategy to identify regions of the parameter space that result in feasible configurations.
We first re-formulate the local requirements defined by SSM as a limit-state function, and then
use the ALR algorithm to learn and identify the feasible areas in the domain of the design
parameters. Instead of calculating the probability of failure of the system, we rather use the ALR
algorithm to efficiently train a classifier that can identify at no added computational cost the
crashworthiness of an unseen design. This classifier can then be used to constrain an optimization
problem to design crashworthy components or to help developers unlock the full potential of their
conceptual designs in relation to crashworthiness. This approach is related to the state-of-the-art
in surrogate-aided reliability-based design optimization (RBDO, (Moustapha and Sudret, 2019)),

3



with the main difference being that the safety constraints are provided by SSM. By doing so,
SSM allows an increase in the overall design flexibility compared to solving a secondary nested
reliability problem (Zimmermann and Von Hoessle, 2013).

The main contributions in this work are:

• Reformulating the corridors of SSM as an equivalent reliability problem;

• Using state-of-the-art active learning methods to map corridor spaces back into the design
space;

• Provide a fast classifier trained on the underlying physics-based model that can be used
during the design phase to quickly assess design compliance with the SSM corridors.

The paper is organized as follows: Section 2 provides an overview of the relevant literature on
the SSM. Section 3 introduces the basic concepts of reliability and the active learning strategies
used in the field. Section 4 presents the new method, and Section 5 showcases an application on
a realistic case study related to the re-design of the frontal crash-box of the 2013 Honda Accord
(National Highway Traffic Safety Administration, b). Lastly, in Section 6, we comment on the
results and discuss the methodology.

2 The Solution Space Method

The SSM belongs to the family of systems engineering tools used to support the development
process. The method cascades a set of global requirements to a new product on a sub-system or
even a set of single components as a set of local requirements. The purpose of this cascade is not
only to simplify the development of a new product but also to allow the development of each
component or sub-system independently of the others. Although the method is now applied in
many different fields, like robotics (Krischer and Zimmermann, 2021) or driving dynamics (Vogt
et al., 2019), we focus on the field of crashworthiness.

In the field of crashworthiness, the SSM was first introduced by Zimmermann and Von Hoessle
(2013). More precisely, it was introduced to help fulfill the crashworthiness requirements imposed
by the passive safety protocols. From its introduction, two different approaches have then been
adopted in the crashworthiness field: the direct (Fender, 2014; Fender et al., 2017) and the
indirect one (Graff, 2013). The first is completely based on an analytical approach to describe
mathematically the product, its components and expected behavior, and to cascade the global
requirements. The second, instead, is based on sampling a model of the product and cascading
the global requirements, i.e., defining the local requirements for each component, by testing them
on the samples of the said model. We focus on the direct approach for crashworthiness. We
invite the reader to consider the work of Graff et al. (2016); Graf et al. (2018) for a more detailed
explanation of the indirect approach.

4



According to the definition given by Fender et al. (2017), a solution space is the space defined as

Ω =
[
xl

i, xu
i

]
⊂ Rn, (1)

where xl
i, and xu

i belong to the n-dimensional vector x of performance parameters whose mapping
to the expected behavior (x 7→ y) fulfills all global requirements. The vector x describes a set of
properties of each component making up the final product.

This solution space is then optimized to find the biggest space in which all xi are orthogonal to
each other (Daub et al., 2020). In other words, the biggest possible hypercube is placed inside Ω
to define a subset where the properties of different components are independent of each other.
According to Daub et al. (2020), we define a subspace of the solution space

Ωc =
[
xl

1, xu
1
]

× ... ×
[
xl

n, xu
n

]
⊂ Ω, (2)

where the Cartesian product is imposed on the ranges of each xi. The resulting ranges are called
corridors.

In the direct method, the mapping of the performance parameters to the expected behavior
is generally done by a simplified analytical model (Lange et al., 2019), as we will see later
for the crashworthiness case study. Thanks to the simplified modeling and the definition of
corridors, SSM has become an industry-standard tool to support development. On the one
hand, the simplified modeling allows the computation of the corridors to be very efficient and
computationally affordable. On the other hand, the definition of corridors allows for more
flexibility during development (Zimmermann and Von Hoessle, 2013). Both the convenience and
flexibility of the method are desirable characteristics that brought the industry to adopt the
method (Zimmermann et al., 2017). We, therefore, choose to adopt this methodology so that we
can evaluate the local crashworthiness requirements quickly and economically while allowing us
to define a full range of possible crashworthy designs, i.e., areas of feasibility and infeasibility.

For crashworthiness, x is a vector of force levels [F1, ..., Fn] the components are expected to
oppose during a crash. Therefore, the solution space Ω is defined in the space described by the
force level ranges

[
F l

i , F u
i

]
. Consequently, also the corridors are an expression of the ranges on

these force levels: Ωc =
[
F l

1, F u
1

]
× ... ×

[
F l

n, F u
n

]
. Imposing the Cartesian product means that, as

long as the forces opposed by the components are inside the range
[
F l

i , F u
i

]
, the crashworthiness

of the vehicle is always guaranteed and each component can be designed independently.

3 Reliability analysis and active learning

Reliability analysis is a field of uncertainty quantification devoted to assessing the safety and
reliability of engineering systems. It provides a collection of advanced methods for the estimation
of the probability of failure of a system, due to the inherent uncertainty in its manufacturing,
operating or environmental conditions. At the core of reliability analysis lies the concept of limit

5



state function, an abstract function implicitly defined through its sign: it takes positive values
when the system is operating nominally, and negative otherwise.

More rigorously, consider an M−dimensional vector x ∈ RM with joint probability distribution
x ∼ fX , that represents the uncertainty of environmental and system parameters under consider-
ation. Consider also a computational model y = M(x) that calculates numerically a response
quantity of interest (QoI) of the system for the set of parameters x, e.g. a finite-element model
(FEM) evaluating the maximum force or displacement in a component during a collision. A valid
limit state function is any function g(x) that takes negative values when x results in a system
operating outside its intended conditions. Arguably, the most used class of limit state functions
is that related to the exceedance of critical material parameters:

g(x) = ρadm − M(x), (3)

where ρadm is a the maximum admissible value of the QoI Y before the system fails. A limit state
function partitions the input domain ΩX into two classes: a safe domain DS , that includes all
the subsets of ΩX such that g(x) > 0, ∀x ∈ DS , and a failure domain DF that satisfies instead
g(x) ≤ 0, ∀x ∈ DF .

Within this framework, the probability of failure Pf of the system is simply defined as the
probability that the limit state function takes negative values, given the joint distribution fX :

Pf = P(g(x) ≤ 0) =
∫

DF

fX(x)dx. (4)

The estimation of the integral in Eqn. (4) is, in general, rather complex, as the failure domain DF

is only known implicitly through the sign of the limit-state function, which in general requires
costly evaluations of the computational model M. Several approaches are available to estimate it
in the literature. Some of these are based on the approximation of the limit-state function with
linear functions or with other semi-analytical methods (Ditlevsen and Madsen, 1996; Lemaire
et al., 2009). The accuracy of these methods highly depends on the number of samples considered
in the approximation. Therefore, applying these methods is usually computationally intensive
because they generally require a high number of evaluations.

3.1 Active learning strategies for efficient sampling

To overcome the generally high computational effort required by the classical methods for
estimating DF , the last decade has seen the steady growth of a class of methods that capitalizes
on recent advances in machine learning and surrogate modeling, namely active-learning-based
reliability analysis (Teixeira et al., 2021; Moustapha et al., 2022a).

Active learning in reliability analysis refers to the process of evaluating the computationally
intensive limit-state function on a relatively small set of points, determined iteratively, that
maximize the estimation accuracy of Pf at each iteration (Teixeira et al., 2021; Moustapha et al.,
2022a).

6



The principle behind this class of methods, which belongs to the more general family of greedy
algorithms, is to iteratively construct an inexpensive-to-evaluate approximation (a.k.a. a surrogate
model) of the limit state function ĝ(x) ≈ g(x), based on a comparatively small number of full
model evaluations, known as the experimental design. The choice of samples to add to the
experimental design is based on maximizing a so-called learning function L(x), which associates
to each point in the input domain a score related to the expected improvement in the accuracy
of the Pf estimator. A vast body of literature is dedicated to the specific choice of learning
functions for reliability analysis, and the user is referred to both Teixeira et al. (2021) and
Moustapha et al. (2022a) for a more in-depth discussion. Because the failure probability Pf in
Eqn. (4) only depends on sign(g(x)), active-learning-based approximations tend to focus the
expensive computational model evaluations only in the areas close to the safe-to-failure domain
transition g(x) = 0, commonly known as the limit state surface. In other words, central to all
active learning methods is an accurate classifier of the safe and failure domains, trained at the
lowest possible cost.

Despite the obvious differences between the plethora of methodologies available in the struc-
tural reliability literature, all active learning-based reliability methods share the same overall
algorithmic structure (Moustapha et al., 2022a):

1. Train an initial surrogate model of the limit-state function ĝ(x) based on a small sample
Xini =

{
x(1), · · · , x(Nini)

}
that follows the joint input distribution fX , with Nini ∼ O(101),

known as the initial experimental design.

2. At each iteration i, Estimate an approximate probability of failure P
(i)
f based on the

current surrogate, as well as its associated confidence bounds and accuracy measures, if
available. This estimation is typically performed using simulation-based methods, due to
the extremely low costs of evaluating the surrogate over a large set of input parameters.

3. Minimize a suitable learning function (LF) over the input domain to identify the next point
(or set of points) to be added to the current experimental design. A learning function is a
generic mapping j : RM → R that associates to each point in the input domain a value
of information that is suitable for the learning goal at hand. Such value of information is
typically related to the expected changes in misclassification probability of the surrogate
limit state function ĝ(x), or to the reduction of the variance in the estimation of P

(i+1)
f .

4. Add the chosen point x∗ = min
x∈ΩX

LF (x) to the current experimental design, and train a
new surrogate of the limit state function.

5. Repeat steps 2-4 until some stopping criterion is met, i.e., convergence is achieved, or the
available computational budget is exhausted.

Once the algorithm has completed, its final estimates of Pf and its confidence bounds are
returned.

7



A large body of literature is available on the many different configurations of each of these
steps, but an in-discussion on their performance is outside the scope of this paper and has been
extensively covered by Moustapha et al. (2022a).

3.2 Active learning reliability for training classifiers

While not extensively used in reliability analysis applications (if not for failure mode identification,
see e.g. the work of Sauder et al. (2019)), a byproduct of all ALR algorithms is the final trained
surrogate model ĝ(x), which provides a powerful classifier for the identification of DF and DS ,
without the need to run additional expensive computational model evaluations. Outside the field
of reliability analysis, the use of ALR algorithms as tools to build a standalone classifier has been
recently introduced by Abbiati et al. (2022), where the algorithm in Section 3 has been used to
guide an experimental campaign to characterize the buckling behavior of steel plates.

A key difference between the use of ALR within reliability analysis vs. pure classifier training
lies in the joint distribution of the input parameters fX , which represents the actual parametric
and operational uncertainty in the former, while it only defines the allowed parameter space
in the latter. In particular, all the parameters of the classifier are considered independent and
uniformly distributed between the minimum and maximum bounds defined by the application
under investigation.

In the crashworthiness field, methods like SSM already provide a set of criteria on each component
— local requirements — to understand whether or not a design fulfills the safety requirements
on the whole vehicle — global requirements. However, the local requirements returned by the
SSM are in the form of a set of ranges of force levels that a component is required to oppose
during deformation. Consequently, to understand if the design of component k fulfills the ranges[
F l

i,k, F u
i,k

]
, it must be tested. Testing, generally, is rather expensive since it is performed with

computationally intensive finite element simulations.

In contrast, building a standalone classifier using the ALR method is a cost-effective solution
to finding designs that fulfill the corridors of the SSM. As shown by Abbiati et al. (2022), a
relatively small number of evaluations is required to identify the failure areas in a given domain.
Therefore, we can train a similar classifier to identify which designs yield a set of force levels
inside the given corridors

[
F l

i,k, F u
i,k

]
and which ones do not. Therefore, training such a classifier

can significantly reduce the costs of developing new components for crashworthiness. In this
paper, we propose, for the first time to our knowledge, a methodology to build this type of
classifier that provides a tool to identify crashworthy designs of any given component. From a
more practical point of view, we exploit the local requirements defined by the SSM to define
the limit state function used by ALR to learn which combinations of design parameters are
crashworthy and which are not.

8



4 Solution-space-based crashworthiness classifier

Our goal is to train a classifier capable of identifying crashworthy design inside the design domain
using ALR and the SSM. We use SSM to define the local crashworthiness requirements of a
component and then use ALR to train a classifier capable of distinguishing between designs
that fulfill these local requirements and those that do not. The use of ALR for this application,
though, requires some small changes. Normally, the algorithm is used to estimate the probability
of failure of a given engineering system. Instead, we use the active learning capabilities of this
algorithm to train a surrogate that accurately reproduces the sign of the limit state function,
which directly translates to the two states of the classifier.

Firstly, we need to define a suitable function g that encodes the relation between the corridors
and the force levels measured in a crash test of a component. Notice that, when formulating
g(x), the vector x contains a set of design parameters of a component that are controlled during
the test, such as the shell thickness and the impactor mass. These are not to be confused with
the performance parameters of the solution space, i.e. the force levels F1, ..., Fn.

According to the definition of the corridors of the SSM, see Section 2, given a component k

and set of force levels Fmsr = [F1,k,msr, ..., Fn,k,msr] measured during testing, a design is deemed
crashworthy when every measured force Fi,k,msr satisfies:

F l
i,k ≤ Fi,k,msr ≤ F u

i,k. (5)

We can split Equation (5) into two separate equations. The first,

Fi,k,msr − F l
i,k ≤ 0, (6)

defines a condition in which the term Fi,k,msr − F l
i,k is negative when the corridor is violated —

the measured force is lower than the allowed level — and, vice versa, it is positive when the
corridor is fulfilled.

The second equation relates instead to the upper limit. In the equation

F u
i,k − Fi,k,msr ≤ 0, (7)

the term F u
i,k − Fi,k,msr is negative when the measured force is above the allowed level, i.e.,

violating the corridors of the SSM. Otherwise, F u
i,k − Fi,k,msr is positive. If the condition in

Eqn. (5) is satisfied, then, both Fi,k,msr − F l
i,k and F u

i,k − Fi,k,msr are positive. If instead one of the
conditions in Equations (6) and (7), then Fi,k,msr − F l

i,k or F u
i,k − Fi,k,msr is negative. Therefore,

to define a function g(x) according to the definition in Section 3, we consider the minimum value
between the terms in Equations (6) and (7):

h(x)i,k = min
(
Fi,k,msr − F l

i,k, F u
i,k − Fi,k,msr

)
, (8)

for each i-th measured force level of component k.

9



On top of the conditions listed so far, we must define an extra function hn+1,k(x) that relates to
the expected deformation used in Eqn. (10) and defined in the step-wise simplification introduced
by Lange et al. (2019). According to them, a component cannot deform more than a pre-defined
length. Therefore, the deformation length dmsr measured during the crash test, cannot exceed
a pre-defined value dmax. Therefore, since dmsr ≤ dmax, we can define an extra condition, the
i + 1-th one, for defining the limit state function,

hn+1,k(x) = dmax − dmsr. (9)

Finally, to define a limit state function g(x) that accounts for all (n + 1)-th conditions of
component k, we consider the minimum among all hn+1(x). This way, the value of g(x) is
negative if at least one of the i-th force ranges is violated or if dmsr ≥ dmax, corresponding to
the classical definition of a series system (failure occurs if any of the constraints is violated).
Instead, if all i-th force ranges are fulfilled and the deformation length is smaller than dmax, then
g(x) ≥ 0.

We feed the values of g(x) to the ALR algorithm to learn DS and DF in the domain of design
parameters. In other words, the algorithm follows the steps described in Section 3.1 to learn an
approximation ĝ(x) of the limit state function g(x). In the end, the learned function is used as
our classifier. Given a set of design parameters x, if ĝ(x) ≥ 0, the design fulfills all corridors,
thus the crashworthiness requirements. Otherwise, if ĝ(x) ≤ 0, at least one of the corridors is
violated; thus, the crashworthiness requirements are not met. The overall process is visualized in
the flowchart of Fig. 2.

5 Application to a realistic design test case

To help showcase the potential of the methodology we are proposing, we present an application
example in this section. To this purpose, we consider as a starting point the example presented
by Daub et al. (2020) as a practical application of the SSM. The authors imagine re-designing
the 2013 Honda Accord, available from the National Highway Traffic Safety Administration
(National Highway Traffic Safety Administration, a). We, then, consider the frontal crashbox of
the Honda Accord considered by Daub et al. (2020) and apply our methodology.

5.1 Application of the SSM to the 2013 Honda Accord

The application of the computation of the corridors for the 2013 Honda Accord study presented
by Daub (2020) studies how the vehicle is expected to behave in a front impact with a rigid barrier
and full overlap, according to the protocols of the National Highway Traffic Safety Administration
(National Highway Traffic Safety Administration, b).

We first need to identify the sub-system responsible for the crashworthiness of the vehicle during
a frontal impact. In the Honda Accord, seven components are expected to dissipate most of the

10



Figure 2: Flowchart with the overview of the entire process for training the crashworthiness
classifier.

energy of the car during the impact. These components are divided into two load paths that
deform at the same time. Then, to formulate the model itself, the properties of the components
are considered for the stepwise simplifications necessary to represent the car and the crash
performance (Lange et al., 2019). These simplifications correlate the properties of the vehicle, like
mass and velocity at the beginning of the impact, with the total deformation of each component.
This correlation then defines the so-called deformation space model shown in the intermediate
step of Fig. 3. In the deformation space model, the deformation length of each component is
also divided into several sections. For example, with reference to Fig. 3, Component 1 is divided
into nine sections, while Component 4 in only two. Each section is then associated with one of
the force levels composing the vector of performance parameters F. The combination of force

11



Figure 3: From the 2013 Honda Accord model (National Highway Traffic Safety Administration,
b) to the solution space corridors (Daub, 2020), via Deformation Space Model (Lange et al.,
2019) of the car considering seven components. In the solution space corridors, the white area
represents the feasible force ranges, while the grey area represents the infeasible force ranges.

and deformation fully describes the performance of the vehicle during the frontal impact for our
purpose.

To explicit the relation between F and y, we consider the protocol of the National Highway
Traffic Safety Administration (National Highway Traffic Safety Administration, b). The global
requirements we are interested in modeling are summarized in the following three conditions:

1. The vehicle must be able to dissipate at least the kinetic energy of an impact at 56 km/h;

2. The maximum deceleration during the impact cannot be higher than 300 m/s2;

3. The components must deform in a pre-defined order.

These three statements provide the conditions imposed by Daub (2020) on the vector of perfor-
mance parameters F . The first one, also referred to as energy constraint, imposes that the sum
of the energy dissipated in each section must be at least equal to the energy possessed by the
vehicle. In other terms:

n∑

i=1
Fidi ≥ K, (10)

where di is the deformation length of the section defined in the deformation space model, and Fi

is the force level associated with the same section. Finally, K is the kinetic energy the Honda
Accord possesses when driving at 56 km/h in the conditions defined in the protocol of the

12



National Highway Traffic Safety Administration (National Highway Traffic Safety Administration,
b).

The second condition, referred to as impulse constraint, is related to the deceleration in each
section:

Fi ≤ miamax, (11)

where mi is the active mass of the i-th section, as defined by Daub (2020), and amax is the
maximum allowed deceleration.

Lastly, the force level of the first section of a component must be greater than all force levels of
the previous components, in the order in which they should deform. This condition is introduced
for reparability. For example, with reference to Fig. 3, Component 2 deforms after Component 1.
Consequently, if the maximum force level allowed in Component 1 is 50 kN, then the minimum
force level allowed in the first section of Component 2 must be at least 50 kN. The relation
F 7→ y is, in the end, expressed by a set of equations coming from the conditions reviewed above.

In the last step of the methodology presented by Daub (2020), the solution space Ωc is computed.
In other words, a sub-space of Rn is defined where all conditions on the vector F are satisfied
and the Cartesian product

[
F l

1, F u
1

]
× ... ×

[
F l

n, F u
n

]
can be imposed. All ranges

[
F l

i , F u
i

]
are

represented in the panel to right of Fig. 3. In this application example, we consider only one
component, namely Component 4, a simple crash box.

5.2 Test case: a simple crashbox

As we just said, for the sake of simplicity, we focus only on Component 4, i.e., the crashbox shown
in Fig. 4. The local requirements on this component are defined by a maximum deformation
length and two corridors (Daub et al., 2020). These quantities are shown in Figure 5. More
specifically:

1. the component is allowed to deform of a maximum length dmax = 54 mm;

2. the component must absorb a force in between F l
1 = 0 kN and F u

1 = 65.93 kN while its
deformation length ranges from 0 to 28 mm (first section);

3. the component must absorb a force in between F l
2 = 0 kN and F u

2 = 66.02 kN from 28 to
54 mm of deformation (second section).

According to Section 4, we need to measure from a crash test the mean force over each section,
Fi,k,msr, and the total deformation length dmsr. To do so, we simulate the crash test with a Finite
Element model of a drop-tower test of the said component. For the purpose of the simulation,
we use the commercial software LS-Dyna (Ansys, Ansys), and the open-lasso-dyna library (open-
lasso-dyna, open-lasso-dyna), to interface the solver with the Python coding language. The
simulation set-up we use is shown in Fig. 4. The bottom side is clamped, meaning that all

13



degrees of freedom of nodes on the bottom row are blocked. On the other end of the crashbox,
the impactor is modeled as a rigid wall with initial velocity v0 and mass m. The component
itself is then divided into two parts: Part 1 in blue, and Part 2 in green. Each part is linked
to a different thickness value of the shell elements, respectively t1 and t2. The parameters m,
t1, and t2 are the set of design parameters we consider as the design variables of our problem.
For convenience, we measure the force opposed by the component and the deformation length
at the rigid wall. The practice has shown us that, due to the heavy post-processing we apply
to the results, measuring the force in a different manner does not affect the end results. When
measuring the total deformation length, we account for 1 mm of free fall of the rigid wall. This
distance is set in the simulation to avoid any initial penetration, but also to be accounted for in
the post-processing of the results.

Figure 4: Setup of the droptower test of the studied crashbox.

Always according to Section 4, we define in the simulation a set of design parameters that we
can easily control. These are the two thickness values, t1 and t2, and the mass of the impactor
m. In other words, x = [t1, t2, m]. We chose these three parameters to guarantee a visible effect
when changing the design parameters across their domain.

Lastly, we post-process the results coming from the finite element simulation. In the post-
processing, we compute the force levels Fi,k,msr, and the total deformation length dmsr. To do so,
we consider the force-deformation curve measured at the rigid wall. Since for this component
there are only two sections, thus two corridors, we compute only two force levels: F1,msr, and
F2,msr. The first value is the average force opposed between 0 and 28 mm of deformation. The
second, instead, is the average force opposed between 28 and 54 mm of deformation. F1,msr,
F2,msr, and dmsr are then used to compute the limit state function g(x).

14



Figure 5: Corridors of the crashbox (Daub, 2020).

5.3 Definition of the limit state function

As introduced in Section 4, the limit state function of the crashbox example is defined as the
minimum of three sub-functions hi(x):

g(x) = min (h1(x), h2(x), h3(x)) . (12)

The first and second functions are related to the two corridors. Thus they are defined according
to Eqn. (8):

h1(x) = min
(
F1,msr−F l

1
, F u

1 − F1,msr
)

, (13)

h2(x) = min
(
F2,msr−F l

2
, F u

1 − F2,msr
)

. (14)

The last function h3(x) expresses the condition on the maximum displacement. Therefore, it is
formulated according to Eqn. (9):

h3(x) = min (dmax − dmsr) . (15)

The limit state function we just defined is positive if 0 ≤ F1,msr ≤ 65.93 kN, 0 ≤ F2,msr ≤ 66.02
kN, and dmsr ≤ 54 mm. If at least one of these conditions is violated, then g(x) is negative.

Having defined a limit state function, we can apply the ALR algorithm to learn an approximation
ĝ(x) of g(x) that is accurate in sign. To do so, we use the implementation of the ALR algorithm
available in the UQLab software (Marelli and Sudret, 2014; Moustapha et al., 2022b). The
algorithm provides several options for the surrogate model, the enrichment strategy, and the
stopping criteria. Following the recommendations of Moustapha et al. (2022a), we use polynomial-
chaos-based Kriging as a surrogate model, and subset simulation as the reliability estimation
method. We start with an initial experimental design of 20 samples. As a stopping criterion,
we simply use a fixed budget of 250 additional finite element simulations, resulting in a total of

15



270 model runs. Because the ALR algorithm requires a probabilistic description of the input
parameters, we provide the three design parameters t1, t2, and m as uniform random variables,
following the recommendation in Abbiati et al. (2022). This choice avoids creating a-priori
preferential regions in the design space, allowing for an even exploration by ALR. While t1 and t2

range between 0.7 and 4.0 mm, the mass m ranges from 20 to 200 kg. These ranges are arbitrarily
chosen, yet they lead to reasonable results for such a crashbox. For clarity, the variables and
their properties are summarized in detail in Tab. 1, while the detailed settings used in the ALR
algorithm are summarized in Tab. 2.

Table 1: Summary of the design variables of the crashbox

Name Type Range
t1 Uniform [0.7mm, 4.0mm]
t2 Uniform [0.7mm, 4.0mm]
m Uniform [20kg, 200kg]

Table 2: Summary of the options used in the ALR algorithm

ALR Setting Option
Surrogate Model Function Polynomial-Chaos-Based Kriging
Reliability Estimator Subset simulation
Stopping Criteria Maximum number of evaluations: 270
Size Initial Data-Set 20 samples
Number Added Samples 250 samples

After completing the algorithm, ĝ(x) is trained on the 270 samples, of which 20 initial samples
are sampled with a Latin Hypercube sampling strategy (LHS, (McKay et al., 1979)), and 250
samples are actively placed by the ALR algorithm. We can now use ĝ(x) as a classifier to predict
the crashworthiness of a design. According to the definition of g(x), a design is classified as
crashworthy when ĝ(x) ≥ 0 and it is unworthy when ĝ(x) ≤ 0.

5.4 Results

To assess the robustness of the method, we repeat the training NR = 30 times, each time changing
the initial random seed to capture its sensitivity to its initialization. For the sake of validation,
we also generate a large out-of-sample validation set, consisting of NVal = 10, 000 full LS-Dyna
simulations, post-processed to evaluate the quantities F1,msr, F2,msr, and dmsr, thus g(x). This
validation set is generated using LHS. Each of the NR replications is compared against this
reference set to estimate meaningful accuracy metrics.

For each training run, we track three performance indicators: the percentage of misclassified
samples, the percentage of samples classified as feasible that are misclassified — hereinafter

16



referred to as feasible relative error —, and the percentage of samples classified as infeasible
that are misclassified — hereinafter referred to as infeasible relative error. The evolution of
the first index is shown in Fig. 6a, in which the solid line marks the average percentage of
samples misclassified — i.e. the median total error of the classifier — over the 30 runs. The total
error is consistently decreasing during training and converges around 1.04 %. The shaded area
represents the empirical 10-90% confidence bounds on the total error, based on the available
replications. The confidence interval settles around a value of 1.17 %. In this application, we
observe a maximum misclassification of 2.86 %. The overall performance of the classifier for
this application is also reported in the confusion matrix of Fig. 7. In this matrix, we report the
absolute and relative mean and standard deviation of the number of misclassified samples. To
compute the relative number, we consider the ratio between the prediction and the number of
samples of the true class. The matrix confirms the good performance of the classifier, with the
majority of the validation samples being correctly classified.

In Fig. 6b, the purple curve and shaded area represent the median feasible relative error and its
empirical 10-90 % confidence interval over the 30 runs. On average, this relative error settles
at 6.39 %, while its confidence interval at 3.45 %. The orange curve and shaded area in the
figure, instead, represent the infeasible relative error (respectively median and 10-90 % confidence
interval). The median error converges to 0.87 %, with a standard deviation of 1.25 %.

(a) (b)

Figure 6: Convergence of the percentage of misclassified samples: (a) the percentage of the 10,000
samples misclassified by the trained classifiers; (b) the percentage of the samples classified as
feasible that have been misclassified in magenta, and the percentage of the samples classified as
infeasible that have been misclassified in orange. The solid line shows the median value over the
30 repetitions, the shaded area shows the 10-90 % confidence interval.

Of the 30 runs, we show more in detail the one with a total error of 1.02 % — i.e. it misclassifies

17



Figure 7: Confusion matrix of the trained classifier with the median performance.

a total of 102 samples. Of these 102 samples, 48 are samples wrongly classified as feasible,
and 54 are wrongly classified as infeasible. Therefore, the relative feasible error of this run is
6.93%, and the relative infeasible error is 0.58%. Since the domain of the design parameters is
three-dimensional, we can visualize DF and DS , i.e. the crashworthy domain and the unworthy
one. To do so, we slice the domain by fixing each design parameter at a time and plotting a
slice at the fixed value. Figure 8 shows the comparison between the estimated feasible areas (in
magenta) and the actual feasible areas (in grey) obtained from the validation set. To obtain
the reference shaded areas in grey we linearly interpolate between the values of g(x) of the
10,000 validation samples evaluated with LS-Dyna. Similarly, to obtain the estimated feasible
areas on the given slice, we interpolate between the 10,000 validation samples evaluated on the
approximation ĝ(x) returned by the ALR algorithm. This figure makes use of the converged
classifier and allows us to understand how well the trained classifier is approximating the feasible
areas. The slices are placed in areas of interest. For t1 and t2, two slices are placed close to the
borders of the domain and two are placed in the middle. For m, the four slices are placed in the
lower part of the domain (lower than 50 kg). The rest of the domain is mainly empty, hence,
not of interest. This figure allows us to assess how the classifier estimates the feasible areas in
the design domain after a total training cost of N = 270 samples. By interpolating between the
10,000 samples of the validation set, we can visualize the complicated topology of the feasible
area, its small volume (approximately 7% of the design space), and the areas where the classifier
accuracy is reduced. The real and estimated feasible areas are mostly overlapping. However, the
classifier starts to show inaccuracies where the true feasible area has many small isolated peaks,
around m = 40 kg and m = 50 kg. Please note that a quantitative interpretation is difficult
because of the limited data available for interpolation. As shown in Fig. 6, the overall accuracy
of the classifier increases with the available computational budget, and we, therefore, expect that
even these areas would be better reconstructed with further iterations of the algorithm.

Finally, Fig. 9 provides a comparison between the feasible area estimated by the ALR algorithm
and the feasible area defined by the validation set of 10,000 simulations throughout the training
of the classifier. In this figure, we show one slice per dimension per training snapshot. Therefore,

18



Figure 8: Comparison between the feasible areas estimated by the trained classifier and defined
by the validation set of 10,000 simulations. The grey area is the feasible area according to
the validation set, the magenta area is the estimated feasible area. The 12 slices are taken
for the following values: t1 = 0.75, 2.0, 3.0, 3.95 mm, t2 = 0.75, 2.0, 3.0, 3.95 mm, and m =
25, 30, 40, 50 kg.

the slices are placed at t1 = 1.0 mm, at t2 = 1.0 mm, and the last at m = 30 kg. The snapshots of
the training are taken with 50, 100, 200, and 270 samples: in other words, towards the beginning
of the training, in the middle of the training, and at convergence. The areas marked in grey are
the feasible areas according to the validation set. The areas in magenta are the feasible areas
according to the trained classifier. This figure allows us to compare the validation set with the
trained classifier at different stages of training to understand how the algorithm behaves. For
more detailed plots, the reader is referred to the Appendix.

6 Discussion

The results from the practical application presented in Section 5.4 indicate that the methodology
we are proposing efficiently and effectively trains a classifier capable of distinguishing crashworthy

19



Figure 9: Evolution of the estimated feasible area during training. Each row shows three slices
placed at t1 = 1.0 mm, t2 = 1.0 mm, and m = 30 kg. The first row shows the estimated feasible
area after the evaluation of 50 samples (20 points of initial DoE and 30 iterations). The second
row shows the said area after 100 samples (20 points of initial DoE and 80 iterations). The third
row shows the area estimated with 200 samples (20 points of initial DoE and 180 iterations).
The last row shows the feasible area at convergence, i.e. after having evaluated 270 samples. The
grey area shows the feasible areas according to the validation set. The magenta areas, instead,
show the feasible areas estimated by the trained classifier.

designs from non-crashworthy ones. With just 270 samples, we are capable of training a classifier
with a median total error of 1.04 %.

The fact of having a median total error of 1.02 %, despite the small volume of the feasible
domain, is possible due to the active learning strategy. This type of learning places most samples
close to areas generally treated as of high interest, according to the learning functions defined
in Section 3. Figure 6 shows that the chosen learning strategy is very effective: the algorithm
quickly identifies the feasible area and the estimation error quickly drops to a small value. The
ability to locate samples “smartly" increases the accuracy of the classifier while keeping low the
training effort. In other words, we spend computational power only where needed, namely at

20



the boundaries of the crashworthy areas. This contrasts with the more common technique of
building a general surrogate of the whole finite element simulation and using its output to test
the feasibility against a set of local requirements (Amsallem et al., 2012).

The effectiveness of the ALR tools is also evident in Fig. 9. The plots in the first row show that 50
samples are not enough to properly approximate the feasible areas. However, as the second row
indicates, 100 samples already yield a good approximation of these areas. At this stage, the total
error is already well below 5 %. The majority of this error is attributed to the fact that there are
feasible areas with complicated topology. For example, an area that requires more attention is
around the point with t1 = 1.0 mm, t2 = 0.8 mm, and m = 0.03 ton, on the left bottom corner of
the third plot on the second row of Fig. 8. This fact indicates that the algorithm tends to behave
conservatively, by classifying crashworthy samples as not-crashworthy, rather than vice versa.
From a practical point of view, this is in favor of a more robust development: the algorithm first
identifies big areas of success, and then slowly expands them to refine the approximation.

More evidence of the conservativeness of the algorithm is found in Fig. 6. While Fig. 6a indicates
that the classifier becomes more and more precise with each iteration, the plot in Fig. 6b
indicates that most of the improvements are made on reducing the number of crashworthy
samples misclassified, and thus the feasible relative error. The fact that the feasible relative error
is always bigger than the infeasible relative error supports the conservativeness of the algorithm.
On top of this, both relative errors remain relatively stable after the 200th evaluation. At this
stage, the total error is still slightly decreasing. Therefore, we can infer that in this application,
on average, by iteration 200 the algorithm has identified all feasible areas.

In this application, the algorithm starts refining the classifier after the 200th iteration. It does
so by identifying small feasible areas encapsulated in infeasible zones, and vice-versa. The result
of this refinement can be seen in the fully converged plots of Fig. 8 for m = 25 kg. In this plot,
the algorithm was capable of identifying some of the small infeasible areas that are completely
surrounded by feasible zones. However, notice that letting the algorithm fully refine these areas
provides only a limited benefit compared to the computational effort required. These areas are
small enough to not deeply affect the total error.

The relatively simple system selected to apply the proposed methodology, namely a crashbox
where we vary impactor mass and the side wall thicknesses, is done on purpose. By choosing such
a well-known case study, we could understand better the very mechanisms of active learning in
this new context. More challenging industrial case studies should be tackled in the near future.

In conclusion, our proposed method for training a crashworthiness classifier is efficient, accurate,
and appears conservative in the selected case study. It is efficient because it uses a limited
number of evaluations to identify the crashworthiness domain — with 200 samples, the classifier
prediction already has an error lower than 5 % according to Fig. 6a. It is accurate because it
converges with only 270 evaluations around a total error of only 1.04 %. Finally, it is conservative
because it favors misclassifying crashworthy samples, rather than misclassifying failing samples.

21



7 Conclusion

The methodology we present in this paper merges the Solution Space Method (SSM) with
Active Learning Reliability (ALR). This coupling provides an efficient and effective approach for
addressing some of the challenges in finding crashworthy designs of components for new vehicles.
By cascading global requirements via the SSM on a local level and utilizing ALR to propagate
the cascaded local requirements on parametrized components, our approach provides a classifier
capable of identifying possible crashworthy designs of the given component. The presented simple
application — a crashbox with three design parameters — demonstrates the efficiency, accuracy,
and conservativeness of the methodology. With a rate of only 2.5 % of misclassification, we
successfully train a crashworthiness classifier evaluating a total of 270 samples.

Our methodology should serve as a valuable new tool for designers and engineers. It offers an
effective method to identify potential feasible designs at a low budget, thus unlocking the full
potential of any given design. The positive outcomes of this study allow us to underline the
importance of coupling systems engineering methods with machine learning to better exploit the
information they provide and, thus, better support the development of new products.

Acknowledgments

The authors would like to thank Adéla Hlobilová for her invaluable support in the use of the
UQ[Py]Lab software.

The project leading to this application has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No
955393.

22



References

Abbiati, G., S. Marelli, C. Ligeikis, R. Christenson, and B. Stojadinović (2022). Training of a
classifier for structural component failure based on hybrid simulation and kriging. Journal of
Engineering Mechanics 148 (1), 04021137.

Amsallem, D., M. J. Zahr, and C. Farhat (2012). Nonlinear model order reduction based on local
reduced-order bases. International Journal for Numerical Methods in Engineering 92 (10),
891–916.

Ansys, I. Ls-dyna: Crash simulation software. https://www.ansys.com/products/structures/
ansys-ls-dyna, accessed June 25, 2024.

Daub, M. (2020). Optimizing flexibility for component design in systems engineering under
epistemic uncertainty. Ph. D. thesis, Technical University of Munich, Munich, Germany.

Daub, M., F. Duddeck, and M. Zimmermann (2020). Optimizing component solution spaces for
systems design. Structural and Multidisciplinary Optimization 61 (5), 2097–2109.

Ditlevsen, O. and H. O. Madsen (1996). Structural reliability methods, Volume 178. John Wiley
& Sons Ltd.

Fender, J. (2014). Solution spaces for vehicle crash design. Ph. D. thesis, Technical University of
Munich, Munich, Germany.

Fender, J., F. Duddeck, and M. Zimmermann (2017). Direct computation of solution spaces.
Structural and Multidisciplinary Optimization 55 (5), 1787–1796.

Graf, W., M. Götz, and M. Kaliske (2018). Computing permissible design spaces under consider-
ation of functional responses. Advances in Engineering Software 117, 95–106.

Graff, L. (2013). A stochastic algorithm for the identification of solution spaces in high-dimensional
design spaces. Ph. D. thesis, University of Basel, Basel, Switzerland.

Graff, L., H. Harbrecht, and M. Zimmermann (2016). On the computation of solution spaces in
high dimensions. Structural and Multidisciplinary Optimization 54, 811–829.

Krischer, L. and M. Zimmermann (2021). Decomposition and optimization of linear structures
using meta models. Structural and Multidisciplinary Optimization 64 (4), 2393–2407.

Kwok, J.-Y. and I.-H. Tsang (2004). The pre-image problem in kernel methods. IEEE Transactions
on Neural Networks 15 (6), 1517–1525.

Lange, V. A., J. Fender, L. Song, and F. Duddeck (2019). Early phase modeling of frontal impacts
for crashworthiness: from lumped mass-spring models to deformation space models. Proceedings
of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233 (12),
3000–3015.

Lemaire, M., A. Chateauneuf, and J.-C. Mitteau (2009). Structural reliability. John Wiley &
Sons, Ltd.

23



Marelli, S. and B. Sudret (2014). Uqlab: A framework for uncertainty quantification in matlab.
In Vulnerability, Uncertainty, and Risk (Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis
and Management (ICVRAM2014), Liverpool, United Kingdom), pp. 2554–2563. American
Society of Civil Engineers.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). A comparison of three meth-
ods for selecting values of input variables in the analysis of output from a computer code.
Technometrics 21, 239–245.

Moustapha, M., S. Marelli, and B. Sudret (2022a). Active learning for structural reliability:
Survey, general framework and benchmark. Structural Safety 96, 102174.

Moustapha, M., S. Marelli, and B. Sudret (2022b). Uqlab user manual – active learning reliability.
Report UQLab-V2, in Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich.

Moustapha, M. and B. Sudret (2019). Surrogate-assisted reliability-based design optimization: a
survey and a unified modular framework. Structural and Multidisciplinary Optimization 60 (5),
2157–2176.

National Highway Traffic Safety Administration. Crash simulation vehicle models. https:
//www.nhtsa.gov/crash-simulation-vehicle-models, accessed June 25, 2024.

National Highway Traffic Safety Administration. Laws and regulation. https://www.nhtsa.
gov/laws-regulations, accessed June 25, 2024.

open-lasso-dyna. lasso-python. https://github.com/open-lasso-python/lasso-python, ac-
cessed June 25, 2024.

Sauder, T., S. Marelli, and A. J. Sørensen (2019). Probabilistic robust design of control systems
for high-fidelity cyber–physical testing. Automatica 101, 111–119.

Teixeira, R., M. Nogal, and A. O’Connor (2021). Adaptive approaches in metamodel-based
reliability analysis: A review. Structural Safety 89, 102019.

Vogt, M. E., F. Duddeck, M. Wahle, and M. Zimmermann (2019). Optimizing tolerance
to uncertainty in systems design with early-and late-decision variables. IMA Journal of
Management Mathematics 30 (3), 269–280.

Zimmermann, M. and O. De Weck (2021). Formulating engineering systems requirements. In
Handbook of Engineering Systems Design, pp. 1–49. Springer.

Zimmermann, M., S. Königs, C. Niemeyer, J. Fender, C. Zeherbauer, R. Vitale, and M. Wahle
(2017). On the design of large systems subject to uncertainty. 28 (4), 233–254.

Zimmermann, M. and J. E. Von Hoessle (2013). Computing solution spaces for robust design.
International Journal for Numerical Methods in Engineering 94 (3), 290–307.

24


