

Method of Finite Elements I

Chapter 2

The Direct Stiffness Method

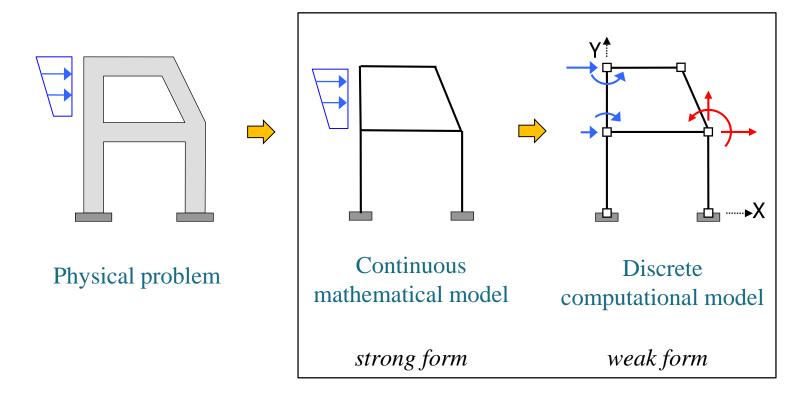
Direct Stiffness Method (DSM)

- Computational method for structural analysis
- Matrix method for computing the member forces and displacements in structures
- DSM implementation is the basis of most commercial and open-source finite element software
- Based on the displacement method (classical hand method for structural analysis)
- Formulated in the 1950s by Turner at Boeing and started a **revolution in structural engineering**

Goals of this Chapter

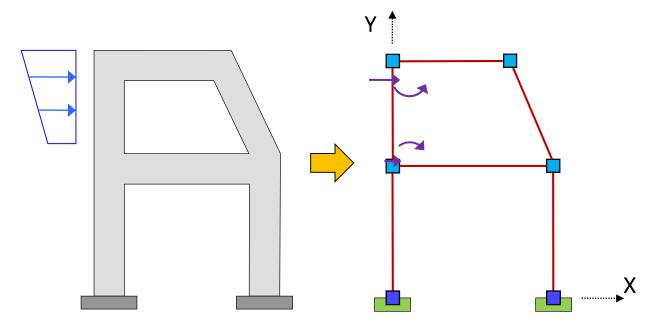
- DSM formulation
- DSM software workflow for ...
 - linear static analysis (1st order)
 - 2nd order linear static analysis
 - linear stability analysis

Computational Structural Analysis



Modelling is the most important step in the process of a structural analysis!

System Identification (Modelling)



Global Coordinate System

Nodes

Elements

Boundary conditions

Loads

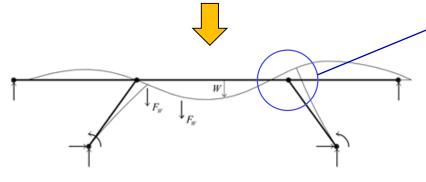
Node numbers

Element numbers and orientation

Deformations

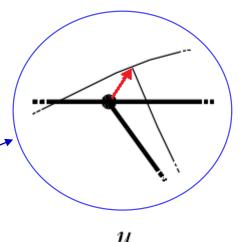
System Deformations

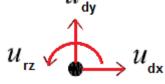
System identification



nodes, elements, loads and supports **deformed shape**

Nodal Displacements



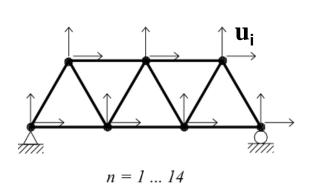


(deformational, nodal)

degrees of freedom = dofs

Degrees of Freedom

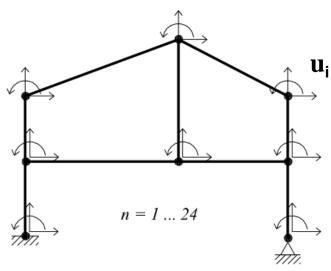
Truss Structure



$$\mathbf{u_i} = (\mathbf{u_{dx}}, \mathbf{u_{dy}})$$

dof per node

Frame Structure



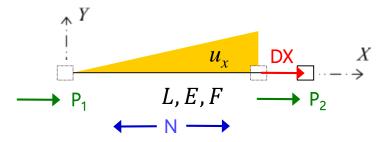
$$\mathbf{u_i} = (\mathbf{u_{dx}}, \mathbf{u_{dy}}, \mathbf{u_{rz}})$$

$$7 * 2 = 14 dof$$

dof of structure

$$8 * 3 = 24 dof$$

Elements: Truss



X/Y = local coordinate system

 u_x = displacement in direction of local axis X

DX = displacement of truss end

compatibility
$$\varepsilon = \frac{DX}{L}$$

const. equation $\sigma = E \varepsilon$

equilibrum
$$P_2 = -P_1 = N$$

$$N = \int E \, \sigma = EF \, \sigma = \frac{EF}{L} DX$$

1 dof per node

$$P_{1} \xrightarrow{L} \xrightarrow{P_{2}} P_{2}$$

$$DX = (u_{2} - u_{1}) \quad \Rightarrow P_{1} = \frac{EF}{L}(u_{1} - u_{2})$$

$$P_{2} = \frac{EF}{L}(-u_{1} + u_{2})$$

$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} \frac{EF}{L} & -\frac{EF}{L} \\ -\frac{EF}{L} & \frac{EF}{L} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

p = k u

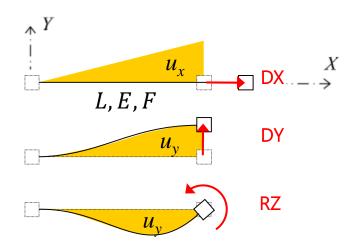
p: (element) stiffness matrix

k: (element) nodal forces

u: (element) displacement vector

Elements: Beam

3 dof per node



 u_x = displacement in direction of local axis X

 u_y = displacement in direction of local axis Y

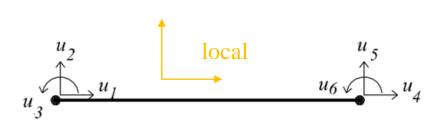
$$\begin{bmatrix} \frac{EF}{L} & 0 & 0 & -\frac{EF}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{EF}{L} & 0 & 0 & \frac{EF}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix}$$

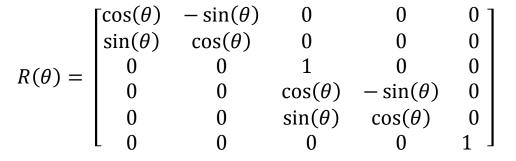
u₁
u₂
u₃
u₄
u₅

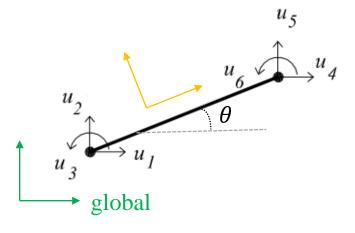
k

u

Elements: Global Orientation







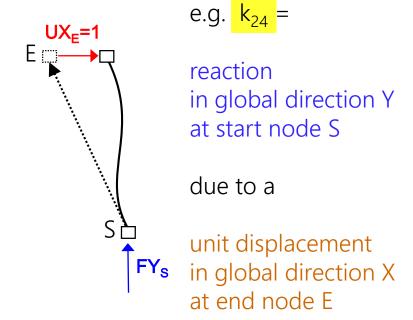
$$\mathbf{u}_{\text{glob}} = \mathbf{u} = R \mathbf{u}_{\text{loc}}$$

$$\mathbf{k}_{\text{qlob}} = \mathbf{k} = R^T \mathbf{k}_{\text{loc}} R$$

Beam Stiffness Matrix

	UX_S	UY_S	UZ_S	UX_E	UY_E	UZ_{E}
$FX_S = FY_S = MZ_S =$	k ₁₁	k ₁₂ k ₂₂	k ₁₃ k ₂₃ k ₃₃	k ₁₄ k ₂₄ k ₃₄	k ₁₅ k ₂₅ k ₃₅	k ₁₆ k ₂₆ k ₃₆
$FX_S = FY_S = MZ_E =$	symm.			k ₄₄	k ₄₅	k ₄₆ k ₅₆ k ₆₆

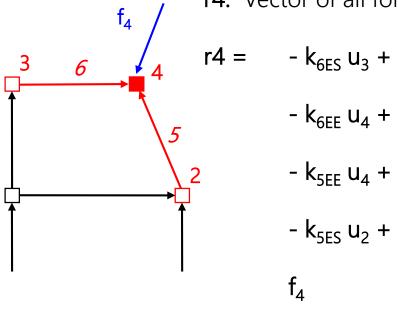
$$p = k u$$



Element stiffness matrix in global orientation

Nodal Equilibrum

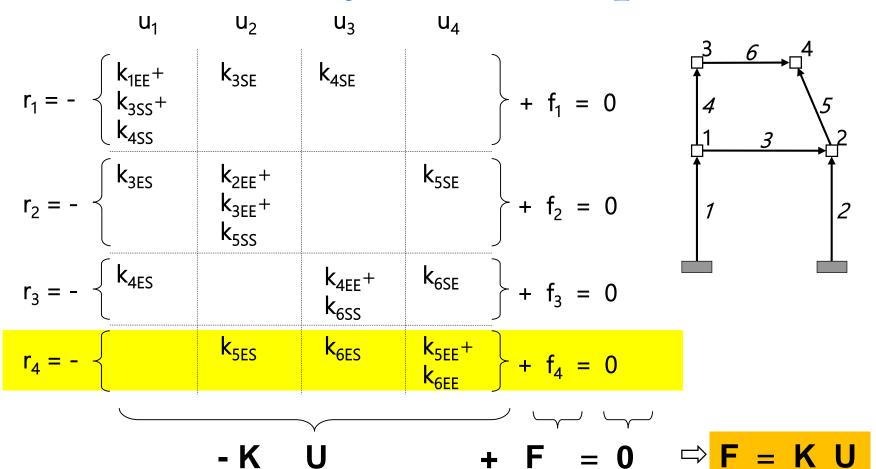




contribution of element 6 due to start node displacement u_3 contribution of element 6 due to end node displacement u_4 contribution of element 5 due to start node displacement u_4 contribution of element 5 due to start node displacement u_2 external load

Equilibrum at node 4: $r_4 = -k_{5SE} u_2 - k_{6ES} u_3 - k_{5EE} u_4 - k_{6EE} u_4 + f_4 = 0$

Global System of Equations



Global System of Equations

F = global load vector = Assembly of all **f**e

K = global stiffness matrix = Assembly of all ke

U = global displacement vector = unknown

F = **K U** = equilibrium at every node of the structure

Solving the Equation System

What are the nodal displacements for a given structure (= stiffness matrix **K**) due to a given load (= load vector **F**)?

$$K U = F$$
 left multiply K^{-1}

$$\Rightarrow$$
 K⁻¹ K U = K⁻¹ F

$$\Rightarrow$$
 U = K⁻¹ F

Inversion possible only if **K** is non-singular (i.e. the structure is sufficiently supported = stable)

Beam Element Results

1. Element nodal displacements

Disassemble **u** from resulting global displacements **U**

2. Element end forces

Calculate element end forces = p = k u

3. Element stress and strain along axis

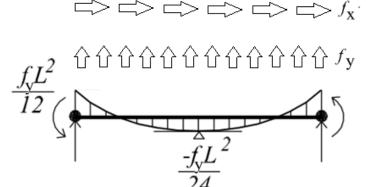
Calculate moment/shear from end forces (equilibrium equation)
Calculate curvature/axial strain from moments/axial force

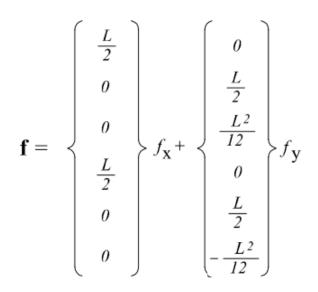
4. Element deformations along axis

Calculate displacements from strain (direct integration)

Lateral Load

1. Adjust global load vector





f = local load vector => add to global load vector **F**

2. Adjust element stresses

e.g. bending moment M:

Linear Static Analysis (1st order)

Workflow of computer program

- 1. System identification: Elements, nodes, support and loads
- 2. Build element stiffness matrices and load vectors
- 3. Assemble global stiffness matrix and load vector
- 4. Solve global system of equations (=> displacements)
- 5. Calculate element results

Exact solution for displacements and stresses