Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Computer lab I: Implementation of a total Lagrangian bar element and arc length solvers

Prof. Dr. Eleni Chatzi, Dr. Konstantinos Agathos

17 October, 2019

Institute of Structural Engineering, ETH Zürich

2 Implementation of arc-length solvers

3 Implementation of a geometrically non linear bar element using the total Lagrangian formulation

- Implementation of arc length solvers
- Implementation of a total Lagrangian bar element

Path-following methods: Arc-length

Illustration of arc-length methods:

Crisfield:

Riks:

Path-following methods

The system to be solved at each step of a path-following method is:

$$\begin{bmatrix} \mathbf{K}_{\mathsf{T}} & -\mathbf{f}_{\mathsf{ext}} \\ \mathbf{h}^{\mathsf{T}} & s \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} -\mathbf{R}^{i} \\ -g^{i} \end{bmatrix}$$

where:

 $\Delta \mathbf{u}$ is the nodal displacement increment

- $\Delta \lambda$ is the load factor increment
 - g_i The value of the constraint function used at the previous increment
 - **h** is the gradient of g with respect to **u**: $\mathbf{h} = \frac{\partial g}{\partial \mathbf{u}}$

s is the derivative of g with respect to
$$\lambda$$
: $s = \frac{\partial g}{\partial \lambda}$

2~

Block solution of the system:

$$\Delta \mathbf{u}^{I} = \mathbf{K}_{\mathbf{T}}^{-1} \mathbf{f}_{\mathbf{ext}}, \ \Delta \mathbf{u}^{II} = -\mathbf{K}_{\mathbf{T}}^{-1} \mathbf{R}^{i}$$
$$\Delta \lambda = -\frac{g^{i} + \mathbf{h}^{T} \Delta \mathbf{u}^{II}}{s + \mathbf{h}^{T} \Delta \mathbf{u}^{I}}, \ \Delta \mathbf{u} = \Delta \lambda \Delta \mathbf{u}^{I} + \Delta \mathbf{u}^{II}$$

Path-following methods

Predictor step incremental displacements:

$$\Delta u^{
ho} = K_T^{-1} f_{ext}$$

Load factor increment:

$$\Delta \lambda^{p} = \pm \frac{\Delta s}{\|\Delta \mathbf{u}^{p}\|}$$

Sign is determined by:

$$\kappa = \frac{\mathbf{f}_{\mathsf{ext}}^{\mathsf{T}} \Delta \mathbf{u}}{\Delta \mathbf{u}^{\mathsf{T}} \Delta \mathbf{u}}$$

Path-following methods

Solution overview:

1	Initial values	$\mathbf{u}^{0},\lambda^{0}$
2	Obtain and tangent stiffness and external force	R, K_T, f_{ext}
3	Predictor step incremental displacements	$\Delta u^{p} = {K_{T}}^{-1} {\mathbf{f}_{ext}}$
4	Predictor step incremental load factor	$\kappa = \frac{\mathbf{f}_{ext}{}^{T} \Delta \mathbf{u}}{\Delta \mathbf{u}^{T} \Delta \mathbf{u}}, \Delta \lambda^{p} = \operatorname{sign}\left(\kappa\right) \frac{\Delta s}{\ \Delta \mathbf{u}^{p}\ }$
5	Load factor and displacement update	$\lambda^1 = \lambda^0 + \Delta \lambda^p$, $\mathbf{u}^1 = \mathbf{u}^0 + \Delta \lambda^p \Delta \mathbf{u}^p$
6	Update residual and tangent stiffness	R, K _T
7	Iterations	$i = 1, 2, 3, \dots$
8	Evaluate constraint	g ⁱ , h , s
9	Solution of linear systems	$\Delta \mathbf{u}' = \mathbf{K}_{\mathbf{T}}^{-1} \mathbf{f}_{\mathbf{ext}}, \ \Delta \mathbf{u}'' = -\mathbf{K}_{\mathbf{T}}^{-1} \mathbf{R}^{i}$
10	Displacement and load factor increments	$\Delta \lambda = -\frac{g^{i} + \mathbf{h}^{T} \Delta \mathbf{u}^{II}}{s + \mathbf{h}^{T} \Delta \mathbf{u}^{I}}, \ \Delta \mathbf{u} = \Delta \lambda \Delta \mathbf{u}^{I} + \Delta \mathbf{u}^{II}$
11	Solution update	$\lambda^{i+1} = \lambda^i + \Delta \lambda, \mathbf{u}^{i+1} = \mathbf{u}^i + \Delta \mathbf{u}$
12	Update residual and tangent stiffness	R,KT
13	Convergence check	If $\ \mathbf{R}\ \leq tol$ converged, else go to 7

Constraint definitions:

Name	g	h	s
Load control	$\lambda - ar{\lambda}$	0	1
Displacement control	$\mathbf{T} \cdot \mathbf{u} - ar{u}$	т	0
Arc length method	$\sqrt{\left(\mathbf{u}-\mathbf{u}^{0}\right)^{T}\cdot\left(\mathbf{u}-\mathbf{u}^{0}\right)+\left(\lambda-\lambda^{0}\right)^{2}}-\Delta s$	$\frac{(\mathbf{u}^i - \mathbf{u}^0)}{g}$	$\frac{(\lambda^i - \lambda^0)}{g}$
Riks method	$(\Delta \mathbf{u}^{p})^{T} (\mathbf{u} - \mathbf{u}^{1}) + \Delta \lambda^{p} (\lambda - \lambda^{1})$	$\Delta \mathbf{u}^{p}$	$\Delta \lambda^p$

where \mathbf{u}^0 and λ^0 are the displacements and load factor at the beginning of the step and:

$$\mathbf{u}^{1} = \mathbf{u}^{0} + \Delta \lambda^{p} \Delta \mathbf{u}^{p}, \ \lambda^{1} = \lambda^{0} + \Delta \lambda^{p}$$

Geometry of the truss element.

Where:

$$u_1^2 = u_1^1 + I\cos\theta - L$$

$$u_2^2 = u_2^1 + I\sin\theta$$

Linear part of the stiffness matrix:

$$\mathbf{K}_{\mathbf{L}} = EA \frac{l^2}{L^3} \begin{bmatrix} \cos^2\theta & \cos\theta\sin\theta & -\cos^2\theta & -\cos\theta\sin\theta \\ & \sin^2\theta & -\sin\theta\cos\theta & -\sin^2\theta \\ & & \cos^2\theta & \sin\theta\cos\theta \\ & & & \sin^2\theta \end{bmatrix}$$

where A is the cross section of the bar in the reference configuration.

The nonlinear part of the tangent stiffness matrix is:

$$\mathbf{K}_{\mathbf{NL}} = EA \frac{l^2 - L^2}{2L^3} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

The force vector is:

$$\mathbf{f}_{int} = EA \frac{l^2 - L^2}{2L^2} \begin{bmatrix} -\cos\theta \\ -\sin\theta \\ \cos\theta \\ \sin\theta \end{bmatrix}$$

Secret assignment

Simulate the following arc truss with radii ${\it R}_1=$ 49, ${\it R}_2=$ 51, and angle $\phi=\pi/6$

