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Learning goals

Reviewing basic elasticity equations and solution methods

Understanding some basic concepts of Linear Elastic Fracture
Mechanics

Introducing brittle and cohesive fracture

Introducing some basic methods to be used in the development
of numerical methods
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Applications

Fracture in brittle materials

Fatigue fracture

Fracture in concrete

Development of numerical methods for fracture
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Resources

Some useful resources:

fracturemechanics.org

Extended Finite Element Method for Fracture Analysis of
Structures by Soheil Mohammadi, Blackwell Publishing, 2008
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History

Some research relevant to the field was conducted starting from
the end of the 19th century

Motivation was provided from experiments in brittle materials
were the measured strength was much lower than the
theoretical prediction

In general very few developments were made in the field until
World War II
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Motivation

Due to their local nature cracks were not considered a threat for
large structures
During the war several failures in ships and aircraft occurred as
a result of crack propagation

Source:Wikipedia

Research in the field was triggered as a result
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General elasticity problem
General problem (in the presence of a crack):

uΓ

0Γ

ct̄

t̄

c
0Γc

tΓ

tΓ

x

y

z

Ω

Institute of Structural Engineering Method of Finite Elements II 8



Fracture mechanics

Governing equations:

∇ · σ + f = 0 in Ω
u = ū on Γu

σ · n = t̄ on Γt

σ · n = 0 on Γ0
c

σ · n = t̄c on Γt
c

where
σ is the Cauchy stress tensor
n is the unit outward normal
f is the body force per unit volume
u is the displacement field
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General elasticity problem

Kinematic equations (small deformations):

ϵ = ∇su

The constitutive equations are given by Hooke’s law:

σ = D : ϵ

where D is the elasticity tensor.
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General elasticity problem

Using index notation the above can be written as:

σji ,j + fi = 0 in Ω
ui = ūi on Γu

niσij = t̄j on Γt

niσij = 0 on Γ0
c

niσij = t̄c
j on Γt

c

ϵij = 1
2

(
∂ui
xj

+ ∂uj
xi

)

σij = Dijklϵkl , ϵij = Sijklσkl
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Displacement formulation

Displacement formulation :

Kinematic equations are substituted into the constitutive
equations

Both of the above are substituted into the equilibrium equations

The resulting system consists of three equations in three
unknowns

The problem is solved in terms of the displacements

Institute of Structural Engineering Method of Finite Elements II 12



Stress formulation

Stress formulation :

The equilibrium equations are directly solved in terms of stresses

Equilibrium provides three equations

The (symmetric) stress tensor consists of six independent
components

Three more equations are needed!
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Stress formulation

The Saint Venant compatibility equations can be employed as
additional equations:

ϵij,kl + ϵkl ,ij = ϵik,jl + ϵjl ,ik

In terms of stresses:

(Sijmnσmn),kl + (Sklmnσmn),ij = (Sklmnσmn),jl + (Sjlmnσmn),ik

→ of the above only three equations are independent
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Stress formulation

The compatibility equations:

Guarantee that the computed strains/stresses are the symmetric
gradient of a vector field

Guarantee that the resulting displacement field will not exhibit
any gaps or overlaps

In conjunction to the equilibrium equations form a system that
can be solved to provide the stress field
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Airy stress function

A function Φ is introduced for the 2D case such that:

σ11 = σxx = ∂2Φ
∂x2

2
= ∂2Φ

∂y2

σ22 = σyy = ∂2Φ
∂x2

1
= ∂2Φ

∂x2

σ12 = σxy = − ∂2Φ
∂x1∂x2

= − ∂2Φ
∂x∂y

Φ is called a stress function.
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Airy stress function

In the absence of body forces fi = 0, the equilibrium equations
become:

σxx ,x + σxy ,y = Φ,yyx − Φ,xyy = 0

σyx ,x + σyy ,y = −Φ,xyx + Φ,xxy = 0

They are satisfied by default!
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Airy stress function

Substituting the stress function in the compatibility equations the
following can be obtained:

Φ,xxxx + 2Φ,xyxy + Φ,yyyy = 0

The above is called biharmonic equation and can also be written as:

∇4Φ = 0
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Airy stress function

Using stress functions:

In the absence of body forces allows the reduction of the
number of equations to one

The problem reduces to the problem of determining an
appropriate stress function for the problem at hand

Solutions to several classical elasticity problems have been
obtained
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Circular hole in an infinite plate
We consider the problem of a circular hole in an infinite domain
subjected to a far field stress:
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Circular hole in an infinite plate

Kirsch solved the problem in 1898 by using a stress function
resulting in the stress field:

σrr = σo
2
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Circular hole in an infinite plate

At the hole (r = a):

σrr = 0
σθθ = σ0 (1 − 2 cos 2θ)
σrθ = 0

For θ = ±π

2 :

σθθ = 3σ0

A stress concentration factor of 3 occurs!
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Circular hole in an infinite plate

3D and contour plot of the σθθ stress component:
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Elliptical hole in an infinite plate
Inglis (1913), obtained the solution for an elliptical hole in an infinite
domain subjected to a far field stress:
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Elliptical hole in an infinite plate

Maximum stress predicted by the solution, at [a, 0], is:

σmax = σo

(
1 + 2a

b

)

We observe that for b = a (circular hole):

σmax = 3σo

For b = 0 the hole turns into a sharp crack:

σmax = ∞

A singularity occurs!
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Westergaard solution

We consider the problem of a sharp crack in an infinite domain
subjected to a far field stress:
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Westergaard solution

Westergaard solved the problem by considering the complex stress
function:

Φ = Re ¯̄Z + y Im Z̄

where:
Z is a complex function defined as: Z = σo√

1 −
(a

z

)2

z is a complex number: z = x + iy
Z̄ denotes the integral of Z
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Westergaard solution

For r ≪ a the stress expression of the solution is:

σxx = σo

√ a
2r cos θ

2

(
1 − sin θ

2 sin 3θ

2

)
+ . . .

σyy = σo

√ a
2r cos θ

2

(
1 + sin θ

2 sin 3θ

2

)
+ . . .

σxy = σo

√ a
2r sin θ

2 cos θ

2 cos 3θ

2 + · · ·
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Westergaard solution

3D and contour plot of the σyy stress component:
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Stress Intensity Factors

We define the stress intensity factors (SIFs) corresponding to the
three modes of fracture as:

Mode I

KI = lim
r→0
θ=0

σyy
√

2πr

Mode II

KII = lim
r→0
θ=0

σxy
√

2πr

Mode III

KIII = lim
r→0
θ=0

σyz
√

2πr
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Stress Intensity Factors

The mode I SIF for the Westergaard solution is:

KI = σo
√

πa

Rewritting stresses w.r.t the SIFs gives:

σxx = KI√
2πr

cos θ

2

(
1 − sin θ

2 sin 3θ

2

)
+ . . .

σyy = KI√
2πr

cos θ

2

(
1 + sin θ

2 sin 3θ

2

)
+ . . .

σxy = KI√
2πr

sin θ

2 cos θ

2 cos 3θ

2 + · · ·
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Energy release rate

It can be observed in the solutions above that:

Stresses at the tip of a crack are infinite independently of the
load applied

Since no material can withstand infinite stress, structures should
fail even in the presence of the smallest crack
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Energy release rate

To circumvent the above situation, Griffith (1920) proposed an
energy based failure criterion.

First the energy required to propagate the crack by a length a (in
2D) is considered:

UΓ = 2γsa

where:
γs is the required energy per unit length

The factor 2 is used to account for both crack surfaces
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Energy release rate

Next the total change of potential energy in the system is considered:

−dΠ
dt = d (W − Us)

dt
where:

Us is the strain energy: Us = 1
2σ : ϵ = 1

2σijϵij

W is the work produced by external forces

With respect to the crack length:

−dΠ
da = d (W − Us)

da
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Energy release rate

The total change in potential energy should be equal to the energy
dissipated to propagate the crack:

−dΠ
da = d (W − Us)

da = d (Uγ)
da = 2γs

We define the energy release rate as:

G = −dΠ
da

and critical release rate as:

Gc = 2γs
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Energy release rate

Griffith’s criterion for crack propagation is written as:

G ≥ Gc

where:
The critical energy release rate (Gc) is a material property

The crack will propagate if the energy release rate (change in
potential energy) is greater than a critical value
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Energy release rate

Computing the total potential energy for the Westergaard solution
yields:

Π = πσ2
oa2

2E ′ , E ′ =

 E plane stress
E

1 − ν2 plane strain

Differentiating with respect to a:

G = −dΠ
da = πσ2

oa
E ′
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Energy release rate

Setting G = Gc :

πσ2
c a

E ′ = Gc

where σc is the critical/failure stress:

σc =

√
E ′Gc
πa

Also:

KIc = σc
√

πa

is defined as the critical SIF.
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Energy release rate

Griffith’s criterion can be written in terms of the SIFs:

KI ≥ KIc

Also the mode I SIF can be related to the energy release rate by:

G = K 2
I

E ′ , Gc = K 2
Ic

E ′
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Mixed mode fracture

The above results are derived for pure mode I, for mixed mode
fracture the following relation holds:

G = K 2
I + K 2

II
E ′ + 1 + ν

E K 2
III

Also appropriate criteria should be used which also yield the
direction of propagation. Those assume the form:

f (KI , KII , KIc) = 0

Typically mode III is not taken into account and only KIc is
experimentally measured.
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Maximum circumferential stress criterion

Erdogan and Sih (1963) developed a criterion for mixed mode
fracture according to which:

The crack will propagate in a direction normal to the direction
of the maximum circumferential stress

The crack will propagate when the maximum circumferential
stress reaches a critical value
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Maximum circumferential stress criterion

By transforming the stresses from the Westergaard solution for
modes I and II to a polar system of coordinates we obtain:

σrr = KI√
2πr

cos θ

2

(
1 + sin2 θ

2

)
+ KII√

2πr

(
−5

4 sin θ

2 + 3
4 sin 3θ

2

)
σθθ = KI√

2πr
cos θ

2

(
1 − sin2 θ

2

)
+ KII√

2πr

(
−3

4 sin θ

2 − 3
4 sin 3θ

2

)
σrθ = KI√

2πr
sin θ

2 cos2 θ

2 + KII√
2πr

(1
4 sin θ

2 + 3
4 sin 3θ

2

)
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Maximum circumferential stress criterion

The maximum circumferential stress is a principal stress, therefore
the angle of crack propagation θc is obtained by setting σrθ = 0 in
the above equation which, after some manipulations, results in:

KI sin θc + KII (3 cos θc − 1) = 0

Solving for θc gives:

θc = 2 arctan

1
4

 KI
KII

±

√( KI
KII

)2
+ 8


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Other criteria

Other criteria for mixed mode fracture have been proposed such as:

The maximum energy release rate criterion

The minimum strain energy criterion
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SIF evaluation

With the available criteria the direction of crack propagation
can be determined provided the SIFs are known

Several methods are available for computing the SIFs if the
displacement, stress and strain fields are available

The interaction integral method is one of the most widely used
and will be presented in the following

Institute of Structural Engineering Method of Finite Elements II 45



J integral

For the case of linear elasticity in the absence of body forces and
crack tractions the J integral assumes the form:

J =
∮
Γ

(1
2σ : ϵdy − t · ∂u

∂x dΓ
)

where
t = σ · n
n is the normal vector
to the contour
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J integral

It can be shown that the J integral is:

Path independent

Zero for a closed path not containing any singularities

Equal to the energy release rate: J = G = K 2
I + K 2

II
E ′
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Interaction integral

We consider two states of the cracked body:

The actual stress state of the body due to the applied loads
with the SIFs, displacement, stress and strain fields denoted as:
KI , KII , u, σ, ϵ respectively

An auxiliary state where the displacement, stress and strain
fields are the asymptotic fields of the Westergaard solution
denoted uaux, σaux, ϵaux respectively, SIFs for that state are
denoted as: K aux

I , K aux
II
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Interaction integral

The J integral evaluated for the sum of the two states (denoted as
J s) is:

J s =
∮
Γ

[1
2 (σ + σaux) : (ϵ + ϵaux) dy − (t + taux) · ∂ (u + uaux)

∂x dΓ
]

=J + Jaux + I

Where I is the interaction integral:

I =
∮
Γ

[
σaux : ϵdy −

(
t · ∂uaux

∂x + taux · ∂u
∂x

)
dΓ
]
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Interaction integral

Considering that the J integral is equal to the energy release rate, we
obtain for the sum of the two states:

J s =(KI + K aux
I )2 + (KII + K aux

II )2

E ′

=K 2
I + 2KIK aux

I + (K aux
I )2 + K 2

II + 2KIIK aux
II + (K aux

II )2

E ′

=K 2
I + K 2

II
E ′ + (K aux

I )2 + (K aux
II )2

E ′ + 2KIK aux
I + KIIK aux

II
E ′

=J + Jaux + 2KIK aux
I + KIIK aux

II
E ′
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Interaction integral

Combining the two definitions of J s we obtain:

I = 2KIK aux
I + KIIK aux

II
E ′

Appropriate choice of the values of K aux
I and K aux

II yields the SIF
values for the actual state.

For instance K aux
I = 1 and K aux

II = 0 yields:

KI = E ′ I
2
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Interaction integral - Domain form

The current form of the interaction integral is a contour integral
which is not very well suited for FE calculations.

In order to obtain a domain integral form, we introduce a function q
such that:

q = 1 in Γ
q = 0 in Γ0

Institute of Structural Engineering Method of Finite Elements II 52



Interaction integral - Domain form

Definition of the contour Γ0:

we define C = Γ + Γ0 + Γ+ + Γ−
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Interaction integral - Domain form

Then the interaction integral can be substituted with:

I =
∮
C

[
σaux : ϵdy −

(
t · ∂uaux

∂x + taux · ∂u
∂x

)
dΓ
]

q

By applying the divergence theorem, the domain form of the
interaction integral is obtained:

I =
∫
A

[
(σaux : ϵ) e1 −

(
σ · ∂uaux

∂x + σaux · ∂u
∂x

)]
∇qdA

where e1 is the unit vector along the x direction.
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Cohesive zone models

Methods mentioned so far assume linear elastic material
behavior and apply mostly to brittle materials

When nonlinear effects are present in an area of considerable
size compared to the length scale of the problem these methods
will fail

Next a simple method will be briefly presented which:

Successfully predicts the response of structures subjected to size
effects

Is easy to incorporate into numerical models
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Cohesive zone models

In this model some forces are introduced which resist separation of
the surfaces:

Those forces gradually reduce to a value of zero which corresponds
to full separation
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Cohesive zone models

Cohesive forces are related to the crack opening displacements
through a traction-separation law:

Linear Law

Normal displacement jump
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Nonlinear Law

Normal displacement jump
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n
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Cohesive zone models

The area under the curve is equal to the critical energy release rate
Gc :

Linear Law

Normal displacement jump
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Nonlinear Law

Normal displacement jump
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