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Learning Goals

To recall the equation of motion for a linear and elastic system.

Learn how to use eigenvalue analysis for reducing the dimension
of the system to be solved.

Use Direct Integration Methods for solving the ordinary
differential equation of motion.

Focus Study: The Newmark Method.

Nonlinear Implementation of The Newmark Method.

Reference:

M.A. Dokainish, K. Subbaraj, A survey of direct time-integration
methods in computational structural dynamicsI. Explicit methods, In
Computers & Structures, Volume 32 : 6, pp. 1371− 1386, 1989.
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Introduction to Dynamic Analysis

Dynamic Equation of Motion - Initial Value Problem (IVP):

{
Mü(t) + Cu̇(t) + Ku(t) = f(t)

u(t0) = u0, u̇(t0) = u̇0

where:

M : Mass Matrix
K : Stiffness Matrix
u : Displacements
u̇ : Velocities
ü : Accelerations
f : external force vector

or alternatively:

FI (t) + FD(t) + FE (t) = f(t)

where:

FI (t) = Mü(t) Inertial Force
FD(t) = Cu̇(t) Damping Force
FE (t) = Ku(t) Internal Force
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Introduction to Dynamic Analysis

Example: 3-dof system

M =

m1 0 0
0 m2 0
0 0 m3

 ,K =

k1 + k2 + k3 −k2 −k3

−k2 k2 + k4 0
−k3 0 k3 + k5


u =

u1

u2

u3

 , f(t) =

f1(t)
f2(t)
f3(t)
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Introduction to Dynamic Analysis

When is Dynamic Analysis required in Structural Engineering?

The decision on carrying out a dynamic structural analysis is up
to engineering judgment. For a number of problems, despite
variations of loads, a static or pseudo-static analysis may be
admissible.

In general, if the loading varies over time with frequencies
higher than the eigen-frequencies of the structure, 7−→ a
dynamic analysis will be required.
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Learning Goals

Objective

How to numerically solve the original dynamic Equation of motion or
the modal set of equations for non-proportional damping?

Mü(t) + Cu̇(t) + Ku(t) = f(t)

In principle, the equilibrium equations may be solved by any standard
numerical integration scheme BUT!

Efficient numerical efforts must be considered and it is worthwhile to
investigate dedicated techniques of integration, particularly aimed for
the analysis of finite element assemblies.
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Direct Integration Methods

These methods rely in discretizing the continuous problem. For given
initial conditions at time zero, we attempt to satisfy dynamic
equilibrium at discrete points in time.

Most methods use equal time intervals. However, this is not
mandatory; in some cases a variable time step might be employed.
This is most commonly the case for special classes of problems such
as Impact Problems.

Direct implies: The equations are solved in their original form, with
two main ideas utilized:

1. The equilibrium equations are satisfied only at time steps, i.e., at
discrete times with intervals ∆t
2. A particular variation of displacements, velocities and
accelerations within each time interval is assumed.
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Direct Integration Methods

Discretization of the IVP with a time step ∆t = tk+1 − tk :{
Mük+1 + Cu̇k+1 + Kuk+1 = f (tk+1)

u(t0) = u0, u̇(t0) = u̇0

where,

M : mass matrix.

C : damping.

K : stiffness matrix.

f : external force vector.

uk+1, u̇k+1, ük+1 : displacement, velocity and acceleration
vectors at tk+1.
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Direct Integration Methods

Accuracy depends on the previously defined assumptions as well as
the choice of time intervals!

These methods come in two main categories:
1 Explicit methods - the right hand side of the discretized

equations of motion exclusively employs variables from the
previous time instant k

2 Implicit methods - the right hand side of the discretized
equations of motion exclusively includes variables from the
current time instant k + 1

Note that:
Implicit integration is not necessarily more accurate than explicit!The
major benefit of implicit integration is stability. Many of these
methods are able to run with any arbitrarily large time step, for any
input, unless we are lying at the limits of floating point math
(unconditionally stable). Obviously a large time step implies
throwing away accuracy.
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Direct Integration Methods

Most Commonly used Direct Integration Methods

(for the case of the Dynamic Equation of Motion)

1 The Central Difference Method (CDF)

2 The Houbolt method

3 The Newmark method

4 The Wilson θ method

5 Coupling of integration operators

The difference in items 1-4 lies in the way we choose a discretized

equivalent of the derivatives. The overall setup of the solution is very much

similar for all methods. Additionally depending on the resulting equations

some schemes are explicit (CDF) and others implicit (Houbolt, Newmark,

Wilson θ)
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Direct Integration Methods

Most Commonly used Direct Integration Methods
	

Central Difference Method 
Velocity Acceleration 
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Direct Integration Methods

Most Commonly used Direct Integration Methods

	
The Houbolt Method 

Displacement Velocity 
	

	

Acceleration	

	

	

   

   
U(t)  

t - 2Δt 
	 

t t + Δt t - Δt 
		

Houbolt’s method uses a third-order 
interpolation of displacements 

extending two steps back in time. 

   

These approximations are derived via 
the displacement approximation. 
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Direct Integration Methods

Most Commonly used Direct Integration Methods

The Newmark Method 
Displacement Velocity 

The Newmark method uses a second order Taylor expansion for approximating Velocities and 

Accelerations: 

   

!Ut+Δt = !Ut + Δt !!UV

Ut+Δt =Ut + Δt !!UV + Δt2

2
!!U D

 , where   
!!UV , !!U D  are approximations of the Acceleration 

	 	

	

   

t + Δt t  
		

   

   

t + Δt t  
		

   if    if    

γ and β are used in place of δ and α, respectively, in the following slides. 13 / 55



Stability/Accuracy of DIMs
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Focus Case: The Newmark Algorithm

The Newmark method is the most widely used multi-step time
integration algorithm for structural analysis:
Discretization of the IVP with a time step ∆t = tk+1 − tk :{

Mük+1 + Cu̇k+1 + Kuk+1 = f (tk+1)

u(t0) = u0, u̇(t0) = u̇0

Interpolation equations (Newmark, 1959):{
uk+1 = uk + u̇k∆t + ük

(
1
2 − β

)
∆t2 + ük+1β∆t2

u̇k+1 = u̇k + ük (1− γ) ∆t + ük+1γ∆t

where β and γ are the parameters of the time integration algorithm.

Newmark, N. M. (1959). A method of computation for structural dynamics.

Journal of the engineering mechanics division, 85(3), 67–94.
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The Newmark Method

Remark:

γ and β are parameters, effectively acting as weights for calculating
the approximation of the acceleration, and may be adjusted to
balance accuracy and stability.

Parameter γ = 1/2 ensures second order accuracy whilst,

β = 0 makes the algorithm explicit and equivalent to the central
difference method.

β = 1/4 makes the algorithm implicit and equivalent to the
trapezoidal rule (uuconditionally stable).

γ = 1/2, β = 1/6 is known as the linear acceleration method,
which also correspond to the Wilson θ method with θ = 1
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Linear Implementation of the Newmark Algorithm

A linear problem is solved at each time step:

Mük+1 + C
(

˙̃uk+1 + ük+1γ∆t
)

+ K
(
ũk+1 + ük+1β∆t2

)
= f (tk+1)

Predictors depend on previous time step solutions:{
ũk+1 = uk + u̇k∆t + ük( 1

2 − β)∆t2

˙̃uk+1 = u̇k + ük(1− γ)∆t

Correctors determine the current time step solution:{
uk+1 = ũk+1 + ük+1β∆t2

u̇k+1 = ˙̃uk+1 + ük+1γ∆t
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Linear Implementation of the Newmark Algorithm

Implicit/explicit algorithm:

1: ũk+1 ← uk + u̇k∆t + ük

(
1
2 − β

)
∆t2

2: ˙̃uk+1 ← u̇k + ük (1− γ) ∆t

3: ük+1 ←
(
M + Cγ∆t + Kβ∆t2

)−1
(

f (tk+1)− C˙̃uk+1 −Kũk+1

)
4: u̇k+1 ← ˙̃uk+1 + ük+1γ∆t
5: uk+1 ← ũk+1 + ük+1β∆t2

β = 0 : explicit algorithm

β 6= 0 : implicit algorithm → inversion of K
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The Newmark Algorithm

Step #1: calculation of predictors :{
ũk+1 = uk + u̇k∆t + ük( 1

2 − β)∆t2

˙̃uk+1 = u̇k + ük(1− γ)∆t
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The Newmark Algorithm

Step #1: calculation of predictors :{
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Step #2: solution of the linear problem :

ük+1 =
(
M + Cγ∆t + Kβ∆t2

)−1
(
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β = 0 : explicit algorithm

β 6= 0 : implicit algorithm → inversion of K

19 / 55



The Central Difference Method

Example - 2 DOF system

Swiss Federal Institute of Technology Page 15

Di t I t ti M th dDirect Integration Methods

1 4 k =

2 0R

112 0 6 2 0
0 1 2 4 10

UU
UU

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

2 2 k =

1 2m =

1 1 1, , U U U

1 0 R =

220 1 2 4 10UU −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

2 1m = 2 10 R =

3 2 k =2 2 2, , U U U

Method of Finite Elements II

For this system the natural periods are T1 = 4.45, T2 = 2.8
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The Newmark Method

2dof system example ∆t = 0.28s

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

5

6

time

D
is

pl
ac

em
en

t
Discrete Time Step, Δt=1 sec

 

 1st Floor CMD
2nd Floor CMD
1st Floor NM
2nd Floor NM
1st Floor true
2nd Floor true
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The Newmark Method

2dof system example ∆t = 1s

0 2 4 6 8 10
−10

−5

0

5

10

15

20

time

D
is

pl
ac

em
en

t
Discrete Time Step, Δt=1 sec

 

 
1st Floor CMD
2nd Floor CMD
1st Floor NM
2nd Floor NM
1st Floor true
2nd Floor true
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State Space Equation Formulation

2dof Mass Spring System

 

 

 

1m
1 1xk

1 1c x  

( )1 tF  

2m  

( )2 2 1x xk −

( )2 2 1x xc − 

( )2 tF

( )2 2 1x xk −

( )2 2 1x xc − 

FBD 

(Lumped Mass System) 

1m

1k

1c
( )1 tx

( )1 tF  

2m  

2k  

1c
( )2 tx  

( )2 tF

We introduce the augmented state vector: x =
[
u1 u2 v1 v2

]T
(controllable form equivalent). Then,

u̇1

u̇2

v̇1

v̇2

 =


0 0 1 0
0 0 0 1[
−m−1k

] [
−m−1c

]



u1

u2

v1

v2

+


0 0
0 0[
m−1

]
[ f1(t)

f2(t)

]

ẋ = Ax + Bp(t)

where m, c and k are mass, damping and stiffness matrix of the
underlying second order mechanical system.
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State Space Equation Formulation

2dof Mass Spring System

ẋ = Ax + Bp(t)

Assume you would like to monitor the displacement x1, x2. Then the
”observation vector” is:

y =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




x1

x2

x3

x4

+��O4×2p(t)

y = Cx + Dp(t)
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State Space Equation Formulation

From phase-space to state-space (nonlinear):

Mẋ + R(x) = F(t)

↓
ẋ = M−1 (F(t)− R(x)) = H (x, t)

with,

M =

 I 0 0
0 m 0
0 0 I

 , x =

u
v
s

 ,R =

 −v
r(u, v, s)
g(u, v, s)

 ,F(t) =

 0
f(t)

0


and,

r is the nonlinear restoring force vector that depends on
displacement u, velocity v and additional state variables s.

g is an additional nonlinear function that determines the
evolution of the additional state variables s.
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State Space Equation Formulation

Using the state space representation we have converted a 2nd order ODE
into an equivalent 1st order ODE system. We can now use any 1st order
ODE integration method to convert the continuous system into a
discrete one and obtain an approximate solution:

1st order ODE Integration Methods

Assume
dx

dt
= H(x(t), t), x(t0) = 0

Forward Euler Method

xk+1 = xk + H(xk , tk)∆t

where ∆t is the integration time step. This explicit expression is
obtained from the truncated Taylor Expansion of x(tk + ∆t)

Backward Euler Method

xk+1 = xk + H(xk+1, tk+1)∆t

This implicit expression (since xk+1 is on the right hand side) is
obtained from the truncated Taylor Expansion of x(tk+1 −∆t)
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State Space Equation Formulation

2nd Order Runge Kutta (RK2){
k1 = H(xk , tk)∆t

k2 = H(xk + 1
2k1, tk + 1

2 ∆t)∆t

xk+1 = xk + k2 + O(∆t3)

4th Order Runge Kutta (RK4)


k1 = H(xk , tk)∆t

k2 = H(xk + 1
2k1, tk + 1

2 ∆t)∆t

k3 = H(xk + 1
2k2, tk + 1

2 ∆t)∆t

k4 = H(xk + k3, tk + ∆t)∆t

xk+1 = xk +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 + O(∆t5)
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Back to Time Stepping Algorithms

Let’s now revisit Time Stepping Algorithms
Linear Single-Degree-of-Freedom (S-DoF) system of frequency ωc :

ü + ω2
cu = 0

State-space representation:

d

dt

[
u
u̇

]
=

[
0 1
−ω2

c 0

] [
u
u̇

]
Analytical solution for a generic instant t:

[
u
u̇

]
= e

 0 1
−ω2

c 0

t
 [

u0

u̇0

]
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Back to Time Stepping Algorithms

Let’s now revisit Time Stepping Algorithms
Linear Single-Degree-of-Freedom (S-DoF) system of frequency ωc :

ü + ω2
cu = 0

State-space representation:

d

dt

[
u
u̇

]
=

[
0 1
−ω2

c 0

] [
u
u̇

]
= A

[
u
u̇

]
Analytical solution for one-time-step transition ∆t:

[
uk
u̇k

]
= e

 0 1
−ω2

c 0

k∆t

 [
u0

u̇0

]
= Ak

c

[
u0

u̇0

]

28 / 55



Analysis of Time Stepping Algorithms

Differential operator:

A =

[
0 1
−ω2

c 0

]
↓

AΦ = λΦ

↓
Φ−1AΦ =

Ω =

[
+iωc 0

0 −iωc

]

Transition matrix (exact):

Ac = e

 0 1
−ω2

c 0

∆t


↓

AcΦc = λcΦc

↓
Φ−1

c AcΦc =

Ωc =

[
e+iωc∆t 0

0 e−iωc∆t

]
The following relation holds:{

Ωc = eΩ∆t

Φc = Φ
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Analysis of Time Stepping Algorithms

This is the proof:

Ac = eA∆t =
∞∑
n=0

(A∆t)n

n!

=
∞∑
n=0

(
ΦΩΦ−1∆t

)n
n!

= Φ

( ∞∑
n=0

(Ω∆t)n

n!

)
Φ−1

= ΦeΩ∆tΦ−1

= ΦΩcΦ
−1

= ΦcΩcΦ
−1
c
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Analysis of the Newmark Algorithm

Calculation of the transition matrix Ad for the Newmark algorithm:
ük+1 + ω2

cuk+1 = 0

uk+1 = uk + u̇k∆t + ük( 1
2 − β)∆t2 + ük+1β∆t2

u̇k+1 = u̇k + ük(1− γ)∆t + ük+1γ∆t

 1 0 −β∆t2

0 1 −γ∆t
ω2
c 0 1

uk+1

u̇k+1

ük+1

 =

1 ∆t
(

1
2 − β

)
∆t2

0 1 (1− γ) ∆t
0 0 0

uku̇k
ük
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Analysis of the Newmark Algorithm

Calculation of the transition matrix Ad for the Newmark algorithm:
ük+1 + ω2

cuk+1 = 0

uk+1 = uk + u̇k∆t + ük( 1
2 − β)∆t2 + ük+1β∆t2

u̇k+1 = u̇k + ük(1− γ)∆t + ük+1γ∆t

uk+1

u̇k+1

ük+1

 =

 1 0 −β∆t2

0 1 −γ∆t
ω2
c 0 1

−1 1 ∆t
(

1
2 − β

)
∆t2

0 1 (1− γ) ∆t
0 0 0

uku̇k
ük


uk+1

u̇k+1

ük+1

 = Ad

uku̇k
ük
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The Newmark Algorithm: Stability

The spectral radius ρ of the transition matrix Ad is defined as,

AdΦd = λdΦd

↓uk+1

u̇k+1

ük+1

 = Ak+1
d

u0

u̇0

ü0

 = Φd

λk+1
d ,1 0 0

0 λk+
d ,2 0

0 0 0

Φ−1
d

u0

u̇0

ü0


↓

ρ = max
j
|λd ,j | :

{
ρ ≤ 1 stable

ρ > 1 unstable

and it is expressed as function of the dimensionless frequency ωc∆t.
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The Newmark Algorithm: Spectral Radius

ü + ω2
cu = 0
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The Newmark Algorithm: Distortions

Differential operator:

AΦ = λΦ

↓
Φ−1AΦ =

λ = ±iωc

Transition matrix (approx):

AdΦd = λdΦd

↓
Φ−1

d AdΦd =

λd = e(−ξdωd±iωd

√
1−ξ2

d )∆t

The following relation holds:{
ωd ≈ arg λd

∆t 6= ωc

ξd ≈ − ln|λd |
ωd∆t 6= 0

ωd and ξd are frequency and damping of the discretized system.
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The Newmark Algorithm: Frequency Distortion

ü + ω2
cu = 0
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The Newmark Algorithm: Damping Distortion

ü + ω2
cu = 0
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Analysis of the Newmark Algorithm: Order of Accuracy

The order of accuracy p can be evaluated numerically:

∆(u) = |uk − u(tk)| ∝ ∆tp

ωc = 2π, u0 = 1m, v0 = 0m
s , tk = 0.1s
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Generalization of M-DoFs Systems

Irons and Treharne’ Theorem (1972):

max
c

(ωc)2 ≤ max
e

(ωe)2

where.

ωc is the c-th frequency of the model

ωe is the frequency of the e-th element
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The Newmark Method

Stability of the Newmark Method

For zero damping the Newmark method is conditionally stable if

γ ≥ 1

2
, β ≤ 1

2
and ∆t ≤ 1

ωmax

√
γ
2 − β

where ωmax is the maximum natural frequency.

The Newmark method is unconditionally stable if

2β ≥ γ ≥ 1

2
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The Newmark Method

Stability of the Newmark Method

However, if γ ≥ 1
2 , errors are introduced. These errors are associated

with “numerical damping” and “period elongation”, i.e. a seemingly
larger damping and period of oscillation than in reality.

Because of the unconditional stability of the average acceleration
method, it is the most robust method to be used for the step-by-step
dynamic analysis of large complex structural systems in which a large
number of high frequencies, short periods, are present.

The only problem with the method is that the short periods, which
are smaller than the time step, oscillate indefinitely after they are
excited. The higher mode oscillation can however be reduced by the
addition of stiffness proportional (artificial) damping.

source: csiberkeley.com
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Nonlinear Time Stepping Integration

Nonlinear Problem Formulation:

{
Mün + r (un, u̇n) = f (tn)

u(t0) = u0, u̇(t0) = u̇0

where,

M : mass matrix.

r : restoring force.

f : external force vector.

un, u̇n, ün : displacement, velocity and acceleration vectors at tn.
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Nonlinear Implementation of the Newmark Algorithm

Discretization of the IVP with a time step ∆t = tk+1 − tk :{
Mük+1 + r (uk+1, u̇k+1) = f (tk+1)

u(t0) = u0, u̇(t0) = u̇0

A nonlinear problem is solved at each time step:

Mük+1 + r
(

ũk+1 + ük+1β∆t2, ˙̃uk+1 + ük+1γ∆t
)

= f (tk+1)

Predictors depend on previous time step solutions:{
ũk+1 = uk + u̇k∆t + ük( 1

2 − β)∆t2

˙̃uk+1 = u̇k + ük(1− γ)∆t

Correctors determine the current time step solution:{
uk+1 = ũk+1 + ük+1β∆t2

u̇k+1 = ˙̃uk+1 + ük+1γ∆t
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Nonlinear Implementations of the Newmark Algorithm

Implicit implementation based on Newton-Raphson iterations:
1: ük+1 ← 0
2: uk+1 ← uk + u̇k∆t + ük

(
1
2 − β

)
∆t2 + ük+1β∆t2

3: u̇k+1 ← u̇k + ük (1− γ) ∆t + ük+1γ∆t
4: ε← f (tk+1)− r (uk+1, u̇k+1)−Mük+1

5: while ‖ε‖ >= Tol do

6: ∆ük+1 ←
(
M + Cγ∆t + Kβ∆t2

)−1
ε

7: ük+1 ← ük+1 + ∆ük+1

8: u̇k+1 ← u̇k+1 + ∆ük+1γ∆t
9: uk+1 ← uk+1 + ∆ük+1β∆t2

10: ε← f (tk+1)− r (uk+1, u̇k+1)−Mük+1

11: end while

Assembly of restoring force and stiffness matrix loop over elements:

1: for i = 1 to I do
2: ri,k+1 ← elementForce (Ziuk+1)
3: rk+1 ← rk+1 + ZT

i ri,k+1

4: end for

1: for i = 1 to I do
2: Ki,k+1 ← elementStiff (Ziuk+1)
3: Kk+1 ← Kk+1 + ZT

i Ki,k+1Zi
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Nonlinear Implementations of the Newmark Algorithm

Full Newtwon-Raphson iteration
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Explicit Integration for Nonlinear Problems

In the explicit version of the method β = 0 and the update step in
each iteration becomes:

∆ük+1 ← (M + Cγ∆t)−1 ε

In the above:

The matrix to be inverted is (M + Cγ∆t)

This matrix remains constant during the iterative procedure

It can be factorized once and then only backward substitutions
have to be performed
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Explicit Integration for Nonlinear Problems

In the explicit version of the method β = 0 and the update step in
each iteration becomes:

∆ük+1 ← (M + Cγ∆t)−1 ε

If further:

M is lumped (diagonal)

C is either lumped or zero

Then solution of the system is trivial!

The same is true for all explicit schemes!
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Dynamic Relaxation

The above feature can be exploited to solve nonlinear static
problems

Damping of the system is increased to remove dynamic effects

If damping is set correctly the solution quickly converges to the
static one
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Implicit Vs Explicit integration

Explicit integration:

Does not require inversion
of a tangent stiffness
matrix

Conditionally stable -
limited by small timesteps

Usually prefered for
problems of small
duration involving high
frequencies such as wave
propagation

Implicit integration:

Requires inversion of a
tangent stiffness matrix

Unconditionally stable -
allows for a larger
timestep

Usually prefered for
structural dynamics
problems of larger
duration involving lower
frequencies
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Nonlinear Implementation of the Newmark Algorithm

Linearly-implicit implementation (a.k.a. operator splitting):

1: ũk+1 ← uk + u̇k∆t + ük

(
1
2 − β

)
∆t2

2: ˙̃uk+1 ← u̇k + ük (1− γ) ∆t

3: ük+1 ←
(
M + Cγ∆t + Kβ∆t2

)−1
(

f (tk+1)− r
(

ũk+1, ˙̃uk+1

))
4: u̇k+1 ← ˙̃uk+1 + ük+1γ∆t
5: uk+1 ← ũk+1 + ük+1β∆t2

K is assembled once at the beginning of the simulation
the linearly-implicit implementation is equivalent to the implicit
implementation based on the modified Newton-Raphson
method (constant K) truncated at one iteration.

Assembly of restoring force and stiffness matrix loop over elements:

1: for i = 1 to I do
2: ri,k+1 ← elementForce (Ziuk+1)
3: rk+1 ← rk+1 + ZT

i ri,k+1

4: end for

1: for i = 1 to I do
2: Ki,k+1 ← elementStiff (Ziuk+1)
3: Kk+1 ← Kk+1 + ZT

i Ki,k+1Zi

4: end for
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Nonlinear Implementation of the Newmark Algorithm

Single modified Newton-Raphson (constant K) iteration

In this case a residual force balance ε
(2)
k+1 occurs that tends to zero

as ∆t tends to zero.
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The HHT-α Algorithm

α-shifted equation of motion:{
Mük+1 + (1 + α)r (uk+1, u̇k+1)− αr (uk , u̇k) = (1 + α)f (tk+1)− αf (tk)

u(t0) = u0, u̇(t0) = u̇0

Interpolation equations and integration parameters:{
uk+1 = uk + u̇k∆t + ük

(
1
2 − β

)
∆t2 + ük+1β∆t2

u̇k+1 = u̇k + ük (1− γ) ∆t + ük+1γ∆t

β = (1− α)2/4, γ = (1− 2α)/2

where α ∈ [−1/3, 0] modulates algorithmic damping.

Hilber, H. M., Hughes, T. J., Taylor, R. L. (1977). Improved numerical

dissipation for time integration algorithms in structural dynamics. Earthquake

Engineering & Structural Dynamics, 5(3), 283–292.
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Nonlinear Implementation of the HHT-α Algorithm

Implicit implementation based on Newton-Raphson iterations:
1: ük+1 ← 0
2: uk+1 ← uk + u̇k∆t + ük

(
1
2 − β

)
∆t2 + ük+1β∆t2

3: u̇k+1 ← u̇k + ük (1− γ) ∆t + ük+1γ∆t
4: ε← f̂k+1

5: while ‖ε‖ >= Tol do
6: ∆ük+1 ← M̂−1ε
7: ük+1 ← ük+1 + ∆ük+1

8: u̇k+1 ← u̇k+1 + ∆ük+1γ∆t
9: uk+1 ← uk+1 + ∆ük+1β∆t2

10: ε← f̂k+1

11: end while

The same assembly of restoring force and stiffness matrix loop of the
Newmark method is performed and,

M̂ =M + Cγ∆t(1 + α) + Kβ∆t2(1 + α)

f̂k+1 =(1 + α)fk+1 − αfk − (1 + α)̃rk+1 + αr̃k−

(1 + α)C ˙̃uk+1 + αC˙̃uk + α(Cγ∆t + Kβ∆t2)ük 50 / 55



Nonlinear Implementation of the HHT-α Algorithm

Linearly-implicit implementation (a.k.a. operator splitting):

1: ũk+1 ← uk + u̇k∆t + ük

(
1
2 − β

)
∆t2

2: ˙̃uk+1 ← u̇k + ük (1− γ) ∆t
3: ük+1 ← M̂−1f̂k+1

4: u̇k+1 ← ˙̃uk+1 + ük+1γ∆t
5: uk+1 ← ũk+1 + ük+1β∆t2

K is assembled once at the beginning of the simulation
the linearly-implicit implementation is equivalent to the implicit
implementation based on the modified Newton-Raphson
method (constant K) truncated at one iteration.

The same assembly of restoring force and stiffness matrix loop of the
Newmark method is performed and,

M̂ =M + Cγ∆t(1 + α) + Kβ∆t2(1 + α)

f̂k+1 =(1 + α)fk+1 − αfk − (1 + α)̃rk+1 + αr̃k−

(1 + α)C˙̃uk+1 + αC˙̃uk + α(Cγ∆t + Kβ∆t2)ük
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Analysis of the HHT-α Algorithm: Spectral Radius

ü + ω2
cu = 0
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Analysis of the HHT-α Algorithm: Frequency Bias

ü + ω2
cu = 0
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Analysis of the HHT-α Algorithm: Damping Bias

ü + ω2
cu = 0
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Algorithmic Damping Comparison

Free-decay response of a S-DoF system:

ü + ω2
cu = 0

ωc = 2π5, u0 = 1m, v0 = 0m
s ,∆t = 2e − 4s
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Recalling the Eigenvalue Analysis

The eigen-problem is obtained as the solution to the undamped, free
vibration equation:

Mü + Ku = 0

Defining a matrix Φ whose columns are the eigen-vectors
{φi , i = 1 . . . n} and a diagonal matrix Ω2 storing the eigenvalues{
ω2
i , i = 1 . . . n

}
,i.e.:

Φ =
[
φ1, φ2, ... φn

]
Ω2 =


ω1

ω2

...
ωn


we can write the eigen-problem as:[

K−MΩ2
]
Φ = 0
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Mode Superposition Method

M − Orthonormality

We may scale Φ, as they form a basis, and we can chose these such that:

ΦTMΦ = I→ ΦTKΦ = Ω2

Using the transformation u(t) = Φq(t), the IVP is transformed to its
modal counterpart:

q̈(t) + ΦTCΦq̇(t) + Ω2q(t) = ΦTf(t)

q0 = ΦTMu0; q̇0 = ΦTMu̇0

under a Proportional Damping Assumption: φT
i Cφj = 2ωiξiδij , where ξi is a

modal damping parameter and δij is the Kronecker delta

Therefore, we end up with n decoupled SDOF equations, one for each qi :

q̈i (t) + 2ωiξi q̇i (t) + ω2
i qi (t) = ri (t)

This even admits an analytical solution (Duhamel’s Integral). For systems

with non-classical damping C is not diagonal → the equations are coupled

& solved numerically.
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Mode Superposition Method

Complete Response

The solution of all n SDOF equations are calculated and the finite
element nodal point displacements are obtained by superposition of
the response in each mode:

u(t) = Φq(t)⇒ û(t) =
n∑

i=1

φiqi (t)

In case only the first m modes are contributing to the solution, we
retain the first m eigenvectors with the dimension of the system of
equations now reducing to the dimension of Φ ∈ Rn×m.

Usually m << n, which implies that the modal system is
significantly reduced.

Note: The analysis only holds for linear systems.

55 / 55


