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Abstract This review chapter outlines the outcomes of a combined experimental-
numerical investigation on the retrofitting of masonry structures by means of poly-
meric textile reinforcement. Masonry systems comprise a significant portion of cul-
tural heritage structures, particularly within European borders. Several of these sys-
tems are faced with progressive ageing effects and are exposed to extreme events, as
for instance intense seismicity levels for structures in the center of Italy. As a result,
the attention of the engineering community and infrastructure operators has turned
to the development, testing, and eventual implementation of effective strengthen-
ing and protection solutions. This work overviews such a candidate, identified as
a full-coverage reinforcement in the form of a polymeric multi-axial textile. This
investigation is motivated by the EU-funded projects Polytect and Polymast, in the
context of which this protection solution was developed. This chapter is primarily
concerned with the adequate simulation and verification of the retrofitted system, in
ways that are computationally affordable yet robust in terms of simulation accuracy.
To this end, finite element based mesoscopic and multiscale representations are here
overviewed and discussed within the context of characterization, identification and
performance assessment.
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1 Introduction

In recent years awareness has been raised among both engineers and authorities
on the importance of shielding infrastructure against extreme events, such as earth-
quakes, particularly with respect to those items that form part of our cultural her-
itage. Recent pronounced catastrophes associated with the earthquakes in Tohoku
(2011), Christchurch (2011), Modena (2012) and Central Italy (2016), formed a
wake up call regarding the potential impact of such events in terms of material dam-
age and, more importantly, human loss. Societies have since turned towards the
notion of resilience, which encourages the search for new materials and method-
ologies able to strengthen and protect structures against natural hazards, including
seismicity.

Masonry is a composite material comprising distinct units of various natural or
industrial materials e.g. stone, brick, concrete etc. [1, 2]. The constituents usually
demonstrate a brittle and in general anisotropic behavior in a micro-level. The latter
eventually propagates to the macro-level [3, 4, 5, 6], and is further enhanced by
inherent “weak” planes along the head and bed joints, leading to in- and out-of-plane
failure mechanisms, which are often activated by seismic loading. The prevention of
structural collapse due to seismic events, and the enhancement of structural integrity,
are still open points of discussion within the scientific community as a number of
different techniques may be considered suitable, depending on the characteristics of
the input load.

Masonry structures comprise an essential feature of global infrastructure her-
itage. Many of these structures however, have not necessarily been designed against
seismic loads, but rather with the primary goal of withstanding gravity loads [7].
Nonetheless, underestimation of the effects of seismicity may be detrimental, par-
ticularly when associated with increased in-plane and out-of-plane forces, which
may ultimately lead to failure [8]. To accurately simulate the behavior of masonry,
a thorough accounting of the damage and failure mechanisms need be put in place.
To this end, effective nonlinear modeling tools are essential, albeit often laborious
to establish, owing to the inherent complexity in either the local (constituents) or
global (system) level.

For alleviating collapse and failure incidents, retrofitting techniques have been
proposed that are particularly suited for the special class of masonry structures.
Standard methods of intervention include strengthening through external pre-stressing
[9], externally bonded strips or overlays [10], and near-surface mounted reinforce-
ment [11]. During recent years however, textile composites have surfaced as an
effective means for the retrofitting and strengthening of reinforced concrete and
masonry structures [12]. As opposed to other fiber-based materials such as Fiber
Reinforced Polymers (FRPs) that are implemented onto masonry as a set of indi-
vidual strips, textile materials are produced as fabric meshes of fibre rovings in at
least two directions. As such, textile composites provide wide area coverage, can
prevent falling debris, help distribute loads, are low-cost, easy to apply, provide a
high strength to weight ratio, are resistant to electro-chemical corrosion, are non-
invasive, are fatigue resistant, are non-magnetic, and have the potential to reduce
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seismic retrofitting costs. Such composite materials in the form of sheets or wrap-
pers, have been been implemented for the effective strengthening of masonry struc-
tures [13, 14].

Textile solutions are often implemented in strips of fiber reinforced composites
(carbon or glass fibers), which are attached via adhesive (resin) onto localized areas
of the wall (CNR-DT 200/2004) [15]. A shortcoming to this approach lies in the
potential local increase of stiffness leading to undesired stress concentrations and
an unfavorable redistribution of dynamic loads. A remedy to this approach, in the
form of a full coverage solution, has been tested and validated within the context
of the EU funded project Polytect - Polyfunctional Technical Textiles for Protection
against Natural Hazard [16, 17, 18]. The purpose of implementing a full coverage
solution as in the case of composite textiles is two-fold. First of all, the system acts
as a mechanical adhesive bridging cracks that may exist on the body of the masonry.
Although each individual fiber demonstrates brittle material behavior with an elastic
branch until failure, the overall behavior of the textile is ductile as failure propa-
gates in a successive manner during cyclic loading. As a result, textiles significantly
increase the ductility and shear strength of retrofitted masonry, while additionally
achieving an improved load distribution. Finally, an added advantage to this solu-
tion is delivered via its embedded monitoring technology enabled via Fibre Optical
strain sensors. Monitoring of these solutions is further suggested by the European
guidelines (CNR-DT 200/2004), as a consequence of the reduced knowledge base
available and rather limited experience gathered regarding their long–term behavior.

The use of testing and the subsequent extraction of structural feedback in the
form of measurements, allows for enhancing current understanding on such com-
plex systems. When investigated within a laboratory setting, a number of mixed
numerical-experimental techniques have been proposed for simulation and verifica-
tion of polymer reinforcing materials [19, 20, 21]. On the other hand, and as was
originally conceived in the Polytect project, structural feedback may also be ob-
tained from structures in-operation via use of appropriate sensors. In both cases, it
is only via coupling of the recorded information with an appropriate structural model
that the info stemming from raw measurements may be transcribed into meaningful
insight regarding the condition and behavior of the system.

This is commonly achieved with an inverse problem setting, where response re-
sponse observations serve as the starting point of an iterative procedure for identify-
ing the underlying structural properties of the investigated system. However, when
discussing retrofitting solutions for the purpose of seismic protection, it becomes
evident that availability of measurements from dynamic loads or seismic events is
of particular importance. The latter naturally necessitates a nonlinear dynamic anal-
ysis, which nonetheless comes at increased computational costs with obvious draw-
backs when cast in an inverse problem setting. It is therefore imperative to develop
and employ model structures that are adept in counterpoising the desired level of
precision with the associated computational cost.

This paper provides a review of methods available for the modeling and charac-
terization of retrofitted masonry systems. The Polytect project is exploited as a ref-
erence case-study for demonstrating the steps that are necessary for the monitoring,
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simulation and verification of protection solutions for cultural heritage structures.
In a first step, we demonstrate the use of Finite-Element based models of diverse
fidelity, and their inverse calibration via heuristic approaches, with a Genetic Al-
gorithm serving as the optimization tool. The procedure proves successful, albeit
severely draining in terms of both computational power and time. In a second stage,
this review paper demonstrates how a multiscale analysis scheme can enhance the
computational efficiency of numerical simulation tools, while retaining their level
of refinement. The latter results in a dramatic acceleration of the problem solution,
which can be exploited in the context of demanding tasks such as identification,
uncertainty quantification and reliability assessment.

2 State-of-the-Art in Simulation

2.1 Masonry Modeling

The modeling of materials that are multi-phase in nature is a non-trivial one. Ma-
sonry is a composite material whose diverse constituents exhibit an anisotropic and
in general brittle microscopic behavior. The anisotropy at the micro level together
with the inherent weak directions along joints results in a highly anisotropic macro-
scopic behavior [3]. This anisotropy is also influenced by the spatial distribution of
the joints, as well as the mechanical properties of the mortar. An immediate con-
sequence of this anisotropy is the fact that the bending strength of a masonry wall
varies significantly when in-plane or out-of plane bending is considered [22]. Fur-
thermore, fabrication and construction processes invoke notable variability of the
mechanical properties [23].

It is therefore apparent that depending on the problem-at-hand, and the particular
goal of the simulation study, appropriate modeling tools and corresponding assump-
tions should be adopted. Three are the main modeling approaches in the modeling
of masonry response, namely micro-models, macro-models and multiscale models
(Figure 1). Macro-modeling is a phenomenological approach where the response of
a structural element, e.g. wall, rather than the response of its constituents is exam-
ined. In macro-modeling masonry is treated as a continuum with smeared material
properties. To account for different properties along the main axes of the element,
the material is regarded as an anisotropic composite and a relationship is established
between generalized stress and strain measures. In the case of masonry, an accurate
macro-model must reproduce an orthotropic material with different tensile and com-
pressive strengths along separate material axes. Several macro-elements have been
proposed to such an end [24, 25, 26]. Relatively recently, Chen et al. [27] developed
a macro-element for the in-plane nonlinear analysis of unreinforced masonry piers.

On the other hand, refined masonry models (micro-models) include a distinct rep-
resentation of the separate constituents, i.e., units (bricks), mortar and the brick/mortar
interface, with fusion of continuum and discontinuous elements. The units (bricks)
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are often represented by continuum elements, while discontinuous elements approx-
imate the behavior of joints and interfaces. Each joint, consisting of mortar and the
two unit-mortar interfaces, is lumped into an “average” interface, while the units are
expanded in order to keep the geometry unchanged.

Due to their obvious computational advantages, as opposed to more refined ap-
proaches, macro-modeling procedures are practically the only computational tool
implemented at the design office. However the associated macro-modeling parame-
ters need to be properly identified for providing acceptable results. This calibration
is usually based on actual experimental data that is hard to secure and usually comes
at a high cost. In alleviating these issues, the multiscale method offers a compromise
between the macro- and micro-approach, and is in this work presented as a viable
alternative.

Fig. 1: Different modeling approaches for the structural analysis of composite struc-
tures.
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2.2 Multiscale Modeling

Multiscale modeling is a rigorous mathematical approach for the scaling of complex
numerical problems, significantly reducing the required computational cost [28].
Multiscale and homogenization schemes [29] are commonly adopted in the model-
ing of materials whose macroscopic behavior is influenced by, and dependent upon,
changes in the micro-structure, e.g. granular [30] or cellular and honeycomb ma-
terials [31, 32]. In terms of constitutive modeling, multiscale methods have proven
their versatility and accuracy where complex plasticity behaviors are observed [33].
The major benefit of multiscale methods lies in their ability to significantly enhance
the computational performance of conventional computational mechanics schemes,
such as the Finite Element Method. This feature justifies their popularity in a broad
spectrum of implementation domains, from molecular-mechanics to computational
mechanics [34, 35, 36, 37].

Considerable work has been performed in this field with respect to the model-
ing of composites, see e.g. [38, 39, 40]. Massart et al. [41, 42] have developed a
meso-scale constitutive model for masonry that accounts for anisotropic plasticity
effects and damage of the constituents by implementing a generalized plane-stress
state assumption. However, multiscale schemes relying on homogenization place
the rather limiting assumption of periodicity not only of the micro-structure, but
additionally to what concerns damage propagation throughout the macro-scale. A
further assumption is placed concerning the full separation of the micro and macro
scales considered. These limiting assumptions are eliminated in the multiscale fi-
nite element method (MsFEM) introduced by Efendiev and Hou [43]. In [44] an
enhanced multiscale finite element (EMsFEM) scheme is presented that extends the
applicability of the classical MsFEM into the realm of nonlinear mechanics. The
work presented here builds upon this latter method, and extends it for implementa-
tion with problems of nonlinear plasticity.

2.3 Smooth hysteretic modeling

Like cementitious materials, masonry too is only adept in the handling of compres-
sion, with limited capabilities in the tensile or shear fronts. It further exhibits or-
thotropic behavior in directions that lie parallel and orthogonal to the mortar joints.
In developing a model able to account for the resulting nonlinear behavior, a mul-
tiplicity of effects need be taken into account including cracking, crushing, tension
softening, compression softening and shear transfer across crack slips. Naturally, the
modeling task becomes more complex when moving from monotonic to cyclic or
dynamic loads, since nonlinearity is then linked to energy dissipation and hystere-
sis, with manifestation of stiffness degradation and strength deterioration effects.
In tackling this issue from a macroscopic perspective, Karapitta et al. [45] employ
a smeared-crack approach for the modeling of unreinforced masonry walls, while
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Lourenço [25] introduced a model relying on plasticity theory for the modeling of
masonry walls loaded in-plane.

From a microscopic perspective, on the other hand, a hysteretic finite element
formulation may be adopted relying on the concept of smooth hysteretic models,
such as the Bouc-Wen model [46] or Preisach type models [47]. As illustrated in
Figure 2, the Bouc-Wen model in particular tackles the representation of hysteresis
via superposition of an elastic (1) and a hysteretic (2) component, corresponding
to an elastic stress component σel and a hysteretic stress component σh. Further-
more, the strain corresponding to the hysteretic spring is established in terms of
total strain, ε , and slip on the slider, x. Incorporation of hysteretic finite elements
enables a more robust and computationally efficient formulation, able to represent
the full hysteretic response cycle, which is particularly suited for nonlinear dynamic
analysis. Furthermore, smooth hysteretic models are capable of compactly simu-
lating damage-induced phenomena, including stiffness degradation, strength dete-
rioration and pinching [48, 49]. Due to their robust mathematical background, im-
plementation of smooth hysteretic laws has been proven to yield computationally
efficient formulations in different disciplines, ranging from solid physics and ferro-
magnetism [50, 51] to stochastic engineered systems [52], and to hysteretic finite
element schemes [53] with the latter demonstrated in what follows.

Fig. 2: The Bouc Wen Model: additive decomposition of the elastic and hysteretic
component.

3 The Hysteretic Multiscale Finite Element Method (HMsFEM)

In coupling the capabilities offered by the state-of-the-art formulations overviewed
previously, Triantafyllou & Chatzi [54] have proposed the Hysteretic Multiscale
FEM (HMsFEM) formulation, which merges the computational multiscale scheme
with the implementation of the hysteretic finite elements in the micro-scale.
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3.1 The Enhanced Multiscale Formulation (EMsFEM)

A computational multiscale approach is utilized in this review paper, namely the
Enhanced Multiscale Finite Element method (EMsFEM) introduced in [44]. The
method exploits patterns of periodicity present at the micro-scale level for grouping
sets of micro-elements into clusters, herein referred to as Representative Volume
Elements or RVEs (macro-elements). A visualization is offered in Figure 3, where
the coarse RVEs are indicated in subfigures 3(c) and 3(d). Discretization on the
basis of the RVEs defines a mesh that is significantly coarser than the respective
micro-scale mesh. The benefit of the EMsFEM approach lies in the redefinition of
the space where governing equations are solved, shifting the analysis from the fine
mesh of Figure 3(a) to the coarser mesh of Figure 3(e). To this end, it is useful to
distinguish between the micro- and macro-scale via use of an appropriate notation;
um will be used to denote the displacements at the micro-nodes, while uM stands for
the macro-displacement field. As in the standard finite element context, it is possible
to interpolate the micro-displacement vector at the nodes by using an interpolation
scheme as in [55]. For a hex-element this would imply:

um = [N]mdi
m where di

m =
{

um(1) vm(1) · · · vm(8)
}T︸ ︷︷ ︸

1x24

(1)

is the vector of nodal displacements of the ith micro-element, and [N]m is the inter-
polation matrix of the hex-element.

The RVEs also comprise hex-elements whose nodal displacements may be ag-
gregated in the following macro-displacement vector:

di
M =

{
uM(1) vM(1) · · · vM(8)

}T︸ ︷︷ ︸
1x24

(2)

where (i) designates the ith macro-node of the coarse (RVE) mesh. In what follows,
m will be used to designate components at the micro-scale, while M will be used to
designate components at the macro-scale.

For transitioning from the micro- (1) to the macro-scale (2), a mapping is con-
structed relying on suitable basis functions. In matrix form this is established as:

{d}m = [N]m {d}M (3)

where {d}m is the (3nmicro×1) vector of the micro-mesh nodal displacements, [N]m
is the micro-basis shape function matrix evaluated at the nodes of the micro-mesh
(x j,y j,z j), while {d}M is the vector of the macro-node displacements. Per the stan-
dard definition of shape function, each column of [N]m represents a deformed con-
figuration of the RVE, with a value of unit at the corresponding macro-degree of
freedom, and null values at the remaining macro-degrees of freedom.

The micro-basis functions occur via solution of the following boundary value
problem:
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Fig. 3: The MsFE modeling scheme

[K]RVE {d}m = {/0}

{d}S =
{

d̄
} (4)

where [K]RV E designates the RVE stiffness matrix, {d}S is the vector of degrees of
freedom along the boundary S of the RVE, and

{
d̄
}

is a predefined displacement
vector. Different options are available for specifying the boundary conditions, a fea-
ture critical to the performance of the method, including the linear, periodic and
oscillatory boundary conditions, as elaborated upon in [43, 44].

3.2 The Hysteretic Multiscale Formulation (HMsFEM)

This Section offers a brief overview of the HMsFEM scheme, however the interested
reader is referred to [56, 57] for further details on this formulation. The hysteretic
feature of the formulation relies on the additive decomposition of the total strain
into a reversible elastic and an irreversible inelastic component [58] (Figure 2):

{ε̇}m(i) =
{

ε̇
el
}

m(i)
+
{

ε̇
pl
}

m(i)
(5)
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where {ε}m(i) is the total strain tensor,
{

εel
}

m(i) is the tensor of the elastic, re-

versible, strain and
{

ε pl
}

m(i) denotes the tensor of plastic strains, while m(i) indexes
the ith micro-element within the RVE. The (.) symbol denotes a time-derivative. The
isoparametric interpolation scheme is here considered for the displacement field

{d}m(i) = [N]{u}m(i) (6)

where [N]m(i) is the shape function matrix. The corresponding strain-displacement
relationship is inferred on the basis of compatibility [55] as:

{ε}m(i) = [B]{u}m(i) (7)

where [B] is the strain-displacement matrix.
Moreover, the interpolation scheme defined for plastic deformations assumes the

form: {
ε̇

pl
}

m(i)
= [N]e

{
ε̇

pl
cq

}
m(i)

(8)

where
{

ε
pl
cq

}
m(i)

denotes the strain vector evaluated at appropriately defined points

(collocation points) and [N]e is the respective interpolation matrix.
By plugging equation (5) into the Principle of Virtual Work [59], and via use of

the former interpolation schemes, it is straightforward to derive the elastic
[
kel
]

m(i)

and hysteretic
[
kh
]

m(i) stiffness matrices:[
kel
]

m(i)
=
∫

Ve

[B]T [D]m(i) [B]dVe[
kh
]

m(i)
=
∫

Ve

[B]T [D]m(i) [N]e dVe

(9)

The governing equation of the problem may then be written as:[
kel
]

m(i)

{
ḋ
}

m(i)−
[
kh
]

m(i)

{
ε̇

pl
cq

}
m(i)

=
1

vη

{
ḟ
}

m(i) (10)

where vη is a degradation parameter, which increases with plastic deformation (ref-
erence value equals 1 for no yielding, see [60] for further details). It need be men-
tioned that both

[
kel
]

m(i) and
[
kh
]

m(i) are constant matrices. The evolution of plastic
deformations, and thereby nonlinearity, is evaluated at the Gauss points of the cor-
responding micro-scale element, and is defined as:{

ε̇
pl
}

m(i)
= F

({
ε

el
}

m(i)
,
{

ε̇
el
}

m(i)
,{σ}m(i)

)
(11)

where F is a hysteretic operator [50, 61, 62]. A multi-axial Bouc-Wen type smooth
plasticity model [63] is herein adopted as the aforementioned operator. The benefit
of employing such a rule is that the nonlinear behavior may be accounted for in a
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compact representation, fully governed by a finite set of parameters; the parameters
of the hysteretic model. Figure 4 exemplifies how a typical hysteretic loop may
be accounted for via adoption of an appropriate yield flow rule Φ and a kinematic
hardening rule, further regulated by the plastic multiplier λ̇ , as described in the work
of [64]. For further details, the interested reader is referred to [60].

Fig. 4: The classical plasticity loop accounted for by the Bouc Wen model.

The smooth hysteretic model additionally offers the potential of including dam-
age induced phenomena such as damage degradation, strength deterioration and
pinching, as elaborated upon in [65, 48]. Table 1 summarizes the defining parame-
ters of the smooth hysteretic model, with details on the corresponding formulations
found in [54].

Table 1: Smooth Hysteretic Model Parameters

Effect Parameter
Hysteretic Shape β , γ , N

Deterioration cη (stiffness), cs (strength)

Pinching ζ 0
1 , ψ0, δψ , µ , p, q

Next, by following the reasoning adopted under the EMsFEM scheme, it is pos-
sible to demonstrate [54] that the RVE equilibrium equation now assumes the fol-
lowing form:



12 Eleni N. Chatzi, Savvas P. Triantafyllou and Clemente Fuggini

[K]MRV E( j) {d}M = { f}M−{ fh}M (12)

where [K]MRV E( j) is the RVE stiffness matrix derived as:

[K]MRV E( j) =
i

∑
1

[
kel
]M

m(i)
(13)

while { f}M is the nodal force vector, comprising mapped contributions from the
micro-nodal force components:

{ f}M
m(i) =

1
vη

[N]Tm(i) { f}m(i) (14)

and { fh}M is the plastic force vector evaluated as:

{ fh}M =
mel

∑
i=1

[
kh
]M

m(i)

{
ε

pl
cq

}
m(i)

(15)

Equation (12) occurs through the principle of energy equivalence between the
deformation energy of the RVE and the corresponding micro-mesh [54]. The major
benefit of this approach versus standard multiscale schemes, is that the recalculation
of the micro-basis functions, which would be required every time the structure shifts
from the elastic to plastic regimes, is no longer necessary. Instead, the micro-basis
functions are now calculated only once in the beginning of the analysis, while the
employed smooth hysteretic law accounts for the evolution of nonlinearity.

The direct stiffness method is then implemented for casting the governing equa-
tion of the dynamic problem in the macro-level:

[M]
{

Ü
}

M +[C]
{

U̇
}

M +[K]{U}M = {P}M (16)

The nodal load vector {P}M for the RVE mesh (ndo fM×1) in Equation (16) occurs
as:

{P}M = {F}M +{Fh}M (17)

where {F}M is the (ndo fM×1) external loads vector and {Fh}M is the (ndo fM×1)
hysteretic load vector at the global level. [M], [C] and [K] designate the (ndo fM×ndo fM)
mass, viscous damping and elastic stiffness matrices, which are evaluated at the RVE
mesh (macro-scale).

The solution of the global equations of motion is therefore carried out at the
macro-scale. This in turn implies that the resulting macro-displacements {U}M
should be downscaled (mapped to the micro-scale) in order to derive the correspond-
ing local strains. The computational aspects of the HMsFEM overviewed herein are
offered in detail in [54].
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4 Case Study - Polymeric Textiles for Seismic Retrofitting of
Masonry

Within the framework of the Seismic Engineering Research Infrastructures for Euro-
pean Synergies (Series) initiative (http://www.series.upatras.gr, Polymast 2011) and
as part the EU co-funded projects Polytect [66] and Polymast [17], textile reinforce-
ment solutions have been developed. These were tested under full-scale seismic tests
carried out in the European Center for Training and Research in Earthquake Engi-
neering (Eucentre). As part of the conducted experimental campaign, a previously
damaged unreinforced two storey stone building served as a reference case-study
for assessment of a “seismic wallpaper” reinforcing solution (Figure 5). The pur-
pose was to establish a benchmark for the retrofitting and repair of masonry-type
structures, which have been damaged due to seismic events. The building’s dimen-
sions along the length, width and height were 5.80m x 4.40m x 5.80m respectively.
It features concrete foundation, a wooden roof and a wooden first-storey slab.

Fig. 5: 3D View of the unreinforced (left) and reinforced (right) stone building,
reproduced from [66, 17].

While still in the unreinforced (URB) stage, the structure was tested under dy-
namic loads on a shake-table until damage. Preliminary repairs were performed
through filling of cracks with epoxy resin and stiffening of the wooden slab. The
damage-repaired building (DRB) was again non-destructively tested and subse-
quently reinforced via application of a full-cover solution, namely a composite seis-
mic wallpaper. The composite wallpaper (polymeric textile), which is illustrated in
Figure 6, features the following components:

1. Multiaxial, warp-knitted, Alkali Resistant (AR)-glass and Polypropylene (PP)
fibers

2. Nanoparticle enhanced coatings for the polymeric textile; Nanoparticle enhanced
mortar for ensuring the bond to the protected structure.
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3. Fiber optic strain sensors embedded into the textile, with dynamic sampling ca-
pability up to 1 kHz.

Fig. 6: Composition of the quadri-axial polymeric textile employed as a full-
coverage seismic protection, reproduced from [66, 17].

An epoxy mortar compound ensured an almost perfect bond between the textile
and the masonry structure; an assumption which was later experimentally validated.
This further allows for simplification of the adopted numerical analysis alleviating
the necessity for assumptions on interface/contact laws. The properties of the pri-
mary constituents involved here, i.e., masonry, and the polymeric textile as provided
by the manufacturer, are listed in Table 2. It should be noted that as is typically the
case for polymer materials, the nominal specifications do not necessarily comply
with the in-situ properties. A detailed outline of the further material properties of
the stone building is provided in [18].
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Table 2: Mechanical properties of the case-study materials.

Property Masonry Textile

Density 2579 kg/m3 2000 kg/m3

Young Modulus E = 2550 MPa Ex = 40000 MPa, Ey,z = 32000 MPa
Poisson Coefficient ν = 0.4 νxy = 0.14, νxz = νyz = 0.2
Shear Modulus 840 MPa 4500 MPa
Maximum compression stress σc 3.28 MPa
Maximum tensile stress σt 0.137 MPa 400 MPa
Maximum shear stress σs 10 MPa

Upon retrofitting with the polymeric textile, the building was assessed under seis-
mic input on the Eucentre shake-table at increasing peak accelerations of 0.1g, 0.3g,
0.4g, 0.5g and 0.6g. The third test at 0.4g was in fact the first to induce damage
and nonlinear response behavior. The resulting response was recorded via a set of
accelerometers mounted in several positions on the structure.

4.1 Numerical – Experimental Characterization of the Composite
Structure

The data recorded, by means of the described campaign, offer a multiplicity of in-
formation over various stages of the building’s condition, namely prior to damage
(URB), after damage-minor repair (DRB), and upon retrofitting with the polymeric
textile (REB).

4.1.1 Step 1: Identification of Elastic Properties - OMA

In identifying the properties of the building in the elastic range for various con-
dition stages, Operational Modal Analysis (OMA) may be employed [67]. OMA
requires sets of ambient (broadband) vibration records on the basis of which modal
properties, such as natural frequencies, mode shapes and damping ratios may be
inferred. These were in this case extracted via four three-axis geophones, located
on the parapet of the building’s windows. Half-hour records were processed, ac-
quired at a sampling rate of 265Hz per construction phase (URB, DRB, REB). In
addition to the ambient records, forced hammer (impact) tests were further car-
ried out, for corroborating the OMA results. The records were processed via use
of well-established modal identification techniques, namely the Frequency Domain
De-composition (FDD) and the Natural Excitation Technique combined with the
Eigensystem Realization Algorithm (Next-ERA) [68, 69, 70]. The identified modal
frequencies are summarized in Table 3 for the first three modes of the building.
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Table 3: Experimental Modal Frequencies under Various Construction Phases

Mode # URB Frequency [Hz] DRB Frequency [Hz] REB Frequency [Hz]

1 11.55 8.51 9.50
2 12.07 9.31 10.30
3 16.27 15.69 18.25

4.1.2 Step 2: Preliminary Numerical Analysis

A preliminary numerical Finite-Element-based model was set up in ANSYS [71].
The material properties were assigned according to the manufacturers specifica-
tions (Table 2 and [18]), while the modeling of damage and repairs was based on
the close observation of the structure between construction phases. This included
the recording of major crack patterns (size and orientation). Both masonry and the
textile are in this preliminary simulation attempt modeled as anisotropic yet homo-
geneous materials. The first three modes identified via this rough numerical model
are summarized in Table 5, where it is evident that the uncalibrated numerical model
significantly overestimates the building’s eigenfrequencies.

Table 4: Numerical Modal Frequencies under Various Construction Phases - no
Model Calibration

Mode # URB Frequency [Hz] DRB Frequency [Hz] REB Frequency [Hz]

1 12.62 10.93 13.77
2 13.51 12.28 14.73
3 20.22 19.25 22.35

While results do not appear significantly divergent for the first two modes of
the unreinforced phase (URB), the error increases for the damaged/minor repairs
phase (DRB), and it becomes quite significant for the retrofitted phase (REB). The
discrepancy may be attributed to numerous uncertainties relating to lack of prior
information, the simplifying assumptions in the modeling of the masonry and poly-
mer constitutes, as well as the assumptions relating to the damage and intervention
modeling (crack filling and diaphragm stiffening).

For ameliorating the estimation results, it is clear that a more refined approach
need be enforced. At the same time, the nonlinear range of the response, available
as part of the conducted shake-table tests, has not so far been exploited. In utilizing
these results, a time history analysis is required, albeit implying significant com-
putational toll. To this end, it is of the essence to utilize computational models,
which may offer sufficient flexibility for the calibration (updating) process, while
alleviating unreasonable computational toll owing to excessive refinement. Such a
procedure is described next.
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4.1.3 Step 3: Inverse Problem Formulation via Heuristic Optimization

In compromising the above-mentioned conflicting objectives, i.e., sophistication and
model adaptability against computational cost, four different FE setups were put
together corresponding to essentially four types of RVEs, as illustrated in Figure
7. The employed setups, which are materialized in ANSYS, correspond to varying
modeling refinement levels, and therefore allow for diverse adaptability with respect
to the actual case-study. More specifically,

Setup 1 (FE1)
In the first configuration masonry is discretized by means of an eight-noded
solid element (SOLID65), which is capable of cracking/crushing and sliding
(shear) effects across the crack face. The multiaxial textile is modeled as a
homogeneous anisotropic material, with different properties along different
wall faces, since walls placed perpendicular to the direction of the seismic
load were dressed with more than one layers of textile. The SOLID46 layered
element is adopted for the textile model, allowing for the combination of a
layer of mortar (matrix) and a layer of the assumed anisotropic textile mate-
rial. A total of 32 material parameters serve as inputs to be calibrated for this
configuration.
Setup 2 (FE2)
In the second configuration masonry is once again modeled via SOLID65 ele-
ments. The textile is in this case approximated by a meso-scale representation,
with the layered SOLID46 Finite Element now updated to include a total of
5 layers. The first layer corresponds to the mortar compound matrix, while
the remaining four correspond to each one of the glass and polypropylene
fiber layers, accounted for with their corresponding orientation angles. The
fibers are represented via dedicated anisotropic materials. The different be-
havior along perpendicular wall directions is now accounted for via indepen-
dent thickness parameters. A total of 31 material parameters serve as inputs
to be calibrated for this configuration.
Setup 3 (FE3)
In the third configuration masonry is now discretized using the SOLID45 3D
structural solid element, which allows for plasticity, creep, swelling, stress
stiffening, large deflection, and large strain effects. It further accommodates
anisotropic material properties, a feature which is not offered by the SOLID65
option used in the previous setups. The textile is modeled via the anisotropic
macroscopic representation adopted in the 1st setup (FE1). A total of 39 ma-
terial parameters serve as inputs to be calibrated for this configuration.
Setup 4 (FE4)
In the fourth configuration masonry is again modeled via the SOLID45 ele-
ment, while the multi-axial reinforcing textile follows the meso-scale repre-
sentation adopted in setup 2 (FE2). The total number of input parameters is
now 40.
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FE1 corresponds to the setup of the preliminary model, with the added option of
calibrating the involved material properties. FE2 breaks the textile material further
down to its constituents (meso-scale representation), permitting dedicated failure
criteria per fiber class and orientation. This breakdown has been motivated from
the mode of failure occurring during the shake-table tests, which lied along specific
fibers and orientations. FE3 allows for refinement on the masonry front by introduc-
ing anisotropic properties for the masonry element. Finally, FE4 is the more refined
modeling option, combining an anisotropic material for masonry and a meso-scale
model for the textile.

FE1 FE2 FE3 FE4 

Legend 
Solid 46: textile 

Solid 46: AR glass fiber 

Solid 46: PP fiber  

Solid 46: mortar 
Solid 65: masonry  
(isotropic-smeared crack) 

Solid 45: masonry  
(anisotropic) 

Fig. 7: Adopted FE Setups.

For updating the parameters of the candidate numerical models, a multistage evo-
lutionary approach was implemented in [18]. A Genetic Algorithm (GA) is adopted
as the heuristic optimization tool, albeit this being interchangeable with other alter-
natives, such as Particle Swarm Optimization (PSO) or the Covariance Matrix Adap-
tation Evolutionary Strategy algorithm (CMA-ES). A heuristic is deemed as appro-
priate for the inverse formulation discussed herein, due to lack of a straightforward
functional relationship between the optimization function, i.e., the discrepancy be-
tween experiments and simulation, and the input parameters, i.e., the material prop-
erties. Given availability of a diverse set of reference (experimental) data, involving
both Operational Modal Analysis & Nonlinear Dynamic tests across different con-
struction phases of the case-study building, a multi-stage optimization procedure is
set up. The unreinforced test data (URB) is discarded, given that damage essentially
reinitializes the structural properties in the DRB case. The optimization process
comprises the following stages:

Stage 1:
In this stage the elastic properties of the repaired masonry building (DRB)
model are updated in order to yield an improved estimation,ωDRB

s , of the ex-
perimentally identified frequencies, ωDRB

e .
Stage 2:
In this stage, the experimentally identified frequencies of the Retrofitted Struc-
ture (REB) serve for updating the elastic properties of the textile on the basis



Title Suppressed Due to Excessive Length 19

of the matching between experimental, ωREB
e , and simulated, ωREB

s , eigenfre-
quencies.
Stage 3:
While the former two analysis stages pertain to identification of elastic ma-
terial properties, this stage performs a time history analysis. This allows for
further configuration of the nonlinear material properties on the basis of the
matching between experimental, ai

e, and simulated, ai
s, acceleration time his-

tories in eight measured locations.

The final objective function (residual), r to be minimized via the GA occurs
via superposition of the target approximations for each of the three aforementioned
stages, and may be written as:

r =

∥∥ωDRB
s −ωDRB

e
∥∥

‖ωDRB
e ‖ +

∥∥ωREB
s −ωREB

e
∥∥

‖ωREB
e ‖ +

8

∑
i=1

∥∥ai
e−ai

s
∥∥

‖ai
e‖

(18)

For all simulations ANSYS serves as the modeling platform, iteratively called
from a Genetic Algorithm module coded in a Fortran environment [72].

4.1.4 Step 4: Updated Model Results

The convergence of the natural frequency approximation, during the GA-based op-
timization is presented in Figure 8 for each of the four candidate models, and con-
trasted to the experimentally identified values. The upper row of plots correspond
to the damaged/repair (DRB) case, whilst the bottom row correspond to the modal
estimates for the retrofitted (REB) case. The plots reveal that the updated modal
estimates better approximate the experimental results, when contrasted against the
preliminary (uncalibrated) model estimates (Table 3,5). Setups FE3 and FE4 return a
closer approximation of the reference (experimental) values. This may be attributed
to the higher flexibility of these setups; FE3 accounts for the anisotropic behavior of
masonry, while FE4 achieves a more refined representation of the polymeric textile.

The third residual term, or optimization criterion, pertains to the approximation
of the dynamic time history measurements, which further allows for calibration of
the nonlinear material properties. Figure 9 illustrates results from FE4, which per-
forms the best, from two characteristic building nodes (A & F), lying on the perime-
ter of the first and second floor of the structure respectively. Although not perfect, the
simulation adequately approximates the observed dynamics. In further refining the
achieved results, the material damping parameters ought to enter the optimization
process, while the monitoring capability offered by the textile should be exploited.
It is reminded that the textile features embedded fiber optic strain sensors, able to
provide information on the micro-scale level.
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Fig. 8: Convergence plot for the candidate models (FE Setups) in terms of approx-
imation of the elastic (eigenfrequency) properties of the damage/repaired (DRB-
upper plots) and retrofitted (REB-lower plots) building.

However, the refinement of the simulation via introduction of further parameters
into the optimization problem, or further refinement of the scale of the representa-
tion will eventually render the optimization procedure infeasible. The current modal
analysis run-time lies in the order of ca. 10 sec against an order of ca. 15 min for
the nonlinear dynamic analysis part (with the cost increasing for more complex FE
setups). It is thus necessary to come up with efficient methods for accelerating the
simulation procedure, particularly to what the dynamic nonlinear analysis compo-
nent is concerned.
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Fig. 9: Convergence plots for Setup FE4 in terms of approximation of the measured
dynamic response of the damage/repaired (DRB-upper plots) and retrofitted (REB-
lower plots) building offered at two characteristic locations.

5 Multiscale Analysis of Textile-Retrofitted Masonry Wall

As discussed in the earlier section, despite limiting the candidate models to meso-
scale representations, a heavy computational toll occurs particularly with respect to
the time history nonlinear analysis. The latter necessitates about 15 min for 10 sec
of a single transient analysis, carried out on an average performance double core
PC, versis only few seconds required by a modal analysis. Nonetheless, adoption of
such an analysis is necessary when dynamic testing results are available, and iden-
tification of nonlinear properties is sought. In tackling this, Triantafyllou & Chatzi,
introduced the HMsFEM discussed and overviewed in Section 3 [54]. The work-
ings of the method have been demonstrated on the acceleration of the computation
of polymer reinforced masonry structures in [57]. Following the construction stages
outlined in the previous case-sudy, [57] overview the analysis of an unreinforced
and textile-retrofitted masonry wall, this time by means of a multiscale FE based
analysis. For details on the methodological front, the interested reader is referred to
[57] for a thorough outline.

The cantilever masonry wall presented in Figure 10 is considered, comprising
stone blocks, mortar and a single outer layer of textile-reinforcement in analogy to
a single wall of the case-study presented in Section 4. The material properties are
chosen in accordance to the previous case study, with addition of the properties of
the smooth hysteretic law, which is now adopted for capturing the nonlinear behav-
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0.40 m

0.05 m

Stone CompositeMortar

m=20tn

2.5 m

(a)

(b)

(c)

Fig. 10: Left: Textile-retrofitted masonry wall; Right: (a) Finite element model, (b)
Multiscale model RVE#1, (c) Multiscale model RVE#2

ior. The textile, whose configuration follows the material employed in the previous
case-study is modeled as a homogenized anisotropic layer (Figure 11). The elas-
tic, plastic and hysteretic material properties of the constituents are summarized in
Table 5.

Table 5: Multiscale Analysis Models - Constituent Material Properties

Parameters Stone
Elastic/Plastic ρs = 1.8tn/m3, E = 20.2 GPa, σc = 69.2 MPa and σt = 6.92 MPa
Hysteretic Shape β = 0.1, γ = 0.9, N = 25
Deterioration cη = 0.002 and cs = 0.005
Parameters Mortar

Elastic/Plastic ρm = 1.2tn/m3, E = 3494MPa, σc = 3 MPa, σt = 0.3 MPa
Drucker-Prager dilation angle: ψ = 60o

Hysteretic Shape β = γ = 0.5, N = 2
Deterioration cη = 0.002 and cs = 0.05
Pinching ζ 0

1 = 1.0, ψ0 = 0.05, δψ = 0.01, µ = 0.0001, p = 1.2, q = 0.0001
Parameters Polymeric Textile
Elastic ρt = 2.0tn/m3, E11 = 40 GPa, E22 = E33 = 32 GPa, E12 = E23 =

E13 = 4.5 GPa
Plastic {wrap-knitted fibers: σt = 10 MPa, σs = 400 MPa}, {mortar ma-

trix: σc = 30 MPa}
Hysteretic Shape β = 0.5, γ = 0.5, N = 25
Deterioration cη = 0.002 and cs = 0.005

The reference fine-meshed finite element model as illustrated in Figure 10a com-
prises 2223 hex–elements with full integration and 3020 nodes. The multiscale
model instead features only 10 RVEs and 44 nodes, with two types of coarse el-
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Fig. 11: Composition of the Polymeric Textile Reinforcement

ements of 228 micro-elements each (Figure 10b,c). The eigen-periods of the struc-
ture under consideration are Tin = 0.19 s and Tout = 0.91 s for the in-plane and
out-of-plane eigen modes respectively.

A series of time-history analyses is then performed at a constant time step of
dt = 0.001s. The unreinforced (URM) and retrofitted (REB) stages, i.e., the wall
with and without textile, are subjected to seven unscaled ground motion records ob-
tained from the PEER strong motion database [73] (Friuli, 1976;Victoria-Mexico,
1980; Northridge, 1995; Imperial Valley(E06), 1979; Chi-Chi, 1999; Imperial Val-
ley(E07), 1979; Coyote Lake, 1979). The multiscale approach is verified in terms
of accuracy against a conventional FE model built in ABAQUS [74], rendering a
very good approximation. The analysis time for the ABAQUS FE model is ca. 125
min, while the multiscale analysis necessitates only 14 min, thereby offering an 88%
acceleration in computation.

The derived in-plane displacement time-histories, calculated at the free end, are
contrasted in Figures 12 (in-plane) and 13 (out-of-plane) for selected earthquake
inputs in the URM and REB case. The peak displacements appear reduced for the
REB case due to the strengthening functionality of the textile.
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Fig. 12: In-plane Displacement Time Histories for the unreinforced (a,b,c) and
retrofitted (e,d,f) case.
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Fig. 13: Out-of-plane Displacement Time Histories for the unreinforced (a,b,c) and
retrofitted (d,e,f) case.
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A benefit of the multiscale approach is the continual interaction between the fine
and coarse scale, which allows for estimating micro-scale quantities (such as local
strains), as well as examining phenomena of damage accumulation at the micro-
mesh level. By carrying out such an analysis, it appears that despite reduction in the
experienced peak displacements, damage accumulation still occurs. This is evident
in the hysteretic energy accumulation plot for the bottom mortar layer in Figure 14,
albeit damage appears significantly reduced in the retrofitted case. Thus, although
the textile composite layer succeeds in increasing the overall strength and stiffness
of the masonry wall, it need be combined with conventional measures to ensure
compliance with requirements at Damage Limitation performance level.
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Fig. 14: Hysteretic energy accumulation at the bottom mortar layer, for the URM
case (top); and the REB case (bottom).
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The significant reduction in computation furnished by the HMsFEM scheme is
particularly attractive with the context of an inverse analysis, as discussed in Section
4. Since the analysis time is reduced by an order of magnitude in this case, it would
be feasible to consider implementation of identification techniques that are near-
online, such as Kalman-type filters, as opposed to an offline optimization procedure,
such as the GAs demonstrated earlier. This inverse problem formulation is over-
viewed in [60] where the HMsFEM scheme is coupled with an Unscented Kalman
Filter for system identification under availability of sparse measurements.

6 Conclusions

Polymeric textiles comprise a highly effective solution for shielding cultural her-
itage structures, such as masonry or natural-stone buildings, from natural hazards
and extreme events. Motivated by an extensive experimental campaign on the ap-
plication of a polymeric textile full-cover solution on a natural-stone building, this
work outlines numerical strategies that are required for i) the identification and char-
acterization of the resulting composite structure in the elastic and plastic regime, and
ii) the accelerated and multiscale simulation of such systems, for facilitating opti-
mization, reliability and risk assessment tasks.

• Firstly, the experimental campaign and the measurements gathered within the
context of the EU funded project Polymast are overviewed, carried out for differ-
ent stages of the building’s life (unreinforced, damaged/repaired and retrofitted).
Subsequently, the aggregated measurements serve for updating, or fine-tuning,
computational models of the masonry-textile composite system.

• Initially, a finite-element based analysis is performed, adopting configurations
of varying refinement, and therefore fidelity. The numerical representations are
maintained at a mesoscopic scale, in order to facilitate the coupling with compu-
tationally intensive schemes, such as heuristic optimization. It is shown that in-
clusion of refinement in the representation, increases the flexibility of the model
and allows for a better tuning to the true system and the experimental results.
Nonetheless, the analysis proves computationally costly, and almost prohibitive
when cast in the context of condition and risk assessment, i.e., when approached
from a probabilistic assessment viewpoint.

• To alleviate this issue, particularly when nonlinear dynamic analysis is required,
the Hysteretic Multiscale FEM (HMsFEM) methodology, developed in previous
works of the authors [54], is demonstrated as a viable reduced order model. The
benefits of the proposed procedure are two-fold. i) On one hand, a significant
reduction is achieved in the overall computation, in this case resulting in an order
of magnitude decrease in overall analysis time. ii) On the other hand, and despite
reduction in computation, precision and access to the information of the finer
scale is maintained.
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Naturally, the numerical scheme to be adopted should form a compromise be-
tween computational efficiency and complexity, which depends on the target of the
simulation. The multiscale scheme discussed here is particularly meaningful when
seeking to perform analyses which necessitate multiple iterations or multiple sam-
ples, as is often the case in risk and reliability assessment. Further benefits may
be harnessed when this is coupled with monitoring technologies, which deliver not
only global information, e.g. accelerations, but additionally local information, e.g.
strains.
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